Supplementary Information

SMM features of a large lanthanide family of butterfly Cr^{III}₂Ln^{III}₂

pivalate complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm and Yb)

Daiana Cabrosi^[a], Juan H. Mecchia Ortiz^[a], Luca M. Carrella^[b], Eva Rentschler^[b] and Pablo Alborés^[a]*

- [a] Departamento de Química Inorgánica, Analítica y Química Física/ INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina Fax: +5411 / 4576-3341 E-mail: albores@qi.fcen.uba.ar
- [b] Department Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-12, D-55128 Mainz, Germany.

 Table S1. Crystallographic data of complexes 4-8.

	4	5	6	7	8
Empirical Formula	C44H86Cr2Tb2N2O20	C44H86Cr2H02N2O20	C44H86Cr2Er2N2O20	C44H86Cr2Tm2N2O20	C44H86Cr2Yb2N2O20
Formula weight (g/mol)	1385	1397	1401.66	1405	1413.22
$T(\mathbf{K})$	298(2)	298(2)	298(2)	298(2)	298(2)
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space Group	<i>P</i> ₋₁	<i>P</i> -1	P-1	<i>P</i> ₋₁	<i>P</i> ₋₁
a (Å)	11.1421(5)	11.1437(4)	11.1602(5)	11.1582(4)	11.1858(8)
<i>b</i> (Å)	11.3002(4)	11.2605(5)	11.2588(5)	11.2288(4)	11.2445(6)
<i>c</i> (Å)	12.3000(3)	12.2413(5)	12.2291(5)	12.2148(4)	12.2084(6)
α (°)	105.975(3)	106.323(4)	106.575(4)	106.728(3)	106.881(5)
β(°)	90.898(3)	90.948(3)	91.167(4)	91.108(3)	91.234(5)
γ (°)	94.388(3)	94.054(3)	93.723(4)	93.631(3)	93.317(5)
$V(Å^3)$	1483.41(9)	1469.43(10)	1468.44(12)	1461.59(9)	1465.74(15)
Ζ	1	1	1	1	1
$D_{\text{calc}} (\text{mg/m}^3)$	1.550	1.579	1.585	1.596	1.601
Absorption coefficient (mm ⁻¹)	2.778	3.090	3.256	3.434	3.589
F(000)	702	706	708	710	712
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
θ Range data collection (°)	3.67-26.31	3.84-28.74	3.86-27.71	3.79-28.62	4.01-28.60
Index ranges	-14≤ h ≤13	-14≤ h ≤14	-14≤h≤14	-14≤h≤13	-14≤ h ≤13
	$-14 \le k \le 14$	-14≤ k ≤14	-14≤ k ≤14	-14≤ k ≤14	$-14 \le k \le 14$
	-15≤1≤15	-15≤1≤15	-15≤1≤15	-15≤1≤15	-15≤1≤13
Reflections collected/unique	30931/6431	30724/6382	11491/6301	24730/6348	11631
Rint	0.0410	0.0578	0.0424	0.0375	0.0419
Observed reflections $[I>2\sigma(I)]$	5773	5647	5405	5798	5700
Completeness (%)	99.74	99.73	99.68	99.72	99.70
Maximum / minimum transmission	1.000/ 0.640	1.000/0.856	1.000/0.934	1.000/0.541	1.000/0.687
Data/restraints/para meters	6431/217/328	6382/205/328	6301/199/328	6348/208/328	6617/205/328
Goodness-of-fit (GOF) on F^2	1.077	1.095	1.050	1.074	1.057
Final R -index $[I>2\sigma(I)]/$ all data	0.0392/0.0457	0.0376/0.0452	0.0399/0.503	0.0368/0.0416	0.0413/0.0516
<i>wR</i> index $[I>2\sigma(I)]$ /all data	0.1055/0.1128	0.0376/0.0452	0.0934/0.1029	0.0975/0.1025	0.0983/0.1077

Largest peak and hole (e A ⁻³)	3.002 and -1.701	1.171 and -1.294	1.089 and -1.290	2.814 and -1.792	1.215 and -1.583	
Weights, w	$1/[\sigma^{2}(Fo^{2})+(0.0569P)$	$1/[\sigma^{2}(Fo^{2})+(0.0431P)$	$1/[\sigma^{2}(Fo^{2})+(0.0381P)$	$1/[\sigma^{2}(Fo^{2})+(0.0518P)$	$1/[\sigma^{2}(Fo^{2})+(0.0455P)$	
	² +5.2438P];	² +2.6984P];	² +2.6038P];	² +5.0765P];	² +1.7781P];	
	P=(Fo ² +2Fc ²)/3					

Table S2. Main bond distances (Å) of complexes 4-8.

