Supporting Information:

A new nanostructured γ -Li₃PO₄/GeO₂ composite for all-solid-state Li-ion battery applications

Hany El-Shinawi,^{a,b*} Edmund J. Cussen^b and Serena A. Cussen^b

^a Department of Chemistry, Mansoura University, Mansoura, 35516, Egypt.

^b Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK.

* h_elshinawi@mans.edu.eg

Table S1. The resistances, capacitances and ideality factors (alpha) calculated from the fit of the impedance data of γ -Li₃PO₄/GeO₂ at different temperatures (equivalent circuit [R1Q1][R2Q2]Q3).

Temperature	R1 (Ω)	R2 (Ω)	Q1 parameters	Q2 parameters
	Bulk resistance	Grain boundary	Capacitance and (α)	Capacitance and (α)
		resistance		
40°C	840 349	946 943	5.0x10 ⁻¹¹ (1.00)	3.5 x10 ⁻¹⁰ (0.94)
60°C	173 463	112 802	5.1x10 ⁻¹¹ (1.00)	3.6x10 ⁻⁹ (0.80)
80°C	45 273	29 702	6.3x10 ⁻¹¹ (1.00)	1.7x10 ⁻⁸ (0.67)
100°C	17 352	9 070	2.8x10 ⁻¹⁰ (0.90)	1.5x10 ⁻⁸ (0.71)

Figure S1. The XRD pattern of as-synthesized Li-P-Ge composite (microwave reaction; 260°C) with no further calcinations.

Figure S2. Indexed XRD data of γ -Li₃PO₄/GeO₂ samples calcined at 500°C in argon and at 650°C in air. Upon heating the material to 650°C, no peak shifts were observed but the crystallinity was highly improved which allowed an accurate analysis of the XRD data.

Figure S3. An EDX analysis of a sample of air-calcined γ -Li₃PO₄/GeO₂.

Figure S4. The impedance plot of argon-calcined γ -Li₃PO₄/GeO₂ at 40 °C, fitted using the [R1Q1][R2Q2][Q3] equivalent circuit.

Figure S5. Charge/discharge curves (at 80 °C) for the first 5 cycles of the GeO_2 -C/Li₃PS₄/Li cell at a rate of 150 mAh/g (with respect to the germanium metal content). Commercial GeO_2 (Alfa Aesar; 99.99%) was mixed with carbon black (15 wt%) then employed in the three-layer cell by pressing the cell components at ~250 MPa.

Figure S6. Typical impedance plots collected (at 80°C) from an Li_3PO_4 -GeO₂-C/Li₃PS₄/Li solid-state cell before and after cycling. The inset is an SEM image collected from the γ -Li₃PO₄/GeO₂ composite after cycling, showing Ge nanoparticles distributed in a matrix of nanostructured γ -Li₃PO₄/C.