Supporting Information

β -CsHg₂I₅, a compound with rare [Hg₂I₅] dimers and large optical

anisotropy

Yingying Kong,^{a,b†} Hongshan Wang,^{b†} Wang Zhao^b, Qi Sun^b, Junjie Li,^{b*}and Shilie Pan^{a,b*}

^aCollege of Chemistry, Zhengzhou University, Zhengzhou 450001, China

^bResearch Center for Crystal Materials; State Key Laboratory of Functional Materials and

Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal

Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,

40-1 South Beijing Road, Urumqi 830011, China.

[†]These authors contributed equally to this work.

*Corresponding authors, E-mails: lijunjie@ms.xjb.ac.cn; slpan@ms.xjb.ac.cn

Empirical formula	α-CsHg ₂ I ₅	β -CsHg ₂ I ₅
Formula weight (Da)	1168.59	1168.59
Temperature/(K)	100	293
Crystal system	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
<i>a/</i> (Å)	14.0019(16)	8.8094(14)
$b/(\text{\AA})$	11.4545(14)	11.4931(17)
$c/(\text{\AA})$	19.067(3)	14.075(2)
$\alpha/^{\circ}$	90	90
$eta / ^{\circ}$	117.911(4)	107.073(6)
$\gamma/^{\circ}$	90	90
Volume/(Å ³)	2702.3(6)	1362.3(4)
Ζ	8	4
$ ho_{ m calc}(m g/cm^3)$	5.745	5.698
$\mu/(mm^{-1})$	36.718	36.418
F(000)	3840	1920
Completeness to θ (%)	99.7	94.7
2θ range for data collection/°	4.3 to 55.082	4.662 to 54.926
Max. and min. transmission	0.7456 and 0.4780	0.7455 and 0.4917
Index ranges	$-18 \le h \le 18, -14 \le k \le 14,$ -24 < 1 < 24	$-11 \le h \le 10, -14 \le k \le 14,$ $-17 \le 1 \le 18$
Reflections collected	71018	6897
Independent reflections	$6199 [R_{int} = 0.0612, R_{sigma} = 0.0295]$	2962 $[R_{int} = 0.0646 R_{sigma} = 0.0833]$
Data/restraints/parameters	6199/0/168	2962/0/91
Absorpt correction type	multi-scan	multi-scan
Goodness-of-fit on F^2	1.081	1.055
Final <i>R</i> indexes $[I \ge 2\sigma(I)]^a$	$R_1 = 0.0218, wR_2 = 0.0438$	$R_1 = 0.0620, wR_2 = 0.1299$
Final R indexes [all data] ^a	$R_1 = 0.0250, wR_2 = 0.0449$	$R_1 = 0.1013, wR_2 = 0.1456$
Largest diff. peak/hole/(e.Å-3)	1.87/-2.29	1.992/-2.414

Table S1. Crystal data and structure refinements of α -CsHg₂I₅ and β -CsHg₂I₅.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|$ and $wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2}$ for $F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atoms	X	У	Z	U_{eq}	Wyckoff positions	BVS ^[a]	
Cs(1)	6479(1)	7454(1)	5317(1)	25(1)	4e	0.89	
Cs(2)	8494(1)	2398(1)	-257(1)	30(1)	4e	0.88	
Hg(1)	4891(7)	4131(9)	2635(5)	27(1)	4e	2.22	
Hg(2)	4960(3)	4270(4)	2571(3)	21(1)	4e	2.32	
Hg(3)	7841(3)	6987(2)	3341(2)	22(1)	4e	2.22	
Hg(4)	7971(7)	6771(11)	3333(3)	39(1)	4e	2.33	
Hg(5)	9201(1)	10234(1)	2731(1)	38(1)	4e	2.16	
Hg(6)	7245(1)	3808(1)	1691(1)	31(1)	4e	2.17	
I(1)	2775(1)	4444(1)	1496(1)	20(1)	4e	0.84	
I(2)	5587(1)	4334(1)	4151(1)	19(1)	4e	1.10	
I(3)	5762(1)	2436(1)	2032(1)	27(1)	4e	1.13	
I(4)	5990(1)	6085(1)	2055(1)	13(1)	4e	0.94	
I(5)	8606(1)	6079(1)	4803(1)	17(1)	4e	1.20	
I(6)	9134(1)	7514(1)	2648(1)	25(1)	4e	0.93	
I(7)	10592(1)	10556(1)	4215(1)	20(1)	4e	1.16	
I(8)	7714(1)	10733(1)	1299(1)	18(1)	4e	1.13	
I(9)	9016(1)	3971(1)	3064(1)	19(1)	4e	1.01	
I(10)	6355(1)	4087(1)	138(1)	16(1)	4e	1.21	

Table S2. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) and BVS of α -CsHg₂I₅.

