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Experimental Section

Materials: Solvents and reagents were used as received. Aluminum-backed, silica gel 60, 250 um
thickness analytical plates, 20 x 20 cm, glass-backed, silica gel 60, 500 um thickness preparative TLC
plates, and standard grade, 60 A, 32-63 um flash column silica gel were used for purifications.

Instrumentations: "H NMR and *C NMR spectra were recorded using a Bruker AVANCE Il 400 MHz
spectrometer. IR spectra were recorded from neat material on a Bruker Alpha FTIR spectrometer
using an attenuated total reflection (ATR) diamond crystal. Low- and high-resolution mass spectra
were recorded using AB Sciex APl 2000 Triple Quadrupole and AB Sciex QStar Elite Quadrupole-TOF
MS instruments, respectively in CH3;CN. UV-Vis data were obtained on Varian Cary 100 or Cary 50
spectrophotometers in CH,Cl,. The fluorescence spectra were recorded on a Cary Eclipse fluorimeter.

Details of the X-ray diffractometry studies are provided below.

5-Hydroxy-7-oxo-octaethylchlorin (9): Prepared as greenish-purple powder as described in the
literature;* data included for comparison. MW = 566.790 g/mol. Rs = 0.47 (silica/CH,Cl,-Hexanes, (2:1
v/v). 'H NMR (400 MHz, CDCls): 13.57 (s, 1H, -OH), 9.46 (1H, meso-H), 9.06 (1H, meso-H), 8.50 (1H,
meso-H), 3.99 (q, 3J™" = 7.4 Hz, 2H, -CH,), 3.90 (q, 3/ = 7.6 Hz, 2H, -CH,), 3.85 - 3.66 (m, 8H, -CH,),
2.70 = 2.61 (m, 4H, -CH,), 1.81 - 1.68 (m, 18H, -CH3), 0.39 (t, /™" = 7.5 Hz, 6H, -CHs), -0.70 (s, 2H, -NH)
ppm. *C{*H} NMR (101 MHz, CDCls): 214.3, 161.3, 158.0, 150.9, 145.8, 144.5, 142.6, 139.9, 139.4,
139.3, 138.8, 137.8, 137.6, 132.4, 131.3, 126.0, 101.7, 93.8, 90.4, 62.7, 30.8, 21.0, 19.6, 19.5, 19.3,
19.0, 18.5, 18.4, 18.0, 17.8, 17.7, 16.9, 8.3 ppm. UV-vis (CH,Cl5) Amax (l0g €): 337 (4.22), 403 (4.79), 421
(4.95), 510 (3.46), 551 (3.64), 584 (3.90), 641 (4.00). Fluorescence (CH1Cly, Aexcitation = 421 NM) Amax.
emission = 645, 703 nm. IR (diamond ATR, neat): 1645 (vc-o), 3324 (Vn-H) cm™. HR-MS (ESI+, 100% CHsCN,
TOF): calc’d for C36Ha7N4O," [M+H]* 567.3694, found 567.3668.

(1) Li, R.; Meehan, E.; Zeller, M.; Briickner, C. Surprising outcomes of classic ring-expansion conditions applied
to octaethyloxochlorin, 2. Beckmann-rearrangement conditions. Eur. J. Org. Chem. 2017, 1826-1834.
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Figure S1. 'H NMR spectrum (400 MHz, CDCl; at 25 °C) of 5-OH-7-oxochlorin (9).
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Figure S2. B3¢ NMR spectrum (101 MHz, CDCl; at 25 °C) of 5-OH-7-oxochlorin (9).
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Figure S3. UV-vis (CH,Cl,) absorption (solid line) and fluorescence emission (CH,Cl,) spectra
(broken line) of 5-OH-7-oxochlorin (9).
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Figure S4. FT-IR Spectrum (neat, diamond ATR) of 5-OH-7-oxochlorin (9).
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Figure S5. HR-MS Spectrum (ESI+, 100% CH3CN, TOF) of 5-OH-7-oxochlorin (9).