4			5			6			7			8		
Tb1	02	2.275(4)	Ho1	02	2.249(4)	Er1	02	2.232(4)	Tm1	02	2.223(4)	Yb1	02	2.211(3)
Tb1	03	2.277(3)	Ho1	03	2.247(3)	Er1	03	2.239(3)	Tm1	03	2.222(3)	Yb1	03	2.213(4)
Tb1	05	2.379(3)	Ho1	05	2.351(3)	Er1	05	2.350(3)	Tm1	05	2.326(3)	Yb1	05	2.333(3)
Tb1	07	2.389(3)	Ho1	07	2.362(3)	Er1	07	2.336(3)	Tm1	07	2.337(3)	Yb1	07	2.319(4)
Tb1	08	2.460(4)	Ho1	08	2.363(3)	Er1	08	2.425(5)	Tm1	08	2.341(4)	Yb1	08	2.410(5)
Tb1	09	2.396(4)	Ho1	09	2.436(4)	Er1	09	2.358(5)	Tm1	09	2.413(4)	Yb1	09	2.335(5)
Tb1	010	2.504(4)	Ho1	010	2.481(4)	Er1	010	2.472(4)	Tm1	010	2.462(4)	Yb1	010	2.459(4)
Tb1	O10'	2.521(3)	Ho1	010'	2.500(3)	Er1	010'	2.487(3)	Tm1	010'	2.481(3)	Yb1	010'	2.474(3)
Cr1	N1	2.118(4)	Cr1	N1	2.109(4)	Cr1	N1	2.111(5)	Cr1	N1	2.112(4)	Cr1	N1	2.112(5)
Cr1	02	1.952(3)	Cr1	02	1.947(3)	Cr1	02	1.948(3)	Cr1	02	1.949(3)	Cr1	02	1.955(4)
Cr1	03	1.960(4)	Cr1	03	1.957(4)	Cr1	03	1.955(4)	Cr1	03	1.951(4)	Cr1	03	1.945(3)
Cr1	04	1.986(3)	Cr1	04	1.981(3)	Cr1	04	1.984(4)	Cr1	04	1.983(3)	Cr1	04	1.984(4)
Cr1	06	1.980(4)	Cr1	06	1.982(4)	Cr1	06	1.980(3)	Cr1	06	1.975(4)	Cr1	06	1.985(4)
Cr1	010	1.967(4)	Cr1	010	1.968(4)	Cr1	010	1.963(4)	Cr1	010	1.964(4)	Cr1	010	1.961(4)

Table S3. Local Ln(III) *g*-tensor, energies and composition arising from *ab-initio* computation of complexes **4-8**.

${Cr_2Tb_2}$				
E / cm^{-1}	$g_{\rm x}$	<i>g</i> y	gz	Composition
0	0	0	17 40	92% mj = 6
0.4	0	0	17.42	7% mj = 4
130.3	0	0	13.34	78% mj= 5
131.8				19% mj= 3
247.6	0	0	9.50	53% mj=4
262.6				31% mj=2
330.1				
402.4	0	0	12.27	
418.5				
500.1	0	0	16.14	
503.5				
703.0				
703.9	0	0	17.63	

{Cr ₂ Ho ₂ }				
E / cm^{-1}	gx	<i>g</i> y	g_z	Composition
0	0	0	19.11	90% mj= 8
0.2				
94.6				
119.8	0	0	13.7	
124.7				
151.5	0	0	9.24	
154.8				
197.8	0	0	7.57	
233.4				
252.7	0	0	6.79	
255.4				
270.5	0	0	11.11	
281.2				
332.2	0	0	18.46	
332.3				
390.2	0	0	18.18	
392.1				

${Cr_2Er_2}$				
E / cm^{-1}	$g_{\rm x}$	gу	gz	Composition
0	0.12	0.58	16.30	69% mj=15/2
0				18% mj=11/2
47.8	0.25	0.38	16.23	69% mj=13/2
47.8				15% mj=15/2
				10% mj=11/2
95.2	1.87	2.76	12.11	
95.2				
127.8	1.98	3.63	11.39	
127.8				
183.1	1.39	4.87	10.23	
183.1				
232.1	0.30	3.95	8.72	
232.1				
269.5	9.50	7.05	2.48	
269.5	1			
380.1	0.26	0.29	17.17	
380.1				