[a] The bond valence sum is calculated by bond-valence theory ($S_{ij} = \exp[(R_0 - R)/B)$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

Atoms	X	У	Z	\mathbf{U}_{eq}	Wyckoff positions	BVS ^[a]
Cs(1)	10576(2)	2469(1)	8792(1)	49(1)	4e	0.84
Hg(1)	4540(2)	4750(2)	1486(2)	65(1)	4e	2 20
Hg(2)	4808(2)	4214(2)	2311(2)	48(1)	4e	2.38
Hg(3)	6666(2)	3120(3)	5453(2)	54(1)	4e	2.20
Hg(4)	6612(2)	3806(2)	5515(2)	49(1)	4e	2.28
I(1)	1637(1)	4389(1)	1403(1)	36(1)	4e	1.11
I(2)	7219(2)	4340(1)	1359(1)	45(1)	4e	1.07
I(3)	5574(3)	2464(1)	3620(1)	72(1)	4e	1.14
I(4)	4009(1)	3949(1)	6016(1)	32(1)	4e	0.85
I(5)	9656(1)	4004(1)	6202(1)	32(1)	4e	1.19

Table S3. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) and BVS of β -CsHg₂I₅.

[a] The bond valence sum is calculated by bond-valence theory $(S_{ij} = \exp[(R_0 - R)/B]$, where *R* is an empirical constant, R_0 is the length of bond I (in angstroms), and B = 0.37).

			0	82 3	
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cs(1)	$I(2)^{\#1}$	4.0417(7)	Hg(1)	I(2)	2.593(9)
Cs(1)	I(2)	4.0830(7)	Hg(1)	I(3)	2.809(10)
Cs(1)	$I(3)^{#2}$	4.0929(8)	Hg(1)	I(4)	3.193(10)
Cs(1)	$I(4)^{#3}$	4.0455(7)	Hg(2)	I(1)	2.780(4)
Cs(1)	I(5)	3.8801(6)	Hg(2)	I(2)	2.716(5)
Cs(1)	I(6) ^{#3}	4.2547(8)	Hg(2)	I(3)	2.795(5)
Cs(1)	$I(7)^{#4}$	4.4039(7)	Hg(2)	I(4)	2.950(5)
Cs(1)	$I(8)^{#3}$	4.0978(7)	Hg(3)	$I(1)^{#2}$	3.002(2)
Cs(1)	$I(10)^{#2}$	4.0950(7)	Hg(3)	I(4)	2.802(3)
Cs(1)	$I(10)^{#3}$	3.9733(7)	Hg(3)	I(5)	2.684(3)
Cs(2)	$I(1)^{\#6}$	4.2291(7)	Hg(3)	I(6)	2.762(3)
Cs(2)	$I(2)^{\#7}$	4.1808(7)	Hg(4)	$I(1)^{#2}$	3.300(14)
Cs(2)	I(5) ^{#7}	3.9853(7)	Hg(4)	I(4)	2.814(6)
Cs(2)	I(5) ^{#5}	4.0285(7)	Hg(4)	I(5)	2.635(6)
Cs(2)	$I(6)^{\#8}$	4.5089(9)	Hg(4)	I(6)	2.660(7)
Cs(2)	$I(7)^{\#8}$	4.2309(7)	Hg(5)	I(6)	3.1192(6)
Cs(2)	$I(7)^{#5}$	4.0350(7)	Hg(5)	I(7)	2.6036(6)
Cs(2)	$I(8)^{\#9}$	4.0835(7)	Hg(5)	I(8)	2.6061(5)
Cs(2)	$I(9)^{\#7}$	3.9283(7)	Hg(6)	I(3)	2.9099(5)
Cs(2)	I(10)	3.9236(6)	Hg(6)	I(9)	2.6381(5)
Hg(1)	I(1)	2.757(9)	Hg(6)	I(10)	2.6402(6)

Table S4. Selected bond lengths of α -CsHg₂I₅.