-CH;
P w3
-CH, 599
Meso-H D= = = Soo
00O W wnw sl
,—*—] CH i Jnc ok
-OH ! -z CH e
- M O M~ -
r 8 S ERE803335883% 2
o : . OO MOMOMMOOMMO6N ON—-O®o~
o @ °© o e T bW bB YIS
‘T | | | Lot It I o I o N R R T
A JL_Jg 1_4%%# AN
& 5 8 8 828 8 b g
o -— o k=] oo N -t -— w
T T T T

-
]
©
co
B
o

¥
-
<
-

[
8

Y \ i Iy
8 8 823 @
(=] f=] [a -] -
T T T T T T T T T T T T T T T 1
13 12 1 10 9 8 7 6 4 3 2 1 0 -1 :

Figure $6. 'H NMR spectrum (400 MHz, CDCl; at 25 °C) of 5-OH-7-oxochlorinato nickel(l1) (9Ni).
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Figure S9. FT-IR Spectrum (neat, diamond ATR) of 5-OH-7-oxochlorinato nickel(Il) (9Ni).

I +TOF MS: 0.065 to 0.499 min from Sample 1 (Ni-5-OH) of 739_Ni-5-OH_Bruckner_Chaudhri_20220202.wiff Max. 148.2 counts.
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Figure $10. HR-MS Spectrum (ESI+, 100% CH3CN, TOF) of 5-OH-7-oxochlorinato nickel(ll) (9Ni) with
its proposed reactions in the spectrometer, giving rise to the four major peak clusters observed (each
matching in their isotope patterns with the calculated patterns, not shown).
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l [+TOF MS: 0.149 10 1.717 min from Sample 1 (NC-45-A) of 842_NC-45-A_Bruckner_Chaudhri_20211020.
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Figure $16. UV-vis spectrophotometric titration of oxochlorin 6 with TBAOH in the range indicated.
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Figure S17. UV-vis spectrophotometric titration of oxochlorin 6 with TFA in the range indicated.
Data from ref. 2, included for comparison.

2. D. Schnable, N. Chaudhri, R. Li, M. Zeller and C. Briickner, Evaluation of Octaethyl-7,17-
dioxobacteriochlorin as a Ligand for Transition Metals /norg. Chem., 2020, 59, 2870-2880.
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Details to the computational studies
Computational Methods

All structures were optimized with the Becke, three-parameter, Lee-Yang-Parr (B3LYP) approximate
density functional® % and the Pople 6-31+G(d,p) basis set.*® The absence of negative frequencies in
a harmonic vibrational analysis confirmed that a local minimum had been found on the potential

energy surface for each molecule.

Relaxed potential energy surface scans for the rotation of the 5-OH moiety, as well as for
interconversion between the 7-0X0-5-OH and 7-OH-5-OXO0 tautomers were performed with the
same functional and basis set combination. The scans were incremented by 10° and 0.02 A,

respectively.

UV-vis spectra were simulated using time-dependent density functional theory (TD-DFT) with the
same functional and basis set as for the geometry optimizations. The lowest-lying 20 singlet excited
states were computed. NMR magnetic shielding tensors were computed using the gauge-including-

atomic-orbitals (GIAO) method,” the BHandHLYP approximate density functional,® and the Ahlrichs

3. (a) Beck, A. D. Density-functional thermochemistry. IIl. The role of exact exchange. J. Chem. Phys. 1993,
98, 5648-5646. (b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of
vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994,
98,11623-11627.

4. (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended
Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724-728. (b)
Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—consistent molecular orbital methods. XII. Further extensions of
Gaussian—type basis sets for use in molecular orbital studies of organic molecules. The J. Chem. Phys. 1972,
56, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital
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Figure S22. Computed energy trajectory for 9 (yellow) and 9Ni (purple) moving the hydrogen
atom from being bound to meso-oxygen (long Og.ketone—H bond distance) the -ketone oxygen (short
Og-ketone—H bond distance), showing the ~8 kcal/mol preference for the proton to be bound to the
meso-oxygen atom. Clicking on the molecular models shows a movie of this trajectory.
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Figure $23. Computed energy trajectory for 9 (yellow) and 9Ni (purple) moving the hydrogen atom
from being bound to the -ketone oxygen (long Oneso—H bond distance) to being bound to the meso-
oxygen (short Opmeso—H bond distance), showing the ~10 kcal/mol preference for the proton to be
bound to the meso-oxygen atom. Clicking on the molecular models shows a movie of this trajectory.
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Figure S24. Skip-rope-like trajectory for 9 (yellow) and 9Ni (purple) of the energy induced by
hydroxyl group rotation, showing the absolute minima at the position of closest H-bond distance to
the ketone oxygen. Clicking on the molecular models shows a movie of this trajectory.
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Computed 'H NMR Shifts
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Figure $25. Computed optical spectra and 'H NMR shifts of 9 in its neutral, meso-OH tautomeric
form (black) and its anionic form carrying the charge on the meso—oxygen atom (red).
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Figure S26. Computed optical spectra and *H NMR shifts of 9Ni in its neutral, meso-OH tautomeric

