Supporting Information

Ultrathin 2D/2D ZnIn₂S₄/La₂Ti₂O₇ nanosheets with Zscheme heterojunction for enhanced photocatalytic hydrogen evolution

Hanbing Wang[&], Yunqi Ning[&], Qi Tang, Xueyang Li, Mengdi Hao, Qun Wei, Tingting Zhao, Daqi Lv, Hongwei Tian^{*}

Key Laboratory of Automobile Materials of MOE and School of Materials Science and Engineering, Jilin University, Changchun, 130012, China

*Corresponding author. E-mail addresses: tianhw@jlu.edu.cn (H. Tian).

[&]These authors contributed equally to this work.

Figure S1. XRD pattern of $ZnIn_2S_4$.

Figure S3. SEM image of La₂Ti₂O₇.

Figure S4. SEM image of ZnIn₂S₄.

Figure S5. EDX spectrum of ZIS/LTO-0.1.

Figure S6. XPS spectra of ZIS.

Figure S7. XPS spectra of LTO.

Figure S8. XPS spectra of ZIS/LTO-0.1.

Figure S9. AQE values of ZCS@ZIS/MS at wavelengths of 420 nm, 450 nm and 500 nm.

Figure S10. XRD patterns of fresh and used ZIS/LTO-0.1.

Figure S11. SEM image of ZIS/LTO-0.1 after photocatalysis.

literatures.							
Catalyst	Catalyst dosage (mg)	Reaction conditions	Light source	H ₂ evoluti on rate (mmol h ⁻¹ g ⁻¹)	AQE (%)	co- catal yst	Ref.
2D/2D ZnIn ₂ S ₄ /La ₂ Ti ₂ O ₇	20	100 mL aqueous solution (20.vol% TEOA)	300 W Xe lamp (UV-vis)	6.97	17.7 420 nm	/	This work
Co ₃ O ₄ /La ₂ Ti ₂ O ₇	50	100 mL aqueous solution (10.vol% methanol)	300 W Xe lamp (UV-vis)	0.08	/	1	[1]

Table S1. Comparison of photocatalytic H₂ generation performance with reported literatures.

CdS/La ₂ Ti ₂ O ₇	10	$\begin{array}{c} 20 \text{ mL} \\ aqueous \\ solution \\ (0.35 \text{ M} \\ Na_2 \text{S} / 0.25 \text{ M} \\ Na_2 \text{SO}_3 \end{array} \right)$	500 mW·cm ^{−2} Xe lamp (UV-vis)	2.30	2.1 400 nm	/	[2]
$La_2Ti_2O_7/g\text{-}C_3N_4$	50	100 mL aqueous solution (10.vol% TEOA) 100 mJ	LED lamp $(\lambda =$ 420nm)	1.49	3.6 420 nm	Pt	[3]
$La_2Ti_2O_7/In_2S_3$	60	aqueous solution (0.05 M Na ₂ S/Na ₂ SO ₃)	300 W Xe lamp(λ ≥ 400 nm)	0.16	/	Pt	[4]
rGO/La ₂ Ti ₂ O ₇ /NiFe -LDH	20	40 mL aqueous solution (10 vol.% TEOA)	100 mW·cm ⁻² Xe lamp (UV-vis- NIR)	0.53	/	/	[5]
ZnIn ₂ S ₄ @In(OH) ₃ @CdS	30	100 mL aqueous solution (20 vol. % lactic acid)	300W Xe lamp (λ > 420 n m)	1.38	19.2 420 nm	/	[6]
ZnIn ₂ S ₄ /B-C ₃ N ₄	20	100 mL aqueous solution (10 vol.% TEOA)	300W Xe lamp (λ ≥ 420 nm)	0.88	/	/	[7]

ZnIn ₂ S ₄ /FePO ₄	50	100 mL aqueous solution (0.35 M Na ₂ S/0.25 M Na ₂ SO ₃)	300W Xe lamp (λ ≥ 420 nm)	3.34	4.7 420 nm	/	[8]
Co ₃ O ₄ @ZnIn ₂ S ₄	100	275 mL aqueous solution (20 vol.% TEOA)	300 W Xe lamp (λ > 420 nm)	4.47	20.2 420 nm	/	[9]
ZnIn ₂ S ₄ /Cu ₂ MoS ₄	50	100 mL aqueous solution (0.35 M Na ₂ S/0.25 M Na ₂ SO ₃)	300 W Xe lamp (λ > 420 nm)	1.30	4.7 420 nm	/	[10]
ZnIn ₂ S ₄ /SnS ₂	50	100 mL aqueous solution (10 vol.% TEOA)	300 W Xe lamp (λ ≥ 420 nm)	1.13	9.8 420 nm	/	[11]
Fe-Ni ₂ P/ZnIn ₂ S ₄	5	50 mL aqueous solution (15 vol.% TEOA)	300 W Xe lamp (λ > 420 nm)	4.51	29.3 420 nm	/	[12]
Nb ₂ O ₅ /ZnIn ₂ S ₄	10	100 mL aqueous solution (10 vol.% TEOA)	300 W Xe lamp (λ > 400 nm)	5.40	3.3% 420 nm	/	[13]