¹1+X,3/2-Y,1/2+Z; ²2-X,1/2+Y,3/2-Z; ³+X,3/2-Y,1/2+Z; ⁴1-X,1-Y,1-Z; ⁵1+X, +Y,1+Z; ⁶2-X,1-Y,1-Z; ⁷1-X, -1/2+Y,1/2-Z, ⁸+X,3/2-Y,-1/2+Z; ⁹+X,-1+Y,+Z

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cs(1)	$I(1)^{\#1}$	4.075(2)	Hg(1)	I(2)	2.465(2)
Cs(1)	$I(1)^{#2}$	4.312(2)	Hg(1)	I(3)#7	3.122(3)
Cs(1)	$I(1)^{#3}$	4.151(2)	Hg(2)	I(1)	2.716(2)
Cs(1)	$I(2)^{#4}$	4.341(2)	Hg(2)	I(2)	2.829(2)
Cs(1)	$I(2)^{#5}$	4.184(2)	Hg(2)	I(3)	2.677(3)
Cs(1)	I(3) ^{#4}	4.342(3)	Hg(3)	I(3)	2.588(3)
Cs(1)	$I(3)^{#2}$	4.481(33)	Hg(3)	I(4)	2.847(3)
Cs(1)	$I(4)^{#2}$	4.0057(19)	Hg(3)	I(5)	2.729(2)
Cs(1)	I(5) ^{#4}	4.079(2)	Hg(4)	I(3)	2.984(3)
Cs(1)	$I(5)^{#6}$	3.988(2)	Hg(4)	I(4)	2.594(3)
Cs(1)	I(5)	3.915(2)	Hg(4)	I(5)	2.580(2)
Hg(1)	I(1)	2.559(2)			

Table S5. Selected bond lengths of β -CsHg₂I₅.

