UV-Vis spectrophotometric determination of rare earth elements (REE) speciation at near-neutral to alkaline pH. Part I: m-cresol purple properties from 25-75 °C and Er hydrolysis

Hannah Juan Han*^a, Alexander Gysi^{a,b}

^aNew Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, USA

^bDepartment of Earth and Environmental Science, New Mexico Institute of Mining and Technology,

801 Leroy Place, Socorro, NM 87801, USA

* Corresponding authors: hannah.juan.han@nmt.edu

KEYWORDS: Hydrolysis, erbium, rare earth elements; UV-Vis spectrophotometry, meta-cresol purple, pH measurement

Determination of average number of OH⁻ ligand (\vec{n}) coordinated to Er³⁺

In the Er-absent mCP-NaOH solutions, the total molar amount of OH^- in solutions (M_{OH^-}) depends on the dissociation/association of mCP (R1), NaOH, and H₂O (RS1-RS2),

$$NaOH \Rightarrow Na^+ + OH^-$$
 (RS1)

$$H_2 O \rightleftharpoons H^+ + O H^- \tag{RS2}$$

Therefore, M_{OH^-} is calculated from the molar concentration of NaOH (M_{NaOH}) added in each experimental solution, the molar concentration of the I^{2–} form of mCP (M_{I^2-}), and the OH[–] released from the dissociation of water ($M_{OH^-,w}$),

$$M_{OH^{-}} = M_{NaOH} - M_{I^{2-}} + M_{OH^{-},w}$$
 (S1)

In the presence of Er^{3+} ions in the mCP-NaOH solutions, the hydrolysis of Er^{3+} in the reaction R2 produces protons, decreases pH, and consumes OH⁻. Hence, the Er hydrolysis drives reaction R1 for mCP to the left, resulting in stabilization of HI⁻, i.e. the protonated form of mCP. Thus the amount of OH⁻ ligand bound to Er hydroxyl complexes ($\sum n[\text{Er}(\text{OH})_n^{3-n}]$) permits reformulating Eq. S1 as follows,

$$M'_{OH^{-}} = M_{NaOH} - M'_{I^{2-}} - \sum n[Er(OH)_{n}^{3-n}] + M'_{OH^{-},w}$$
 (S2)

where the prime signs indicates the concentrations in the Er-bearing mCP-NaOH solutions. Finally, the number of OH⁻ ligand bound to Er hydroxyl complexes ($\sum n[Er(OH)_n^{3-n}]$), can be found by the difference between Eqs. S1 and S2,

$$\sum n[\mathrm{Er}(\mathrm{OH})_{n}^{3-n}] = \mathrm{M}_{\mathrm{OH}^{-}} - \mathrm{M}_{\mathrm{OH}^{-}}' - \mathrm{M}_{\mathrm{I}^{2-}}' + \mathrm{M}_{\mathrm{I}^{2-}} + \mathrm{M}_{\mathrm{OH}^{-},\mathrm{w}}' - \mathrm{M}_{\mathrm{OH}^{-},\mathrm{w}}$$
(S3)

The number of OH⁻ ligand bound to the Er hydroxyl complexes ($\sum n[Er(OH)_n^{3-n}]$) in the experimental solution is averaged by the total Er concentration [Er] in solution according to,

$$\vec{n} = \frac{\sum n[\text{Er}(\text{OH})_n^{3-n}]}{[\text{Er}]}$$
(S4)

The total Er concentration [Er] is the sum of the concentrations of Er in the Er hydroxyl complexes and Er aqua ion,

$$[Er] = [Er^{3+}] + [Er(OH)^{2+}] + [Er(OH)^{+}_{2}] + [Er(OH)^{0}_{3}]$$
(S5)

With an assumption of the mass balance for the Er concentration in mCP-NaOH solutions, the total Er concentration [Er] is the same with the molar concentration of ErCl₃ added. Therefore, the average number of OH⁻ ligand (\vec{n}) coordinated to Er³⁺ for each of Er-bearing mCP-NaOH solutions can be determined by reformatting the Eqs. S4 with S3 as shown.

$$\vec{n} = \frac{M_{\text{OH}^-} \cdot M_{\text{OH}^-} \cdot M_{1^{2-}} + M_{1^{2-}} + M_{0\text{H}^-, \text{w}} \cdot M_{0\text{H}^-, \text{w}}}{[\text{Er}]}$$
(S6)

The amount of OH^- in each of Er-absent (M_{OH}-) and Er-bearing (M'_{OH}-) mCP-NaOH solutions were determined by pH determination using the UV-Vis/mCP method from Eq. 4.

