Supporting Information

Engineering carbon layer on yolk-shell bimetallic selenide microsphere boosts lithium storage as a high-performance anode

Wenzhe Wang^a, Shuting Qiu^a, Tianqi Gao^a, Hua He^a, Xiaojun Zhao^{b,*}, Zhi-Hong Liu^{a,*}

^aKey Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China (liuzh@snnu.edu.cn).

^bSchool of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China (x.j.zhao@hotmail.com; xjzhao@xauat.edu.cn).

Fig. S1 SEM images of (a, b) CoNi-glycerate, (c, d) CoNi-OH and (e, f) CoNi-OH@PDA.

Fig. S2 XRD patterns of CoNi-glycerate, CoNi-OH and CoNi-OH@PDA yolk shell structure.

Fig. S3 SEM images of (a, b) CoSe₂/Ni₃Se₄ and (c, d) s-CoSe₂/Ni₃Se₄.

Fig. S4 Galvanostatic charge/discharge curves of (a) $CoSe_2/Ni_3Se_4$ and (b) s- $CoSe_2/Ni_3Se_4$.

Table S1. Comparison of electrochemical properties of Co-based and Ni-based selenides carbon materials on LIBs

Electrode materials	Cycling performance	Rate Performance (mA h g ⁻¹ @ A g ⁻¹)	Ref.
NiSe ₂ /CoSe ₂ /Graphene	< 245.6 mA h g ⁻¹ after 500 cycles at 1 A g ⁻¹	544 @ 0.2 184 @ 2.0	Colloid. Surface. A, 2024, 688 , 133685.
CoSe-MS	156 mA h g ⁻¹ after 100 cycles at 0.5 A g ⁻¹	-	ACS Appl. Mater. Interfaces, 2019, 11 , 11292-11297.
ZnSe-CoSe@NC/MX	469 mA h g ⁻¹ after 80 cycles at 0.2 A g ⁻¹	477 @ 0.1 444 @ 0.2 335 @ 2.0	Electrochim. Acta, 2024, 487 , 144148.
CoSe/NC	310 mA h g ⁻¹ after 500 cycles at 1 A g ⁻¹	-	Nanoscale Res. Lett., 2019, 14 , 385.
CoSe2@C	-	521 @ 0.1 468 @ 0.2 321 @ 1.0	Appl. Surf. Sci., 2019, 483, 85-90.
NiSe/rGO	378 mA h g ⁻¹ after 50 cycles at 0.05 A g ⁻¹	364 @ 0.2 110@ 3.2	Materials, 2019, 12, 3709.
NiSe/C	428 mA h g ⁻¹ after 50 cycles at 0.1 A g ⁻¹	384 @ 0.2 299 @ 0.5	Electrochim. Acta, 2016, 208 , 238.
CoSe ₂ /Ni ₃ Se ₄ @NC	$\begin{array}{c} 518 \text{ mA h } g^{-1} \text{ after } 100 \\ \text{cycles at } 0.2 \text{ A } g^{-1} \\ 319 \text{ mA h } g^{-1} \text{ after} \\ 500 \text{ cycles at } 1 \text{ A } g^{-1} \end{array}$	564 @ 0.2 129 @ 4.0	This Work

Fig. S5 SEM images of (a) $s-CoSe_2/Ni_3Se_4$, (b) $CoSe_2/Ni_3Se_4$ and (c) $CoSe_2/Ni_3Se_4$ @NC after 100 cycles at 200 mA g⁻¹.

Fig. S6 CV curve with the pseudocapacitive fraction at a scan rate of 1.6 mV s⁻¹ of (a) $CoSe_2/Ni_3Se_4@NC$, (b) $CoSe_2/Ni_3Se_4$ and (c) s- $CoSe_2/Ni_3Se_4$.

Fig. S7 (a) The EIS plots of $CoSe_2/Ni_3Se_4@NC$, $CoSe_2/Ni_3Se_4$ and $s-CoSe_2/Ni_3Se_4$ before cycling. (b) The EIS plots of $CoSe_2/Ni_3Se_4@NC$ before and after 3 cycles.

Fig. S8 The survey spectrum of XPS spectra for CoSe₂/Ni₃Se₄@NC at different states (initial fully charge and discharge).