Supporting Information

Boosting Oxygen Reduction Activity of Non-metallic Catalysts via Geometric and Electronic Engineering through Nitrogen and Chlorine Dual-Doping

Dong-Li Meng^{ab*}, Tao-Tao Liu^c, Ming-Hui Wu^{ab}, Jing-Wen He^d, Shao-Wu Du^{ab},

Yuan-Biao Huang^{e*}

^aCollege of Materials and Chemical Engineering, MinJiang University, Fuzhou 35108, P. R. China ^bFujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, China ^cCollege of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China ^dCollege of Chemistry, Fuzhou University, Fuzhou 350108, China ^eState Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

S1: Materials and Instrumentation:

All chemicals were purchased from commercial sources and used without further treatment unless otherwise stated. zinc chloride (ZnCl₂, TCI, 98%),paraformaldehyde ((CH₂O)n, Aladdin, 95%), glyoxal (C₂H₂O₂, Sinopharm Chemical Reagent Co., Ltd., 40% in H₂O), hydrochloric acid (HCl, Sinopharm Chemical Reagent Co., Ltd., 38%), perchloric acid (HClO₄, Sinopharm Chemical Reagent Co., Ltd., 70.0-72.0%), N,N-dimethylformamide (C₃H₇NO, Sinopharm Chemical Reagent Co., Ltd., AR), acetone (CH₃COCH₃, Sinopharm Chemical Reagent Co., Ltd., AR), methylbenzene (C₇H₈, Sinopharm Chemical Reagent Co., Ltd., AR), methylbenzene (C₇H₈, Sinopharm Chemical Reagent Co., Ltd., AR), nafion solution (Sigma-Aldrich, 5% in lower aliphatic alcohols and water) were purchased from the commercial corporations.

The Raman spectrum was tested on a Labram HR800 Evolution over a range of 300-2000 cm-1. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher) using an Al Ka source (15 kV, 10 mA). Powder X-ray diffraction (PXRD) patterns were recorded on a Miniflex 600 diffractometer using Cu K α radiation ($\lambda = 0.154$ nm) with a scan speed of 2° min⁻¹ at room temperature. Transmission electron microscope (TEM) images were recorded by a FEIT 20 working at 200 kV. Aberration-corrected High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and the EDS of samples were performed with a Titan Cubed Themis G2 300 (FEI) high-resolution transmission electron microscope operated at 200 kV. N₂ adsorption-desorption isotherm were measured using Micromeritics ASAP 2460 instrument at 77 K. Prior to nitrogen adsorption/desorption measurement, the samples were evacuated and activated at 120 °C for 10 h by molecular pump. The Nyquist plots were obtained by the electrochemical impedance spectroscopy (EIS) measurement. It was performed by applying AC voltage with 5 mV amplitude in a frequency range from 0.01 Hz to 100 kHz under open circuit potential condition.

	Ν	Cl
	%	%
CCTF-500	5.27	0.54
CCTF-600	5.08	0.60
CCTF-700	4.76	0.62

Table S1. Element content catalyzed by XPS

Catalyzed by XPS.

С Ν Н % % % CCTF-500 82.02 6.61 2.65 CCTF-600 75.46 5.51 2.2 CCTF-700 72.19 4.55 1.9

Table S2. Element content catalyzed by element analysis

Catalyzed by element analysis.

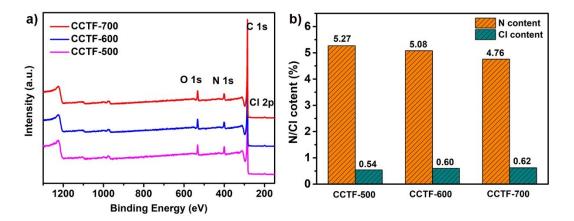


Figure S1. a) XPS survey spectrum, b) N and Cl content determined from XPS of CCTF-500, CCTF-600, CCTF-700.