			Acidic pH		Alkaline pH				pH of known buffer solution			
Exp	<i>Т</i> (°С)	HCl ^a (mM)	Absorbance of HI⁻	Absorbance of I ^{2–}	NaOH ^a (M)	Absorbance of HI ⁻	Absorbance of I ^{2–}	Tris ^a (M)	pH by potentiometric measurement	Absorbance of HI ⁻	Absorbance of I ^{2–}	
1	25	0.10	0.4789	0.0022	0.01	0.0683	1.2590	0.02	8.07	0.4099	0.2437	
2	25	0.10	0.4956	0.0022	0.01	0.0626	1.1737	0.02	8.08	0.4023	0.2569	
3	25	0.10	0.4978	0.0019	0.01	0.0641	1.1514	0.02	8.08	0.3639	0.2286	
4	25	0.10	0.5109	0.0039	0.01	0.0638	1.1526	0.02	8.06	0.4330	0.2372	
5	25	0.10	0.5077	0.0035	0.01	0.0638	1.1545	0.02	8.05	0.4223	0.2408	
6	25	0.10	0.5048	0.0023	0.01	0.0594	1.1150	0.02	8.05	0.4247	0.2434	
7	25	0.10	0.4941	0.0018	0.01	0.0594	1.1223	0.02	8.02	0.4207	0.2310	
8	25	0.10	0.4937	0.0011	0.01	0.0592	1.1193	0.02	8.06	0.4101	0.2432	
9	25	0.10	0.4956	0.0009	0.01	0.0638	1.1164	0.02	8.05	0.4205	0.2091	
10	25	0.10	0.4995	0.0019	0.01	0.0642	1.1197	0.02	8.08	0.4094	0.2378	
11	25	0.10	0.4978	0.0025	0.01	0.0641	1.1237	0.02	8.13	0.3973	0.2733	
12	25	0.10	0.4996	0.0022	0.01	0.0660	1.1579	0.02	8.12	0.3967	0.2543	
13	25	0.10	0.5054	0.0011	0.01	0.0656	1.1533	0.02	8.08	0.4262	0.2249	
14	25	0.10	0.5036	0.0008	0.01	0.0652	1.1484	0.02	8.08	0.4287	0.2180	
15	25	0.10	0.5057	0.0006	0.01	0.0649	1.1190	0.02	8.07	0.4265	0.2177	
16	25	0.10	0.4990	0.0031	0.01	0.0637	1.1174	0.02	8.07	0.3960	0.2925	
17	25	0.10	0.5004	0.0033	0.01	0.0628	1.1166	0.02	8.09	0.3956	0.3084	
18	35	0.10	0.4946	0.0067	0.01	0.0674	1.1004	0.02	7.82	0.4207	0.2040	
19	35	0.10	0.4901	0.0025	0.01	0.0655	1.0961	0.02	7.86	0.4249	0.2179	
20	35	0.10	0.4928	0.0028	0.01	0.0643	1.0962	0.02	7.84	0.4287	0.2103	
21	35	0.10	0.4882	0.0008	0.01	0.0633	1.1077	0.02	7.87	0.4087	0.2095	
22	35	0.10	0.4901	0.0003	0.01	0.0634	1.1079	0.02	7.80	0.4152	0.1850	
23	35	0.10	0.4905	0.0002	0.01	0.0631	1.1021	0.02	7.86	0.4099	0.2063	
24	35	0.10	0.4919	0.0036	0.01	0.0657	1.1022	0.02	7.89	0.4029	0.2312	

Table S1. UV-Vis spectrophotometric experiments of 0.03 mM mCP in HCl, NaOH, and Tris solutions at temperatures from 25 to 75 °C.

