Supporting information

Construction of NCMTs@MoO₂/FeNi₃ Hierarchical Tubular Heterostructures for Enhanced Performance in Catalysis and Protein adsorption

Hongxin Wang^a, Lixian Guo^{b*}, Jianmin Pan^a, Jingli Xu^a, Xue-Bo Yin^a, Min Zhang^{*a}

^a College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

^b Jinan Children's Hospital, Jinan 250022, China.

Preparation of NCMTs@MoO₂/FeNi₃-1

In a typical reaction, 50mg of the as-prepared FeOOH@NiMoO4 were dispersed in 25 mL methanol under ultrasound for 15 minutes. Then another solution containing 23 mg of hexachloro cyclophosphazene and 52 mg of 4, 4'-sulfonyldiphenol in 6 mL of methanol was added drop by drop. After stirring for 5 minutes, 80 µL of triethylamine was added drop wise and the solution was continued to stir for 8 h. The product was collected by centrifugation and washed with water and ethanol for several times before 60 °C overnight. The obtained drying at product was denoted as FeOOH@NiMoO4@PZS. Then, the as-prepared FeOOH@NiMoO4@PZS powder was placed in a ceramic boat at the middle of a horizontal tube furnace. After heating at 150°C for 1 h and continuously increasing to 500°C and maintaining for 5 h with a ramp rate of 2°C min⁻¹ in N₂ gas, the obtained black powder was NCMTs@MoO₂/FeNi₃-1.

Fig. S1. SEM and TEM images of MoO₃

Fig. S3. Energy-dispersive X-rays spectrum of NCMTs@MoO2/FeNi3.

Fig. S4 (A, B) SEM images and (C, D) TEM images of Mo₂C@Fe_{0.64}Ni_{0.36}/Ni-900.

Fig. S5. XRD patterns of (a) Mo₂C@Fe_{0.64}Ni_{0.36}/Ni-700 and (b) Mo₂C@ Fe_{0.64}Ni_{0.36}/Ni-900

Fig. S6 SEM(a), TEM(b) images and XRD patterns(c) of NCMTs@MoO2/FeNi3-1

Samples	Nickel content (µg/mg)	K (×10 ⁻³ s ⁻¹)	κ (×10 ⁻³ mg ⁻¹ s ⁻¹)
NCMTs@MoO ₂ /FeNi ₃	429.11	17.12	39.90
Mo ₂ C@Fe _{0.64} Ni _{0.36} /Ni-	215.67	6.94	32.18
700			
Mo ₂ C@Fe _{0.64} Ni _{0.36} /Ni-	373.97	3.04	8.13
900			

Fig. S7 The recyclability of the NCMTs@MoO₂/FeNi₃ as the catalyst for 4-nitrophenol

Fig. S8 SEM images of NCMTs@MoO2/FeNi3 after five catalytic reactions

Table S2. the estimate	of Langn	nuir model	and Freu	ndlich model
------------------------	----------	------------	----------	--------------

Langmuir			Freundlich		
Qm	b	R ²	Qm	n	R ²
943.40	0.0319	0.9979	58.74	1.87	0.9540