¹1+X,3/2-Y,1/2+Z; ²2-X,1/2+Y,3/2-Z; ³+X,3/2-Y,1/2+Z; ⁴1-X,1-Y,1-Z; ⁵1+X, +Y,1+Z; ⁶2-X,1-Y,1-Z; ⁷1-X, -1/2+Y,1/2-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
I(2)#1	Cs(1)	I(2)	67.716(13)	I(10)#2	Cs(1)	I(6) ^{#3}	120.244(13)
I(2)#1	Cs(1)	$I(3)^{#2}$	89.996(14)	I(10)#3	Cs(1)	I(6) ^{#3}	93.602(11)
I(2)	Cs(1)	$I(3)^{\#2}$	61.134(11)	I(10)#3	Cs(1)	I(7) ^{#4}	60.017(10)
$I(2)^{\#1}$	Cs(1)	$I(4)^{\#3}$	65.742(11)	I(10)#2	Cs(1)	I(7) ^{#4}	121.633(15)
I(2)#1	Cs(1)	I(6) ^{#3}	96.917(15)	I(10)#3	Cs(1)	I(8) ^{#3}	156.876(15)
I(2)	Cs(1)	I(6) ^{#3}	118.111(13)	I(10)#2	Cs(1)	I(8) ^{#3}	131.574(13)
$I(2)^{#1}$	Cs(1)	I(7) ^{#4}	156.884(14)	I(10)#3	Cs(1)	I(10)#2	61.782(12)
I(2)	Cs(1)	I(7) ^{#4}	125.566(13)	$I(1)^{\#6}$	Cs(2)	I(7) ^{#8}	63.287(12)
I(2)	Cs(1)	I(8) ^{#3}	54.921(12)	I(2)#7	Cs(2)	I(1) ^{#6}	98.849(14)
$I(2)^{#1}$	Cs(1)	I(8)#3	68.423(12)	I(2)#7	Cs(2)	$I(7)^{#8}$	153.550(16)
$I(2)^{#1}$	Cs(1)	I(10)#2	63.174(12)	I(5)#7	Cs(2)	$I(1)^{\#6}$	150.600(16)
I(2)	Cs(1)	I(10)#2	105.399(14)	I(5)#5	Cs(2)	$I(1)^{\#6}$	123.960(13)
I(3)#2	Cs(1)	I(6)#3	172.091(14)	I(5)#5	Cs(2)	$I(2)^{\#7}$	129.470(14)
I(3)#2	Cs(1)	I(7)#4	112.856(13)	I(5)#7	Cs(2)	$I(2)^{\#7}$	63.493(11)
I(3)#2	Cs(1)	I(8)#3	116.037(12)	I(5)#7	Cs(2)	I(5)#5	66.198(12)
I(3)#2	Cs(1)	I(10)#2	66.422(12)	I(5)#5	Cs(2)	$I(7)^{#8}$	61.110(12)
I(4) ^{#3}	Cs(1)	I(2)	133.022(13)	I(5)#7	Cs(2)	I(7)#5	151.932(17)
I(4) ^{#3}	Cs(1)	I(3)#2	124.159(15)	I(5)#7	Cs(2)	$I(7)^{#8}$	122.533(14)
I(4) ^{#3}	Cs(1)	I(6)#3	62.690(13)	I(5)#5	Cs(2)	I(7)#5	100.082(14)
I(4) ^{#3}	Cs(1)	$I(7)^{#4}$	96.804(13)	I(5)#7	Cs(2)	I(8) ^{#9}	62.145(10)
I(4) ^{#3}	Cs(1)	I(8)#3	101.026(14)	I(5)#5	Cs(2)	I(8) ^{#9}	104.723(14)
I(4) ^{#3}	Cs(1)	I(10)#2	57.737(10)	I(7)#5	Cs(2)	$I(1)^{\#6}$	57.451(12)
I(5)	Cs(1)	$I(2)^{#1}$	125.587(14)	I(7)#5	Cs(2)	$I(2)^{#7}$	127.073(13)
I(5)	Cs(1)	I(2)	65.307(12)	I(7)#5	Cs(2)	$I(7)^{#8}$	61.644(12)
I(5)	Cs(1)	$I(3)^{#2}$	90.421(15)	I(7)#5	Cs(2)	I(8) ^{#9}	101.079(15)
I(5)	Cs(1)	I(4)#3	144.992(15)	I(8)#9	Cs(2)	$I(1)^{\#6}$	128.313(14)
I(5)	Cs(1)	I(6)#3	82.441(15)	I(8)#9	Cs(2)	$I(2)^{#7}$	54.305(11)
I(5)	Cs(1)	I(7) ^{#4}	60.576(12)	I(8)#9	Cs(2)	$I(7)^{#8}$	152.050(16)
I(5)	Cs(1)	I(8) ^{#3}	62.880(11)	I(9)#7	Cs(2)	$I(1)^{\#6}$	94.372(15)
I(5)	Cs(1)	I(10) ^{#3}	113.014(13)	I(9)#7	Cs(2)	$I(2)^{#7}$	96.858(13)
I(5)	Cs(1)	$I(10)^{#2}$	156.101(15)	I(9)#7	Cs(2)	I(5)#5	58.124(11)
I(6)#3	Cs(1)	I(7)#4	60.555(11)	I(9)#7	Cs(2)	$I(5)^{#7}$	66.692(11)
I(8)#3	Cs(1)	I(6) ^{#3}	63.567(10)	I(9)#7	Cs(2)	$I(7)^{#8}$	67.209(12)
I(8)#3	Cs(1)	$I(7)^{#4}$	102.411(14)	I(9)#7	Cs(2)	$I(7)^{#5}$	128.449(14)
I(10)#3	Cs(1)	I(2)	146.709(15)	I(9)#7	Cs(2)	I(8) ^{#9}	128.370(15)
I(10)#3	Cs(1)	$I(2)^{#1}$	121.286(13)	I(10)	Cs(2)	$I(1)^{\#6}$	61.750(11)
I(10)#3	Cs(1)	I(3) ^{#2}	86.031(11)	I(10)	Cs(2)	I(2)#7	63.367(13)
I(10)#3	Cs(1)	I(4) ^{#3}	68.927(10)	I(10)	Cs(2)	I(5)#7	120.713(14)

Table S6. Selected angles (°) of α -CsHg₂I₅.