25	35	0.10	0.4906	0.0013	0.01	0.0652	1.0998	0.02	7.77	0.4182	0.1863
26	35	0.10	0.4913	0.0015	0.01	0.0662	1.1040	0.02	7.83	0.4141	0.2109
27	35	0.10	0.4885	0.0026	0.01	0.0564	1.0945	0.02	7.80	0.4175	0.1858
28	35	0.10	0.4897	0.0024	0.01	0.0564	1.0932	0.02	7.87	0.4105	0.2154
29	35	0.10	0.4898	0.0026	0.01	0.0559	1.0923	0.02	7.90	0.4028	0.2289
30	35	0.10	0.5065	0.0019	0.01	0.0660	1.1044	0.02	7.90	0.3956	0.2263
31	35	0.10	0.4899	0.0009	0.01	0.0658	1.1094	0.02	7.91	0.3945	0.2365
32	35	0.10	0.4902	0.0012	0.01	0.0659	1.1062	-	-	-	-
33	45	0.10	0.4799	0.0025	0.01	0.0650	1.0717	0.02	7.53	0.4320	0.1296
34	45	0.10	0.4812	0.0025	0.01	0.0655	1.0725	0.02	7.59	0.3994	0.1402
35	45	0.10	0.4816	0.0025	0.01	0.0664	1.0796	0.02	7.48	0.4376	0.1185
36	45	0.10	0.4800	0.0025	0.01	0.0670	1.0905	-	-	-	-
37	50	0.10	0.4796	0.0041	0.01	0.0696	1.0517	0.02	7.54	0.4369	0.1022
38	50	0.10	0.4752	0.0035	0.01	0.0663	1.0499	0.02	7.32	0.4384	0.0829
39	50	0.10	0.4793	0.0036	0.01	0.0661	1.0446	0.02	7.32	0.4408	0.0899
40	50	0.10	0.4805	0.0035	0.01	0.0671	1.0524	0.02	7.24	0.4435	0.0695
41	50	0.10	0.4871	0.0137	0.01	0.0669	1.0490	0.02	7.32	0.4490	0.0834
42	50	0.10	0.4855	0.0135	0.01	0.0654	1.0475	0.02	7.36	0.4498	0.0889
43	50	0.10	0.4881	0.0136	0.01	0.0659	1.0515	0.02	7.34	0.4532	0.0884
44	75	0.10	0.4600	0.0053	0.01	0.0721	0.9872	0.02	7.43	0.4522	0.1139
45	75	0.10	0.4655	0.0050	0.01	0.0693	0.9873	0.02	7.37	0.4233	0.0839
46	75	0.10	0.4602	0.0044	0.01	0.0694	0.9595	0.02	7.71	0.4158	0.1638
47	75	0.10	0.4647	0.0191	0.01	0.0633	0.9969	0.02	7.56	0.4193	0.1373
48	75	0.10	0.4699	0.0201	0.01	0.0769	0.9916	0.02	7.54	0.4109	0.1432
49	75	0.10	0.4630	0.0035	0.01	0.0729	0.9948	0.02	7.54	0.4182	0.1863
50	75	0.10	0.4616	0.0016	-	-	-	0.02	7.59	0.4141	0.2109
51	75	0.10	0.4627	0.0067	-	-	-	0.02	7.52	0.4175	0.1858
52	75	-	-	-	-	-	-	0.02	7.46	0.4102	0.1031

^aConcentration at room temperature.