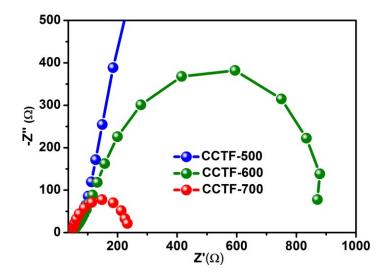


Figure S2. Nyquist plots of CCTF-500, CCTF-600, CCTF-700 over the frequency range from 100 kHz to 10 mHz.

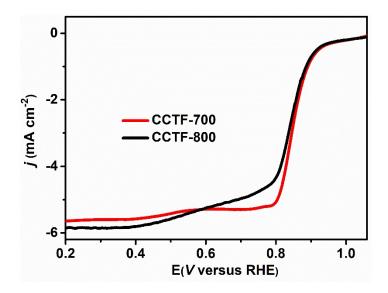


Figure S3. LSV curves of CCTF-700 and CCTF-800.

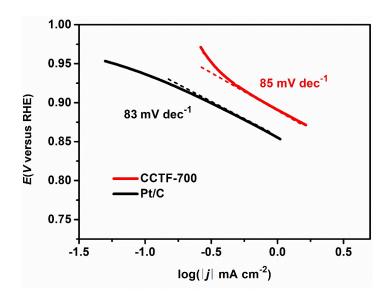
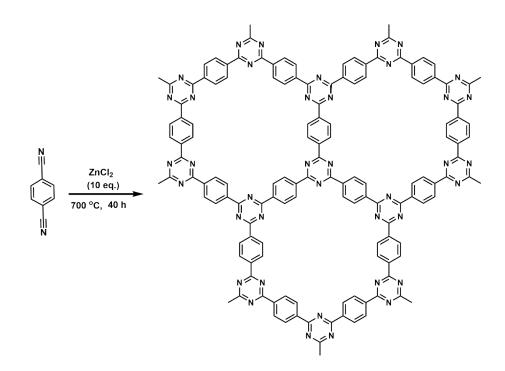



Figure S4. The corresponding Tafel plots obtained from the RDE polarization curves in 0.1 M KOH.

Scheme S1. Schematic representation of CTP-700.

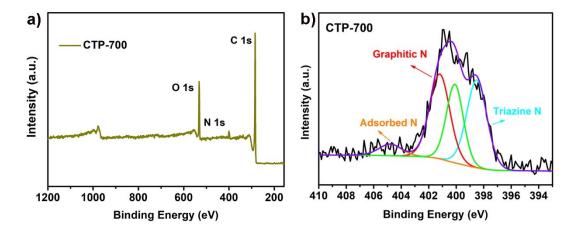


Figure S5. (a) XPS survey spectrum and (b) The high-resolution N 1s XPS spectra of CTP-700.

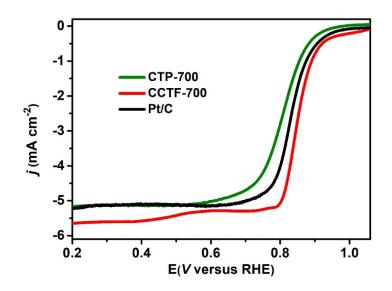


Figure S6. LSVs of different samples at 1600 rpm in 0.1M KOH.

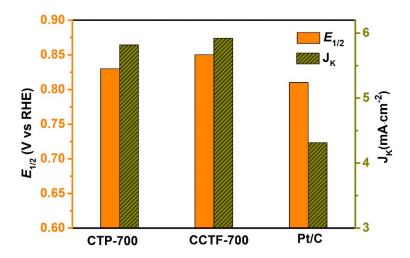


Figure S7. $E_{1/2}$ and J_k at 0.85 V for various catalysts in 0.1 M KOH.

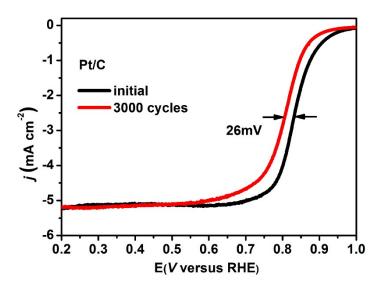


Figure S8. LSV curves of the commercial Pt/C before and after 3000 cycles.