I(10)	Cs(2)	I(5)#5	157.970(16)	I(5)	Hg(3)	$I(1)^{#2}$	104.50(9)
I(10)	Cs(2)	I(7) ^{#5}	63.791(12)	I(5)	Hg(3)	I(4)	121.47(11)
I(10)	Cs(2)	$I(7)^{#8}$	116.744(14)	I(5)	Hg(3)	I(6)	123.33(11)
I(10)	Cs(2)	I(8) ^{#9}	66.596(12)	I(6)	Hg(3)	$I(1)^{#2}$	97.42(8)
I(10)	Cs(2)	I(9)#7	143.450(16)	I(6)	Hg(3)	I(4)	101.90(10)
I(1)	Hg(1)	I(3)	106.3(3)	I(4)	Hg(4)	$I(1)^{#2}$	96.7(3)
I(1)	Hg(1)	I(4)	98.7(3)	I(5)	Hg(4)	$I(1)^{#2}$	98.0(3)
I(2)	Hg(1)	I(1)	124.8(4)	I(5)	Hg(4)	I(4)	122.8(2)
I(2)	Hg(1)	I(3)	120.6(3)	I(5)	Hg(4)	I(6)	129.7(3)
I(2)	Hg(1)	I(4)	109.4(3)	I(6)	Hg(4)	$I(1)^{#2}$	92.7(3)
I(3)	Hg(1)	I(4)	88.3(3)	I(6)	Hg(4)	I(4)	104.2(2)
I(1)	Hg(2)	I(3)	106.03(15)	I(7)	Hg(5)	I(6)	100.710(15)
I(1)	Hg(2)	I(4)	104.15(14)	I(7)	Hg(5)	I(8)	158.745(19)
I(2)	Hg(2)	I(1)	119.27(18)	I(8)	Hg(5)	I(6)	100.097(16)
I(2)	Hg(2)	I(3)	116.83(16)	I(9)	Hg(6)	I(3)	104.727(18)
I(2)	Hg(2)	I(4)	113.33(15)	I(9)	Hg(6)	I(10)	146.669(18)
I(3)	Hg(2)	I(4)	93.64(14)	I(10)	Hg(6)	I(3)	107.713(17)
I(4)	Hg(3)	$I(1)^{#2}$	104.10(9)				

¹1+X,3/2-Y,1/2+Z; ²2-X,1/2+Y,3/2-Z; ³+X,3/2-Y,1/2+Z; ⁴1-X,1-Y,1-Z; ⁵1+X, +Y,1+Z; ⁶2-X,1-Y,1-Z; ⁷1-X, -1/2+Y,1/2-Z, ⁸+X,3/2-Y,-1/2+Z; ⁹+X,-1+Y,+Z

Table S7.	Selected	angles (°)) of _/	β -CsHg ₂ I ₅ .
-----------	----------	------------	-------------------	---