Eve	NaOH	Er	mCP	Abstar	Abazza	D	pH by potentiometric	pH by	Average number
Ехр	(mM)	(mM)	(mM)	A0\$435nm	A08578nm	Λ	measurement	UV-Vis	of OH [–] ligand (\vec{n})
Er-a-0	0.125	0.000	0.029	0.1109	1.0605	9.56	9.64	9.60	-
Er-a-1	0.125	0.011	0.029	0.1392	0.9355	6.72	9.42	9.32	3.11
Er-a-2	0.125	0.017	0.029	0.1975	0.7811	3.95	9.07	8.99	2.93
Er-a-3	0.126	0.023	0.029	0.2769	0.5773	2.08	8.77	8.66	2.67
Er-a-4	0.125	0.029	0.029	0.3876	0.2850	0.74	8.24	8.17	2.49
Er-a-5	0.126	0.034	0.029	0.4534	0.1144	0.25	7.39	7.69	2.24
Er-a-6	0.126	0.040	0.029	0.4738	0.0701	0.15	7.18	7.45	1.96
Er-a-7	0.125	0.046	0.029	0.4755	0.0523	0.11	7.07	7.31	1.72
Er-a-8	0.126	0.051	0.029	0.4816	0.0444	0.09	7.03	7.23	1.54
Er-a-9	0.125	0.057	0.029	0.4848	0.0351	0.07	6.96	7.12	1.38
Er-b-0	0.125	0.000	0.029	0.1084	1.0200	9.41	9.65	9.56	-
Er-b-1	0.126	0.006	0.029	0.1323	0.9636	7.28	9.31	9.38	2.79
Er-b-2	0.125	0.012	0.029	0.1696	0.8649	5.10	9.16	9.14	2.48
Er-b-3	0.125	0.017	0.029	0.2331	0.7067	3.03	8.81	8.85	2.27
Er-b-4	0.125	0.023	0.029	0.3408	0.4199	1.23	8.38	8.41	2.21
Er-b-5	0.125	0.029	0.029	0.4386	0.1644	0.37	7.29	7.86	2.06
Er-b-6	0.125	0.035	0.029	0.4662	0.0898	0.19	6.96	7.57	1.79
Er-b-7	0.126	0.040	0.029	0.4789	0.0591	0.12	6.91	7.36	1.57
Er-b-8	0.125	0.046	0.029	0.4796	0.0474	0.10	6.86	7.26	1.37
Er-b-9	0.125	0.052	0.029	0.4843	0.0416	0.09	6.71	7.20	1.23
Er-b-10	0.125	0.058	0.029	0.4831	0.0362	0.07	6.70	7.14	1.10
Er-c-0	0.128	0.000	0.029	0.1079	1.0361	9.60	9.68	9.61	-
Er-c-1	0.128	0.011	0.029	0.1789	0.8630	4.83	9.16	9.11	2.79
Er-c-2	0.128	0.017	0.029	0.2497	0.6789	2.72	8.72	8.79	2.52
Er-c-3	0.128	0.023	0.029	0.3396	0.4472	1.32	8.23	8.44	2.30

Table S2. UV-Vis spectrophotometric experiments of solutions containing mCP and NaOH with addition of varying Er concentrations from 0.0 to ~0.057 mM at 25 °C ($\text{Er}^{3+} + n\text{H}_2\text{O} = \text{Er}(\text{OH})_n^{3-n} + n\text{H}^+$, with *n*=1 to 3).

Er-c-4	0.129	0.029	0.029	0.4375	0.2020	0.46	7.50	7.96	2.13
Er-c-5	0.129	0.034	0.029	0.4758	0.0908	0.19	6.84	7.56	1.87
Er-c-6	0.130	0.040	0.029	0.4876	0.0685	0.14	6.52	7.42	1.63
Er-c-7	0.129	0.046	0.029	0.4882	0.0541	0.11	6.39	7.32	1.42
Er-c-8	0.129	0.052	0.029	0.4921	0.0472	0.10	6.41	7.25	1.27
Er-c-9	0.130	0.057	0.029	0.4989	0.0427	0.09	6.38	7.20	1.15
Er-d-0	0.129	0.000	0.029	0.1030	1.0388	10.09	9.78	9.65	-
Er-d-1	0.130	0.006	0.029	0.1198	1.0160	8.48	9.61	9.50	2.23
Er-d-2	0.129	0.013	0.029	0.1406	0.9465	6.73	9.42	9.32	2.04
Er-d-3	0.129	0.019	0.029	0.1974	0.7907	4.00	8.98	9.00	2.14
Er-d-4	0.129	0.026	0.029	0.2750	0.6024	2.19	8.57	8.68	2.00
Er-d-5	0.129	0.032	0.029	0.3927	0.2987	0.76	8.04	8.18	1.96
Er-d-6	0.129	0.038	0.029	0.4690	0.1010	0.22	6.91	7.62	1.79
Er-d-7	0.129	0.045	0.029	0.4801	0.0687	0.14	6.74	7.43	1.55
Er-d-8	0.129	0.051	0.029	0.4840	0.0552	0.11	6.61	7.33	1.36
Er-d-9	0.130	0.057	0.029	0.4903	0.0485	0.10	6.55	7.26	1.22
Er-e-0	0.131	0.000	0.030	0.1075	1.0159	9.45	9.43	9.57	-
Er-e-1	0.131	0.007	0.030	0.1303	0.95408	7.32	9.29	9.37	2.51
Er-e-2	0.131	0.019	0.030	0.2240	0.72083	3.22	8.91	8.88	2.03
Er-e-3	0.132	0.025	0.030	0.3006	0.53570	1.78	8.55	8.58	1.87
Er-e-4	0.131	0.032	0.030	0.4152	0.23311	0.56	7.94	8.05	1.81
Er-e-5	0.131	0.038	0.030	0.4564	0.11953	0.26	7.30	7.70	1.61
Er-e-6	0.132	0.044	0.030	0.4740	0.07395	0.16	6.67	7.47	1.41
Er-e-7	0.131	0.051	0.030	0.4790	0.05645	0.12	6.60	7.34	1.24
Er-e-8	0.130	0.057	0.030	0.4770	0.04868	0.10	6.54	7.28	1.11