${Cr_2Tm_2}$							
E/cm^{-1}	g _x	g_{y}	gz	Composition			
0 0.7	0	0	13.82	97% mj=6			
279.9	0	0	10.30	68% mj=5			
294.1	0	0	10.57	15% mj=4			
317.1	0	0	8 9/	40% mj=4			
362.8	U	0	0.04	45% mj=3			
402.0							
454.7	0	0	11.02				
489.7	0	0	11.02				
570.2	0	0	11.00				
576.9	0	0	11.22				
676.2	0	0	12.00				
676.7	U	U	13.89				

{Cr ₂ Yb ₂ }							
E / cm^{-1}	$g_{\rm x}$	<i>g</i> y	gz	Composition			
0	0.65	1.25	7.33	87% mj=7/2			
0				7% mj= 3/2			
250.0	1.0	1.02	6.40	57% mj= 5/2			
250.0				28% mj= 3/2			
402.5	1.71	2.22	4.50				
402.5							
628.4	0.09	0.16	7.52				
628.4							

Table S4. Angles (degrees) between $g_{\text{Dy},z}$ and $g_{\text{Ln},z}$

	2 -Ln angle / degrees
Tb	25
Dy	0
Но	4
Er	103
Tm	64
Yb	92

{Cr ₂ Tb ₂]	}			
E / cm^{-1}	gx	gy	gz	\varDelta_{tun}
0.000	0.00	0.00	23.06	<1e-10
0.000				
15.369	0.00	0.00	26.98	1.5e-7
15.369				
15.393	0.00	0.00	26.98	1.0e-7
15.393				
30.106	0.00	0.00	30.87	6.9e-5
30.106				
30.107	0.00	0.00	30.87	5.3e-5
30.107				
30.742	0.00	0.00	30.87	8.4e-5
30.742				
36.774	0.00	0.00	0.00	5.3e-3
36.780				
36.948	0.00	0.00	0.00	2.6e-4
36.948				
36.984	0.00	0.00	0.00	1.0e-2
36.984				
37.174	0.00	0.00	0.00	6.9e-3
37.181				

 Table S5. Ab-initio computed low lying doublets energies, g-tensors and tunneling splitting of complexes 4-7.

${Cr_2Er_2}$				
E/cm^{-1}	gx	gy	gz	Δ_{tun}
0.000	0.00	0.00	20.80	2.4e-5
0.000				
6.732	0.00	0.00	24.69	2.3e-3
6.734				
6.760	0.00	0.00	24.72	5.2e-5
6.760				
13.356	0.00	0.00	26.08	1.3e-1
13.490				
13.642	0.00	0.00	0.00	6.1e-2
13.702				
13.752	0.00	0.00	0.00	6.4e-4
13.753				

{Cr ₂ Ho ₂	}			
$E / { m cm}^{-1}$	gx	gy	gz	Δ_{tun}
0.000	0.00	0.00	26.44	2.0e-10
0.000				
10.554	0.00	0.00	30.37	1.3e-7
10.554				
10.570	0.00	0.00	30.37	2.6e-7
10.570				
20.761	0.00	0.00	34.30	1.5e-5
20.761				
20.762	0.00	0.00	34.30	6.0e-6
20.762				
21.095	0.00	0.00	34.30	5.8e-5
21.095				
28.188	0.00	0.00	0.00	4.1e-3
28.192				
28.519	0.00	0.00	0.00	6.7e-4
28.520				
28.586	0.00	0.00	0.00	7.4e-3
28.593				
28.900	0.00	0.00	0.00	7.6e-3
28.907				

${Cr_2Tm_2}$	}			
E / cm^{-1}	g _x	gy	gz	Δ_{tun}
0.000	0.00	0.00	15.81	3.0e-6
0.000				
4.104	0.00	0.00	19.69	6.0e-4
4.104				
4.127	0.00	0.00	19.69	4.6e-4
4.127				
8.220	0.00	0.00	23.31	3.7e-3
8.224				
8.609	0.00	0.00	0.00	3.3e-4
8.609				
8.610	0.00	0.00	0.00	4.2e-5
8.610				
11.888	0.00	0.00	0.00	6.4e-2
11.952				

Table S6. *Ab-initio* computed main values (J_z assigned to maximum value) dipolar interaction in complexes **4-7**. Ln-Ln interaction corresponds to s=1/2 sites and Cr-Ln corresponds to S=3/2 and s=1/2 sites.