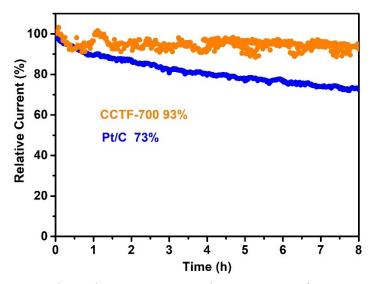


Figure S9. The current-time chronoamperometric responses of CCTF-700 and Pt/C 0.1 M KOH.

Class	Catalyst	Heteroatoms	Half-wave potential (V vs. RHE)	Onset potential (V vs. RHE)	Ref.
-	CCTF-700	N,Cl	0.85	1.03	This work
	Pt/C		0.81	1.0	This work
	1.13% NCNTs	N	~0.65	0.76	Small, 2023, 19, 2302795
	Q3CTP-COFs	Ν	0.72	0.92	Nano-Micro Lett. 2023, 15,159
-	NPCM1000	Ν	0.755	0.875	Energy, 2018, 152, 333–340
-	MPSA/GO1000	Ν	0.82	1.00	Angew. Chem. Int.Ed., 2016, 55, 2230
One heteroatom	BINOL-CTFs	N	0.737	0.793	ACS Appl. Mater. Interfaces, 2023, 40, 44689–44699
doped -	N/POPQ800	N	0.728	0.832	ACS Appl. Energy Mater., 2022, 5, 15899–15908
-	Trz-COP	N	0.73	~0.8	Chem. Commun., 2022, 58, 5506–5509
	d-pGCS-1000	Ν	0.82	0.95	Chem. Eng. Sci., 2022, 259, 117816
	NDC1000	N	0.86	0.96	Angew. Chem. Int.Ed., 2020, 59, 11999-12006
	N-MCNs	Ν	0.78	~0.9	Angew. Chem. Int.Ed., 2015, 54, 15191
	NPC-S1.2	Ν	0.72	0.9	J Am Chem Soc., 2017, 139, 12931– 12934
	NHC/rGO	N	~0.80	~0.94	J. Mater. Chem. A, 2017, 5, 23170– 23178
	N-hG	Ν	0.83	0.91	Carbon, 2020,162, 66-73

Table S3. Comparison of ORR catalytic performances in 0.1M KOH between CTF-700 and other metal-free electrocatalysts.

- Heteroatoms co- doped	JUC-616	N, Se	0.78	~0.9	J. Mater. Chem. A, 2023, 11, 18349- 18355
	NSC-10	N,S	0.81	0.94	Chinese chem. Lett., 2023, 34 ,107462
	N,P-CGHNs	N, P	0.82	0.90	Adv. Mater. 2016,28, 4606
	PSN-G3	P,S,N	0.79	~1.0	Dalton Trans., 2023, 52, 4389–4397
	TTF-F	N,F	0.77	0.86	Adv. Mater. , 2015,27, 3190-3195
-	S,N-codoped graphene (SNG)	N, S	0.72	0.88	Carbon, 2018, 134, 316–325
	NS(3:1)-C-MOF-5	N,S	0.82	0.96	J Mater Chem A, 2014, 2, 6316–6319
	NF-MG3	N, F	0.828	1.047	Nanoscale, 2015, 7, 10584–10589
	S-N-C	N,S	0.89	0.98	Dalton Trans., 2022, 51,18152–18158
	N/S-2DPC60	N,S	0.75	0.86	Adv. Funct. Mater. 2016, 32, 5893- 5902
	CNS	N,S	0.87	0.97	Carbon, 2021, 184, 127-135
	L-Cy-rGO	N,S	~0.7	0.77	Energy Fuels 2021, 35, 6823–6834

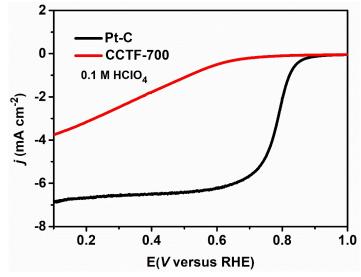


Figure S10. LSVs of CCTF-700 at 1600 rpm in 0.1M HClO₄.