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
$I(1)^{\#1}$	Cs(1)	I(1) ^{#3}	64.37(4)	I(5)#6	Cs(1)	I(2)#4	60.00(3)
I(1)#3	Cs(1)	$I(1)^{#2}$	155.46(5)	I(5)#6	Cs(1)	I(2)#5	154.18(5)
$I(1)^{\#1}$	Cs(1)	$I(1)^{#2}$	126.55(4)	I(5)	Cs(1)	I(2)#4	64.82(4)
I(1)#3	Cs(1)	I(2)#5	65.91(4)	I(5)#4	Cs(1)	I(2)#4	101.62(4)
$I(1)^{#3}$	Cs(1)	I(2)#4	151.31(5)	I(5)#6	Cs(1)	I(3)#4	88.06(4)
$I(1)^{#2}$	Cs(1)	I(2)#4	53.20(3)	I(5)	Cs(1)	I(3)#4	90.62(4)
$I(1)^{\#1}$	Cs(1)	I(2)#5	55.94(4)	I(5)#4	Cs(1)	I(3)#4	66.91(4)
$I(1)^{\#1}$	Cs(1)	I(2)#4	99.78(4)	I(5)	Cs(1)	$I(4)^{#2}$	144.44(5)
$I(1)^{#3}$	Cs(1)	I(3)#4	90.07(4)	I(5)#6	Cs(1)	$I(4)^{#2}$	67.62(3)
$I(1)^{\#1}$	Cs(1)	I(3)#4	61.50(3)	I(5)	Cs(1)	I(5)#6	117.10(4)
$I(1)^{#2}$	Cs(1)	I(3)#4	114.47(4)	I(5)	Cs(1)	I(5)#4	157.52(6)
$I(1)^{\#1}$	Cs(1)	I(5)#4	102.47(5)	$I(5)^{#6}$	Cs(1)	I(5)#4	63.94(4)
I(2) ^{#5}	Cs(1)	$I(1)^{#2}$	100.62(5)	I(1)	Hg(1)	$I(3)^{#7}$	98.19(9)
I(2) ^{#5}	Cs(1)	I(2)#4	126.77(4)	I(2)	Hg(1)	I(1)	158.60(12)
I(2)#5	Cs(1)	I(3)#4	117.40(4)	I(2)	Hg(1)	$I(3)^{#7}$	101.86(9)
I(2)#4	Cs(1)	I(3)#4	61.28(4)	I(1)	Hg(2)	I(2)	125.77(9)
$I(4)^{#2}$	Cs(1)	$I(1)^{#3}$	66.55(3)	I(1)	Hg(2)	$I(4)^{#1}$	112.12(8)
$I(4)^{#2}$	Cs(1)	$I(1)^{#1}$	130.52(5)	I(2)	Hg(2)	$I(4)^{#1}$	101.11(6)
$I(4)^{#2}$	Cs(1)	$I(1)^{#2}$	96.96(4)	I(3)	Hg(2)	I(1)	113.33(9)
$I(4)^{#2}$	Cs(1)	I(2)#4	127.20(4)	I(3)	Hg(2)	I(2)	106.96(8)
$I(4)^{#2}$	Cs(1)	I(2)#5	98.11(4)	I(3)	Hg(2)	$I(4)^{#1}$	91.65(7)
$I(4)^{#2}$	Cs(1)	I(3)#4	124.88(5)	I(3)	Hg(3)	I(2)#4	96.45(9)
$I(4)^{#2}$	Cs(1)	I(5)#4	58.00(3)	I(3)	Hg(3)	I(4)	106.24(9)
$I(5)^{\#6}$	Cs(1)	$I(1)^{#1}$	149.48(5)	I(3)	Hg(3)	I(5)	121.86(11)
I(5)	Cs(1)	$I(1)^{#2}$	61.96(4)	I(4)	Hg(3)	I(2)#4	103.58(9)
I(5)	Cs(1)	$I(1)^{#1}$	64.78(4)	I(5)	Hg(3)	I(2)#4	99.47(8)
$I(5)^{\#6}$	Cs(1)	$I(1)^{#3}$	121.81(4)	I(5)	Hg(3)	I(4)	123.17(10)
I(5)	Cs(1)	$I(1)^{#3}$	121.08(5)	I(3)	Hg(4)	$I(4)^{#1}$	82.64(7)
I(5)#4	Cs(1)	$I(1)^{#2}$	125.76(4)	I(4)	Hg(4)	I(3)	102.27(8)
I(5)#4	Cs(1)	$I(1)^{#3}$	62.14(4)	I(4)	Hg(4)	$I(4)^{#1}$	97.91(8)
$I(5)^{\#6}$	Cs(1)	$I(1)^{#2}$	61.98(3)	I(5)	Hg(4)	I(3)	113.12(11)
I(5)	Cs(1)	$I(2)^{#5}$	61.97(4)	I(5)	Hg(4)	$I(4)^{#1}$	97.47(8)
I(5)#4	Cs(1)	I(2)#5	127.92(5)	I(5)	Hg(4)	I(4)	142.85(12)