	$J_{\rm dip}$ Ln-Ln (x,y,z) / cm ⁻¹	$J_{\rm dip}$ Cr-Ln (x,y,z) / cm ⁻¹
4	0, 0, -0.58	0, 0, -0.06
		0, -0.01, 0.09
5	0, 0.31, -2.10	0, -0.01, 0.12
		0, 0.12, -0.14
6	0, 0, -1.55	0, 0.7, -0.11
		0, 0.03, -0.11
7	0, 0, -1.13	0, 0.01, -0.11
		0, 0.01, -0.12

Table S7. Best fitting parameters of AC magnetic data, according to Debye model for a single relaxation process of complexes **4-7**.

${Cr_2Tb_2}$							
T/K	$\chi_S/\text{ cm}^3\text{mol}^{-1}$	χ_T / cm ³ mol ⁻¹	α	τ / s			
3.50	1.79E-01	4.57	9.21E-02	6.93E-02			
3.70	1.93E-01	4.26	6.54E-02	3.14E-02			
3.90	1.97E-01	4.02	6.28E-02	1.55E-02			
4.10	1.88E-01	3.83	6.73E-02	7.88E-03			
4.30	1.88E-01	3.65	6.21E-02	4.18E-03			
4.50	2.08E-01	3.48	4.20E-02	2.30E-03			
4.70	2.07E-01	3.37	5.01E-02	1.37E-03			
4.90	1.94E-01	3.24	5.58E-02	8.21E-04			
5.10	1.78E-01	3.11	5.54E-02	5.04E-04			
5.30	2.26E-01	2.99	3.53E-02	3.31E-04			
5.50	2.84E-01	2.89	1.95E-02	2.26E-04			
5.70	4.13E-01	2.80	4.34E-13	1.66E-04			
5.90	4.97E-01	2.72	3.72E-19	1.22E-04			
6.10	5.46E-01	2.64	2.33E-12	8.95E-05			
Temperatu	Temperature-dependent AC data under 0 Oe applied field.						

{Cr ₂ Ho ₂ }							
T/K	$\chi_S/\text{ cm}^3\text{mol}^{-1}$	$\chi_T / \text{cm}^3 \text{mol}^{-1}$	α	τ / s			
2.60	2.23E-01	9.48	9.47E-02	1.35E-01			
2.70	2.15E-01	9.02	9.34E-02	7.61E-02			
2.80	2.07E-01	8.64	9.35E-02	4.40E-02			
2.90	1.96E-01	8.31	9.47E-02	2.61E-02			
3.00	1.84E-01	8.01	9.53E-02	1.58E-02			
3.10	1.70E-01	7.73	9.61E-02	9.76E-03			
3.20	1.55E-01	7.49	9.65E-02	6.18E-03			
3.30	1.42E-01	7.26	9.53E-02	3.99E-03			
3.40	1.26E-01	7.05	9.48E-02	2.63E-03			
3.50	1.12E-01	6.85	9.34E-02	1.77E-03			
3.70	8.54E-02	6.49	8.95E-02	8.53E-04			
3.90	5.19E-02	6.19	8.91E-02	4.40E-04			
4.10	6.57E-03	5.92	9.30E-02	2.39E-04			
4.30	1.58E-13	5.67	1.03E-01	1.36E-04			
Temperatu	Temperature-dependent AC data under 0 Oe applied field.						

${Cr_2Tm_2}$					
T / K	$\chi_S/$ cm ³ mol ⁻¹	χ_T / cm ³ mol ⁻¹	α	τ / s	
1.90	6.62E-01	4.48	6.05E-02	3.25E-04	
2.00	8.47E-01	4.32	3.55E-02	1.90E-04	
2.10	1.13	4.20	1.46E-02	1.32E-04	
2.20	1.52	4.09	6.82E-14	1.00E-04	
Temperature-dependent AC data under 1400 Oe applied field.					

{Cr ₂ Er ₂ }					
T/K	χ_S / cm ³ mol ⁻¹	$\chi_T/\text{ cm}^3\text{mol}^{-1}$	α	τ / s	
1.90	9.04E-01	6.80	1.33E-01	5.60E-04	
2.00	1.11	6.43	8.92E-02	3.45E-04	
2.10	1.33	6.15	5.56E-02	2.39E-04	
2.20	1.63	5.91	2.17E-02	1.75E-04	
2.30	1.93	5.69	3.21E-16	1.32E-04	
2.40	2.23	5.50	4.90E-13	1.01E-04	
Temperature-dependent AC data under 600 Oe applied field.					