form (black) and its anionic form carrying the charge on the meso—oxygen atom (red).
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Figure $S27. Computed optical spectra and 'H NMR shifts of free base 9 in its neutral, meso-OH

tautomeric form (black), and two dianionic forms carrying the charge on the meso—oxygen atom and

either possible inner nitrogen indicated (red and orange).
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Figure $28. Computations of the mono-protonated form carrying both hydrogen atoms on either
oxygen converge on a species in which either oxygen carries a single hydrogen, with the charge
located on the pyrrolinone oxygen. Clicking on the molecular models shows a movie of the two
trajectories.
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Figure $29. Computations of the UV-vis spectra of the various mono-protonated forms of 9 shown,
in comparison to the neutral form of 9.

S26



(neutral form, for comparison)

lcm-l]

— 60000 -

30000 -~

Absorbance [M

300 500 700 900
Wavelength [nm]

Figure $30. Computations of the UV-vis spectra of the various mono-protonated forms of 9Ni
shown, in comparison to the neutral form of 9Ni.
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Figure S31. Computations of the UV-vis spectra of the di-protonated forms of 9 shown (in
comparison to neutral form 9).
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Details to the X-ray diffractometry studies

Crystals of 9Ni or 10 were mounted on a Mitegen micromesh mount in a random orientation and
data were collected from a shock-cooled single crystals at 150(2) K on a Bruker AXS D8 Quest four
circle diffractometer with an I-mu-S microsource X-ray tube using a laterally graded multilayer
(Goebel) mirror as monochromator and a Photonlll_C14 charge-integrating and photon counting
pixel array detector. The diffractometer used Cuk, radiation (A = 1.54178 A). All data were integrated
with SAINT V8.40B and a multi-scan absorption correction using SADABS 2016/2 was applied.lOThe
structures were solved by dual methods with SHELXT and refined by full-matrix least-squares
methods against F using SHELXL-2019/2.B2411 al| non-hydrogen atoms were refined with anisotropic
displacement parameters. Carbon bound hydrogen atoms, alcohol hydroxyl H atoms and H atoms of
planar (s.p2 hybridized) N-H groups were refined isotropically on calculated positions using a riding
model. Methyl CHz and hydroxyl H atoms were allowed to rotate but not to tip to best fit the
experimental electron density. For water H atoms in 9Ni, see below. Ujs, values were constrained to
1.5 times the U,q of their pivot atoms for methyl and hydroxyl groups and 1.2 times for all other

hydrogen atoms.

Additional data collection and refinement details, including description of disorder (where present)
can be found below. Complete crystallographic data, in CIF format, have been deposited with the
Cambridge Crystallographic Data Centre. CCDC 2340919-2340920 contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The Cambridge

Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

In 9Ni, one of the two independent molecules is disordered around an inversion center. The Ni metal
atom is slightly offset from the center, resulting in 1:1 disorder for all atoms. The disordered moiety
was restrained to have a similar geometry as the other not disordered molecule. For one of the ethyl
groups, additional disorder was refined. The minor moiety was again restrained to have a similar

geometry as the equivalent segment of the other not disordered molecule. The pyrrole sections and

[10] (a) Bruker, SAINT, V8.40A, Bruker AXS Inc., Madison, Wisconsin, USA. (b) L. Krause, R. Herbst-Irmer, G. M. Sheldrick,
D. Stalke, J. Appl. Cryst. 2015, 48, 3-10, doi:10.1107/51600576714022985.

