Supplementary Information

Mesoporous silica-supported platinum nanocatalysts for detection of glucose, cholesterol, and C-reactive protein

Taehyeong Kim,^{1,2} and Dokyoon Kim^{1,2}

¹ Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea. ² Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea.

Fig. S1 Size distributions of (a) MSNs, (b) Pt-MSNs, and (c) Pt NPs. Average sizes are 121.9 \pm 10.1, 124.3 \pm 9.5, and 2.8 \pm 0.5 nm for MSNs, Pt-MSNs, and Pt NPs, respectively.

Fig. S2 ICP-AES data of Pt-MSNs. $[\text{Si}] = 0.49 \text{ mg} \text{ mL}^{-1}$ and $[\text{Pt}] = 2.39 \text{ mg} \text{ mL}^{-1}$.

Fig. S3 Zeta-potential values of Pt-MSNs, PEG-adsorbed Pt-MSNs, and streptavidin-Pt-MSNs.

Fig. S4 FT-IR spectra of SH-PEG-COOH and Pt-MSNs.

Catalyst	Substrate	K_M (mM)	V_{max} x 10^{-8} $(M s-1)$	$K_{cat} (s^{-1})$	Ref.
Pt-MSN	TMB	0.635	112	7.88×10^{4}	This study
	H_2O_2	155	63.1	4.44×10^{4}	This study
HRP	TMB	0.434	10.0	4.00×10^{3}	$\mathbf{1}$
	H_2O_2	3.70	8.71	3.48×10^{3}	
ISPtNP	TMB	0.120	126	2.27×10^{4}	2
	H_2O_2	769	185	1.55×10^{4}	
Fe ₃ O ₄ (a)PtNP	TMB	0.147	7.11	84.1	$\overline{3}$
	H_2O_2	703	71.4	84.4	
Pt hollow nanodendrites	TMB	0.81	12.0	0.017	$\overline{4}$
	H_2O_2	6.90	9.90	0.014	
PVP-PtNC	TMB	0.022	105	6.29×10^{4}	5
	H_2O_2	3.92	36.1	2.16×10^{4}	

Table S1 Comparison of the kinetic parameters of Pt-MSNs, HRP, and other Pt-based nanomaterials. K_M : Michaelis-Menten constant, V_{max} : maximum velocity, and K_{cat} : catalytic constant.

Table S2 Comparison of the linear ranges and LOD values of Pt-MSN- and previous reported Pt-based glucose assays.

Fig. S5 Specificity test results of glucose in the presence of ascorbic acid (AA) at normal blood concentration $(n = 7)$. [glucose] = 2 mM, [AA] = 45 µM. Data were analyzed by Mann-Whitney U test. n.s. > 0.05 compared with the control.

Fig. S6 Detection of cholesterol using Pt-MSNs. (a) Schematic diagram showing the two-step cascade reaction. (b) Cholesterol concentration-dependent absorbance change of the sample solution. (c) Linear response range of the assay ($n = 3$). (d) Semi-log calibration plot showing the detection limit.

Probe	Method	marker	Linear range (pM)	Limit of detection (LOD) (pM)	Ref.
Pt-MSN	Colorimetric	CRP	$1.4 - 87.0$	3.9	This study
MPN	Colorimetric	CRP	$10.4 - 339.1$	5.7	12
Pt-MDMC	Colorimetric	CRP	$13 - 2174$	14.6	13
AuPtRh NBC	Amperometric CRP		$0.4 - 4.3 \mu M$	0.3	14
Pt/Ru/C nanoparticle	Amperometric CRP		$8.7 - 869.6$	4.3	15

Table S3 Comparison of LOD values and linear ranges of Pt-MSN- and previously reported Pt-based CRP immunoassays.

References

- 1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D and Yan X, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, *Nat. Nanotechnol.* 2007, **2**, 577-583.
- 2. Gao Z, Xu M, Hou L, Chen G and Tang D, Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay, *Anal. Chim. Acta* 2013, **776**, 79-86.
- 3. Ma M, Xie J, Zhang Y, Chen Z and Gu N, $Fe₃O₄(a)$ Pt nanoparticles with enhanced peroxidase-like catalytic activity, *Mater. Lett.*, 2013, **105**, 36-39.
- 4. Ge C, Wu R, Chong Y, Fang G, Jiang X, Pan Y, Chen C and Yin JJ, Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing, *Adv. Funct. Mater.*, 2018, **28**, 1801484.
- 5. Ma X, Feng T, Zhang P, Zhang H, Hu X, Yang Y, Wang Z, Zhang H, Peng D, Li X and Xu J, Downregulation of peroxidase activity of platinum cube enables minute– time scale colorimetric signaling of hypoxanthine for fish freshness monitoring, *Foods*, 2023, **12**, 291.
- 6. He W, Cai J, Zhang H, Zhang L, Zhang X, Li J and Yin JJ, Formation of PtCuCo trimetallic nanostructures with enhanced catalytic and enzyme-like activities for biodetection, *ACS Appl. Nano Mater.*, 2017, **1**, 222-231.
- 7. Sun H, Zhang J, Wang M and Su X, Ratiometric fluorometric and colorimetric dualmode sensing of glucose based on gold-platinum bimetallic nanoclusters, *Microchem J.*, 2022, **179**, 107574.
- 8. Lee G, Kim C, Kim D, Hong C, Kim T, Lee M and Lee K, Multibranched Au–Ag–Pt nanoparticle as a nanozyme for the colorimetric assay of hydrogen peroxide and glucose, *ACS Omega*, 2022, **7**, 40973-40982.
- 9. Weremfo A, Fong STC, Khan A, Hibbert DB and Zhao C, Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors, *Electrochim. Acta*, 2017, **231**, 20-26.
- 10. Turkmen E, Bas SZ, Gulce H and Yildiz S, Glucose biosensor based on immobilization of glucose oxidase in electropolymerized poly(o-phenylenediamine)

film on platinum nanoparticles-polyvinylferrocenium modified electrode, *Electrochim. Acta*, 2014, **123**, 93-102.

- 11. Li LH and Zhang WD, Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing, *Microchim. Acta*, 2008, **163**, 305-311.
- 12. Son SE, Gupta PK, Hur W, Lee HB, Park Y, Park J, Kim SN and Seong GH, Mesoporous platinum nanoparticles as a peroxidase mimic for the highly sensitive determination of C-reactive protein, *Anal. Bioanal. Chem.*, 2022, **414**, 7191-7201.
- 13. Ivanova P, Drozd M, Michrowski K, Karoń S, Marta MP and Pietrzak M, Au-X (X=Pt/Ru)-decorated magnetic nanocubes as bifunctional nanozyme labels in colorimetric, magnetically-enhanced, one-step sandwich CRP immunoassay, *Biosens. Bioelectron.*, 2023, **237**, 115511.
- 14. Feng YG, He JW, Jiang LY, Chen DN, Wang AJ and Feng JJ, Novel sandwich-typed electrochemical immunosensing of C-reactive protein using multiply twinned AuPtRh nanobead chains and nitrogen-rich porous carbon nanospheres decorated with Au nanoparticles, *Sens. Actuator B-Chem.*, 2022, **358**, 131518.
- 15. Liu TZ, Hu R, Liu Y, Zhang KL, Bai RY and Yang YH, Amperometric immunosensor based on covalent organic frameworks and Pt/Ru/C nanoparticles for the quantification of C-reactive protein, *Microchim. Acta*, 2020, **187**, 1-10.