${Cr_2Tm_2}$					
H/T	$\chi_S/$ cm ³ mol ⁻¹	χ_T / cm ³ mol ⁻¹	α	τ / s	
600	1.79	4.78	2.22E-18	1.13E-04	
800	1.42	4.70	8.51E-19	1.37E-04	
1000	1.18	4.60	9.63E-03	1.60E-04	
1200	9.93E-01	4.49	2.27E-02	1.79E-04	
1400	8.75E-01	4.37	3.02E-02	1.94E-04	
1600	7.94E-01	4.24	3.61E-02	2.04E-04	
1800	7.36E-01	4.10	4.25E-02	2.10E-04	
2000	6.95E-01	3.95	4.70E-02	2.14E-04	
2200	6.57E-01	3.80	5.34E-02	2.15E-04	
2400	6.31E-01	3.66	5.93E-02	2.15E-04	
2600	6.14E-01	3.51	6.21E-02	2.13E-04	
2800	6.00E-01	3.36	6.54E-02	2.09E-04	
3000	5.98E-01	3.22	6.56E-02	2.06E-04	

${Cr_2Er_2}$					
H/T	$\chi_S/$ cm ³ mol ⁻¹	χ_T / cm ³ mol ⁻¹	α	τ / s	
400	1.97	6.62	4.00E-02	2.18E-04	
600	1.15	6.51	8.54E-02	3.38E-04	
800	8.66E-01	6.36	1.03E-01	4.67E-04	
1000	7.47E-01	6.15	1.09E-01	5.95E-04	
1200	6.66E-01	5.91	1.10E-01	7.04E-04	
1400	6.08E-01	5.65	1.09E-01	7.89E-04	
1600	5.61E-01	5.37	1.11E-01	8.46E-04	
1800	5.32E-01	5.09	1.12E-01	8.84E-04	
2000	5.09E-01	4.80	1.13E-01	9.03E-04	
2200	4.92E-01	4.53	1.15E-01	9.09E-04	
2400	4.78E-01	4.26	1.17E-01	9.05E-04	
2600	4.71E-01	4.00	1.16E-01	8.94E-04	
2800	4.63E-01	3.76	1.18E-01	8.78E-04	
3000	4.55E-01	3.53	1.20E-01	8.56E-04	

4					
	spin density	energy			
	Tb1	Tb 1'	Cr1	Cr1'	/hartrees
HS	6.016093	6.016050	3.104876	3.104795	-29410.63983473
BS1	6.018269	6.016785	-3.107343	3.105501	-29410.64017623
BS2	-6.018464	6.015578	3.106202	3.105222	-29410.64017716
BS3	-6.016293	6.016314	-3.106023	3.105930	-29410.64021615
BS4	6.017778	-6.017767	-3.106917	3.106839	-29410.64012706
5					
	spin density	7			energy
	Ho1	Ho1'	Cr1	Cr1'	/hartrees
HS	4.000534	4.002762	3.103485	3.104505	-31301.11931970
BS1	3.999855	4.003771	-3.107191	3.105306	-31301.11947238
BS2	-3.998744	4.002054	3.104722	3.104761	-31301.11944560
BS3	-3.999416	4.003081	-3.105951	3.105563	-31301.11945153
BS4	3.997781	-4.001530	-3.105547	3.105799	-31301.11941866

Table S8. Broken symmetry and high spin states computed at DFT level for complexes 4-8.

6					
	spin density				energy
	Er1	Er1'	Cr1	Cr1'	/hartrees
HS	3.003092	3.009057	3.104745	3.104129	-32281.79495600
BS1	3.000502	3.009736	-3.104085	3.104945	-32281.79507967
BS2	-3.002126	3.007022	3.105073	3.103894	-32281.79504783
BS3	-3.004728	3.007701	-3.103754	3.104712	-32281.79510591
BS4	3.001281	-3.004070	-3.105888	3.104594	-32281.79511339

7					
	spin density	energy			
	Tm1	Tm1'	Cr1	Cr1'	/hartrees
HS	1.998946	1.992704	3.102873	3.103334	-33286.55742161
BS1	1.994434	1.992736	-3.103745	3.104136	-33286.55757689
BS2	-1.994709	1.991474	3.102990	3.103580	-33286.55748954

BS3	-1.999217	1.991507	-3.103626	3.104389	-33286.55753619
BS4	1.994044	-1.986478	-3.103789	3.103223	-33286.55757947

8					
	spin density				energy
	Yb1	Yb1'	Cr1	Cr1'	/hartrees
HS	0.982220	0.982205	3.102138	3.102069	-34315.90584382
BS1	0.974876	0.981710	-3.103013	3.102846	-34315.90599609
BS2	-0.974427	0.982301	3.102431	3.101851	-34315.90600034
BS3	-0.981821	0.981807	-3.102707	3.102640	-34315.90596745
BS4	0.974950	-0.974948	-3.103213	3.103144	-34315.90602360

Figure S1. Intramolecular meta-metal bond distance trends along lanthanide series of $Cr^{III}_{2}Ln^{III}_{2}$ complexes. For slope calculations, the *x*-axis is simply in increasing units from 1 to 7.