¹1+X,3/2-Y,1/2+Z; ²2-X,1/2+Y,3/2-Z; ³+X,3/2-Y,1/2+Z; ⁴1-X,1-Y,1-Z; ⁵1+X, +Y,1+Z; ⁶2-X,1-Y,1-Z; ⁷1-X, -1/2+Y,1/2-Z

Atom	U11	U22	U33	U23	U13	U12
Cs(1)	28(1)	17(1)	33(1)	-2(1)	17(1)	3(1)
Cs(2)	35(1)	17(1)	52(1)	-3(1)	31(1)	0(1)
Hg(1)	37(2)	32(2)	14(1)	3(1)	14(1)	2(1)
Hg(2)	25(1)	24(1)	13(1)	2(1)	9(1)	-1(1)
Hg(3)	23(1)	26(1)	15(1)	2(1)	7(1)	-3(1)
Hg(4)	30(2)	68(3)	16(1)	6(2)	8(1)	-14(2)
Hg(5)	32(1)	50(1)	16(1)	3(1)	-2(1)	-3(1)
Hg(6)	25(1)	46(1)	16(1)	5(1)	5(1)	-4(1)
I(1)	18(1)	16(1)	20(1)	5(1)	5(1)	-3(1)
I(2)	23(1)	15(1)	14(1)	1(1)	4(1)	-2(1)
I(3)	38(1)	11(1)	46(1)	-2(1)	33(1)	-3(1)
I(4)	14(1)	10(1)	14(1)	-1(1)	7(1)	0(1)
I(5)	19(1)	14(1)	16(1)	1(1)	7(1)	1(1)
I(6)	30(1)	16(1)	41(1)	-2(1)	26(1)	0(1)
I(7)	20(1)	19(1)	15(1)	1(1)	4(1)	-1(1)
I(8)	20(1)	17(1)	14(1)	0(1)	4(1)	3(1)
I(9)	19(1)	20(1)	16(1)	-2(1)	5(1)	6(1)
I(10)	17(1)	15(1)	15(1)	0(1)	7(1)	2(1)

Table S8. Anisotropic displacement parameters ($Å^{2} \times 10^{3}$) for α -CsHg₂I₅. The anisotropic displacement factor exponent takes the form:- $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$

Atom	U11	U22	U33	U23	U13	U12
Cs(1)	65(1)	38(1)	42(1)	10(1)	12(1)	6(1)
Hg(1)	25(1)	84(2)	90(2)	0(1)	21(1)	3(1)
Hg(2)	24(1)	60(1)	57(1)	10(1)	5(1)	4(1)
Hg(3)	25(1)	75(2)	57(1)	-24(1)	7(1)	-8(1)
Hg(4)	23(1)	62(1)	61(1)	-9(1)	9(1)	-8(1)
I(1)	23(1)	35(1)	50(1)	-4(1)	10(1)	-3(1)
I(2)	50(1)	41(1)	50(1)	-17(1)	24(1)	-19(1)
I(3)	147(2)	25(1)	53(1)	-6(1)	43(1)	-7(1)
I(4)	32(1)	28(1)	37(1)	4(1)	12(1)	-1(1)
I(5)	25(1)	36(1)	34(1)	3(1)	5(1)	4(1)

Table S9. Anisotropic displacement parameters (Å²×10³) for β -CsHg₂I₅. The anisotropic displacement factor exponent takes the form:-2 π^2 [h²a^{*2}U₁₁+2hka*b*U₁₂+...].

Atom	Occupancy	Atom	Occupancy
Hg(1)	0.5	Hg(3)	0.5
Hg(2)	0.5	Hg(4)	0.5

Table S10. Atomic occupancy for α -CsHg₂I₅.

Atom	Occupancy	Atom	Occupancy
Hg(1)	0.5	Hg(3)	0.5
Hg(2)	0.5	Hg(4)	0.5

Table S11. Atomic occupancy for β -CsHg₂I₅.

Element	Wt%	Wt% Sigma	Atomic %
Cs	12.82	0.22	13.95
Hg	31.64	0.22	22.80
Ι	55.54	0.23	63.26
Total	100.00		100.00

Table S12. Cs, Hg and I elements in β -CsHg₂I₅ with an atomic ratio.

Element	Voigt	Reuss	Hill
Bulk modulus	9.89422	7.99758	8.94950

Table S13. Bulk modulus of β -CsHg₂I₅

Figure S1. Raman spectrum of β -CsHg₂I₅.

Figure S2. Reversible phase transition process.

Figure S3. (a - c) Coordination modes of Cs and Hg; (d) The formed [Hg₄I₁₁] multimer; (e) The structure of Cs-I framework; (f) The resulted [Hg₄I₁₁] pseudo-layer; (g) The 3D crystal structure of α -CsHg₂I₅.

Figure S4. The DSC curve of β -CsHg₂I₅.

Figure S5. Bonding electron density difference $(\Delta \rho)$ of each tiny units in β -CsHg₂I₅.

Figure S6. The optimized structure model and unit-cell parameters of β -CsHg₂I₅.