[11] (a) G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122, doi:10.1107/5S0108767307043930. (b) G. M. Sheldrick, Acta Cryst.
2015, €71, 3-8, doi:10.1107/52053229614024218.
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adjacent atoms of the twice disordered segment were restrained to be close to planar. U;;
components of ADPs for disordered atoms closer to each other than 2.0 A were restrained to be
similar. Subject to these conditions the occupancy ratio for the twice disordered part refined to
0.313(8) to 0.187(8). A partially occupied water molecule is located in H-bonding distance to O1 of
the not disordered molecule. It is in conflict with some of the disordered segments and its occupancy
was freely refined. It's ADP was constrained to be the same as that of O1 of the not disordered
molecule (to avoid an unreasonably small ADP paired with an underestimated occupancy). Water H
atom positions were initially refined and O-H and H...H distances were restrained to 0.84(2) and
1.36(2) A, respectively, while a damping factor was applied. One of the H atom positions was further
restrained based on hydrogen bonding considerations (to O1_1). In the final refinement cycles the H
atom positions were set to ride on their carrier oxygen atom and the damping factor was removed.

Subject to these conditions the occupancy rate refined to 0.116(7).

In 10, 1.5 molecules constitute the asymmetric content of the cell, with one molecule in a general
position, and another one located atop an inversion center. The two molecules are related by a
pseudo-translation. Slight modulation of atom positions, by up to 0.5 A, breaks the symmetry
required for the smaller cell. Both molecules exhibit disorder of a single hydroxyl group over the two
possible positions with a hydrogen atom. For the molecule with inversion symmetry the disorder is

exactly 1:1. For the other molecule the disorder refined to 0.496(2) to 0.504(2).
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Structure Table

9Ni 10

CCDC number 2340919 2340920

Empirical formula C36Ha4.15N4NiO; o5 C36HagN4O3

Formula weight 624.85 582.77

Temperature [K] 150(2) 150(2)

Crystal system triclinic triclinic

Space group (number) P1(2) P1(2)

a [A] 8.6985(10) 9.9024(9)

b [A] 14.5755(16) 14.8290(14)

c [A] 20.098(2) 17.1682(17)

al] 109.334(7) 77.175(4)

B[] 97.626(8) 74.867(4)

v I[°] 91.299(7) 87.062(4)

Volume [A’] 2377.1(5) 2372.8(4)

V4 3 3

Peac [gEM ] 1.309 1.223

u[mm™] 1.180 0.616

F(000) 998.3 942

Crystal size [mm?] 0.070x0.060x0.010 0.330x0.310x0.060

Crystal colour green purple

Crystal shape flake plate

Radiation CuK, (A=1.54178 A) Cuk, (\=1.54178 A)

26 range [°] 4.71t0 162.32 (0.78 A) 5.46 to 159.94 (0.78 A)

Index ranges -11<h<10 -12<h<12
-18<k<18 -18<k<18
-25<1<24 -21<1<21
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Reflections collected

Independent reflections

Completeness

Data / Restraints / Parameters

Goodness-of-fit on F?

Final R indexes
[1=20(N]

Final R indexes
[all data]

Largest peak/hole [eA™]

Extinction coefficient

30684

9596
Ry = 0.1099
Rigma = 0.1184

98.7 %
9596/743/891
1.009

R, =0.0732
WR, =0.1853

R, =0.1344
WR, = 0.2363

0.69/-0.54

0.0027(4)

74970

10228
Rir = 0.0658
Riigma = 0.0419

99.9 %
10228/0/611
1.073

R, =0.0473
WR; =0.1354

R, = 0.0557
WR, = 0.1431

0.35/-0.22
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Figure S32. Thermal ellipsoid representation for compound 9Ni, at 50% probability levels showing
molecule 1 (left) and 2 (right) and the partially occupied water molecule. Disorder by inversion for
molecule 2, moiety numbers and C and H labels omitted for clarity.

Figure $33. Thermal ellipsoid representation for compound 10, at 50% probability levels. C and H
labels and those for symmetry created atom (molecule B) omitted for clarity.
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