Er-f-0	0.126	0.000	0.029	0.1166	1.0015	8.59	9.41	9.51	-
Er-f-1	0.125	0.029	0.029	0.4175	0.1974	0.47	7.79	7.97	1.77
Er-f-2	0.126	0.035	0.029	0.4628	0.0805	0.17	7.00	7.52	1.59
Er-f-3	0.126	0.040	0.029	0.4690	0.0640	0.14	6.78	7.41	1.39
Er-f-4	0.126	0.046	0.029	0.4713	0.0496	0.11	6.74	7.29	1.21
Er-f-5	0.126	0.052	0.029	0.4763	0.0394	0.08	6.72	7.18	1.09
Er-f-6	0.126	0.058	0.029	0.4784	0.0343	0.07	6.67	7.12	0.98
Er-g-0	0.133	0.000	0.030	0.1033	1.0274	9.95	9.80	9.64	-
Er-g-1	0.133	0.038	0.030	0.4233	0.1957	0.46	7.91	7.96	1.67
Er-g-2	0.134	0.045	0.030	0.4577	0.1101	0.24	7.06	7.66	1.49
Er-g-3	0.134	0.051	0.030	0.4681	0.0788	0.17	6.87	7.50	1.32
Er-g-4	0.133	0.058	0.030	0.4745	0.0628	0.13	6.85	7.40	1.18
Er-h-0	0.130	0.000	0.030	0.1132	1.0111	8.93	9.38	9.54	-
Er-h-1	0.130	0.039	0.030	0.4520	0.1210	0.27	7.39	7.71	1.47
Er-h-2	0.130	0.045	0.030	0.4752	0.0685	0.14	7.07	7.43	1.31
Er-h-3	0.130	0.051	0.030	0.4811	0.0552	0.11	6.59	7.33	1.15
Er-h-4	0.131	0.057	0.030	0.4843	0.0479	0.10	6.54	7.26	1.04

Table S3. Sources of thermodynamic data from the Supert92 dataset considered in the Er aqueous speciation as function of pH calculated at 25 °C using GEMS code package and the aquifer groundwater of the Zudong heavy REE deposit described in the study by Li et al. ⁸.

	Species	Refs.
	Er ³⁺	1, 2
	$Er(OH)^{2+}, Er(OH)_{2^{+}}, Er(OH)_{3^{0}}, Er(OH)_{4^{-}}$	3
Energia	$\operatorname{Er}(\operatorname{CO}_3)^+, \operatorname{Er}(\operatorname{HCO}_3)^{2+}$	4
Er-species	$\mathrm{ErF_{2}^{+}}$	4
	$\mathrm{Er}\mathrm{Cl}^{2+}$	5
	$\mathrm{Er}(\mathrm{SO}_4)^+$	6
Other species	$\mathrm{H}^{+},\mathrm{OH}^{-}$	1, 2

References: ¹Shock et al. (1997); ²Shock and Helgeson (1988); ³Haas et al. (1995); ⁴Sverjensky et al. (1997); ⁵Migdisov et al. (2009); ⁶Migdisov et al. (2016).