Supporting Information

Prediction of two-dimensional C_3N_2 semiconductors with outstanding stability, moderate band gaps, and high carrier mobility

Longhui Li,^a Rui Tan,*^a Yulou Ouyang,^a Xiaolin Wei,^a and Zhenkun Tang*^a

 ^a Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China. E-mail: rtan@hynu.edu.cn, zktang@hynu.edu.cn

Fig. S1 The 12 reasonable C_3N_2 structures predicted by the RG² code, along with their calculated formation energies.

Fig. S2 The unit cells of (a) $P-C_3N_2$ and (b) $I-C_3N_2$ monolayers with inequivalent C and N atoms.

Table S1 The bond lengths and bond angles of $P-C_3N_2$.					
Material	Bonds	Bond lengths (Å)	Bond angles	Angles (°)	
	d_1	1.45	$ heta_1$	123.9	
	d_2	1.41	$ heta_2$	118.1	
	d_3	1.35	$ heta_3$	122.7	
D C N	d_4	1.31	$ heta_4$	121	
$P-C_3N_2$	d_5	1.43	$ heta_5$	121.5	
			$ heta_6$	120	
			$ heta_7$	116.7	
			$ heta_8$	121.8	

Table S1 The bond lengths and bond angles of $P-C_3N_2$.

Table S2 The bond lengths and bond angles of I-C $_3N_2$.

Material	Bonds	Bond lengths (Å)	Bond angles	Angles (°)
I-C ₃ N ₂	d_1	1.46	$ heta_1$	115.7
	d_2	1.36	$ heta_2$	107.9
	d_3	1.39	$ heta_3$	110.1
	d_4	1.41	$ heta_4$	109.1
	d_5	1.41	$ heta_5$	105.8
	d_6	1.32	$ heta_6$	107.1
	d_7	1.39	$ heta_7$	132.5
	d_8	1.48	$ heta_8$	134.6
			$ heta_9$	136.5
			$ heta_{10}$	118.3
			$ heta_{11}$	121.7

Fig. S3 (a-c) AIMD simulations of a $2 \times 2 \text{ P-C}_3\text{N}_2$ supercell at 800,1500 and 2800 K. (d-f) AIMD simulations of a $2 \times 2 \text{ I-C}_3\text{N}_2$ supercell at 800,1500 and 2900 K.

Fig. S4 (a) Phonon spectrum of $P-C_3N_2$ under 9% biaxial ultimate strain. (b) Phonon spectra of $I-C_3N_2$ under 9% and 10% biaxial strain.

Fig. S5 Comparison of band gaps between two C_3N_2 monolayers and synthesized 2D carbon nitride materials.

Fig. S6 The orbital-projected band structure of the P-C₃N₂ monolayer.

Fig. S7 The orbital-projected band structure of the $I-C_3N_2$ monolayer.

Fig. S8 (a) The orthorhombic structures and hole mobilities of the P-C₃N₂ and I-C₃N₂ along the *x* and *y* directions. (b)-(c) Total energy shift E- E_0 on the per surface as a function of lattice deformation $\Delta l/l$ along the *x* and *y* directions in P-C₃N₂ and I-C₃N₂. (d)-(e) Relationship between energy shift of the band edge position and the dilation $\Delta l/l$.

Fig. S9 Energy-strain curves of C_3N_2 monolayers under tensile and compression strains.

Fig. S10 Variations of energy eigen values of the CBM and VBM and band gap as functions of the biaxial strain of (a) $P-C_3N_2$ and (b) $I-C_3N_2$.

Fig. S11 The schematic synthesis process of (a) $P-C_3N_2$ and (b) $I-C_3N_2$.