Figure S2. Crystalline packing of complex 4, the H-bond interactions are shown in black.

Figure S3. Crystalline packing of complex 4, the C-H...C-H interactions are shown in magenta.

Figure S4. Reduced magnetization data of complexes **4-8**. Open symbol: experimental; full line: simulated according to model described in the text.

Figure S5. Left: χT vs. *T* data plot at 0.1 T DC magnetic field of complexes **2** and **4-7**. Right: Reduced magnetization data of complexes **2** and **4-7**. Open symbols: experimental data; full lines: data simulated with the PHI program according to the Hamiltonian specified in the text.

Figure S6. Correlation between experimental $J_{\text{Ln-Cr}}$ isotropic exchange parameter obtained through the Lines approximation and the $S_{\text{eff}}=1/2$ for Ln(III) ion approximation of Cr^{III}₂Ln^{III}₂ family (without Yb complex).

Figure S7. Correlation between experimental $J_{\text{Ln-Cr}}$ isotropic exchange parameter obtained through the Lines approximation and the Ln-Cr bons distance of $\text{Cr}^{\text{III}}_{2}\text{Ln}^{\text{III}}_{2}$ family (without Yb complex). J_{Lines} norm = J_{Lines} /m with m= number of magnetic orbitals of Ln(III) ions.

Figure S8. Local Ln(III) main axis orientation (black lines) and ground doublet g-tensor orientation of the exchange system (pink arrow, arbitrarily located over O atom of bridging - OCH₃ ligand) in complex 2.

Figure S9. AC magnetic susceptibility data of complexes **4-5** at zero applied magnetic field DC at variable temperature and variable frequency (1-941 Hz). Lines are only drawn as eye guideline.

Figure S10. Cole-Cole plots of AC magnetic data for complexes **4-5** at 0 Oe. Open symbols: experimental data; full lines: simulated data with generalized Debye model (see text).

Figure S11. AC magnetic susceptibility data of complexes **4-5** at 2 K under DC applied magnetic field (0-3 kOe) and variable frequency (1-941 Hz). Lines are only drawn as eye guidelines.

Figure S12. Magnetization hysteresis plots of complex 4. Field scan rate: 0.007 Ts⁻¹.

Figure S13. Complex **4** magnetization relaxation at 2 K after applying an external DC field of 1000 Oe and switching it off. Open symbol: experimental; full line: fitting with a mono exponential decay (see text).

Figure S14. AC magnetic susceptibility data of complexes **6-7** at 2 K under DC applied magnetic field (0-3 kOe) and variable frequency (1-941 Hz). Lines are only drawn as eye guidelines.

Figure S15. χ '' and χ ' frequency dependence at variable field under 2 K of complexes **6-7**. Open symbols: experimental data; Full lines: simulated data with a generalized Debye model (see text).

Figure S16. AC magnetic susceptibility data of complexes **6-7** at zero applied magnetic field DC at variable temperature and variable frequency (1-9.6 Hz). Lines are only drawn as eye guidelines.

Figure S17. χ ' and χ ' frequency dependence at variable temperature under applied field of complexes 6-7. Open symbols: experimental data; Full lines: simulated data with a generalized Debye model (see text).

Figure S18. Cole-Cole plots of AC magnetic data for complexes **6-7** at 2 K. Open symbols: experimental data; full lines: simulated data with generalized Debye model (see text).

Figure S19. Cole-Cole plots of AC magnetic data for complexes **6** at 1400 Oe and **7** at 600 Oe. Open symbols: experimental data; full lines: simulated data with generalized Debye model (see text).

Figure S20. Correlation between U_{eff} and *ab-initio* calculated main magnetization axis orientation relative to Dy(III) complex **2** along the Cr^{III}₂Ln^{III}₂ family. Cr^{III}₂Yb^{III}₂ complex thermal barrier was set arbitrarily to zero as no SMM behaviour was detected in AC magnetic experiments.