ZnIn ₂ S ₄ /BiFeO ₃	50	$\begin{array}{c} 100 \text{ mL} \\ aqueous \\ solution \\ (0.35 \text{ M} \\ Na_2 \text{S}/0.25 \text{ M} \\ Na_2 \text{SO}_3 \end{array} \right)$	300 W Xe lamp (λ > 420 nm)	2.88	15.7 420 nm	/	[14]
ZnIn ₂ S ₄ /Mo ₂ TiC ₂	100	100 mL aqueous solution (10 vol.% TEOA)	300 W Xe lamp (λ > 420 nm)	3.12	8.6 420 nm	/	[15]

References

[1] H.D. Wen, W.N. Zhao, X.X. Han, Constructing $Co_3O_4/La_2Ti_2O_7$ p-n Heterojunction for the Enhancement of Photocatalytic Hydrogen Evolution, Nanomaterials 12(10) (2022) 12101695, http://dx.doi.org/10.3390/nano12101695.

[2] L. Mao, X.Y. Cai, M.S. Zhu, Hierarchically 1D CdS decorated on 2D perovskite-type La₂Ti₂O₇ nanosheet hybrids with enhanced photocatalytic performance, Rare Met. 40(5) (2021) 1067-1076, http://dx.doi.org/10.1007/s12598-020-01589-w.

[3] K. Wang, L.S. Jiang, X.Y. Wu, G.K. Zhang, Vacancy mediated Z-scheme charge transfer in a 2D/2D La₂Ti₂O₇/g-C₃N₄ nanojunction as a bifunctional photocatalyst for solar-to-energy conversion, J. Mater. Chem. A 8(26) (2020) 13241-13247, <u>http://dx.doi.org/10.1039/d0ta01310b</u>.

[4] E.B. Hua, S. Jin, X.R. Wang, S. Ni, G. Liu, X.X. Xu, Ultrathin 2D type-II p-n heterojunctions $La_2Ti_2O_7/In_2S_3$ with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination, Appl. Catal. B-Environ. 245 (2019) 733-742, http://dx.doi.org/10.1016/j.apcatb.2019.01.024.

[5] R. Boppella, C.H. Choi, J. Moon, D.H. Kim, Spatial charge separation on strongly coupled 2D-hybrid of rGO/La₂Ti₂O₇/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation, Appl. Catal. B-Environ. 239 (2018) 178-186, http://dx.doi.org/10.1016/j.apcatb.2018.07.063.

[6] L.G. Ma, C. Lin, W.J. Jiang, L. Xu, Y.J. Shao, T.Y. Zhu, T. Zhao, X.Q. Ai, X.S. Wu, In-situ constructing $ZnIn_2S_4@In(OH)_3@CdS$ heterostructure for efficient photocatalytic H₂ generation under visible light irradiation, Int. J. Hydrogen Energy 57 (2024) 290-300, http://dx.doi.org/10.1016/j.ijhydene.2024.01.007.

[7] P.F. Tan, M.Y. Zhang, L. Yang, R.F. Ren, H.H. Zhai, H.L. Liu, J.Y. Chen, J. Pan, Modulated band structure in 2D/2D ZnIn₂S₄/B-C₃N₄ S-scheme heterojunction for photocatalytic hydrogen evolution, Diamond Relat. Mater. 140 (2023) 110456, <u>http://dx.doi.org/10.1016/j.diamond.2023.110456</u>.

[8] S.K. Wang, D. Zhang, D.F. Zhang, X.P. Pu, J.C. Liu, H.S. Li, P.Q. Cai, A novel hydrangea-like $ZnIn_2S_4/FePO_4$ S-scheme heterojunction via internal electric field for boosted photocatalytic H₂ evolution, J. Alloys Compd. 967 (2023) 171862, http://dx.doi.org/10.1016/j.jallcom.2023.171862.

[9] S.Y. Zhang, G.X. Zhang, S.Z. Wu, Z.J. Guan, Q.Y. Li, J.J. Yang, Fabrication of Co₃O₄@ZnIn₂S₄ for photocatalytic hydrogen evolution: Insights into the synergistic mechanism of photothermal effect and heterojunction, J. Colloid Interface Sci. 650 (2023) 1974-1982, http://dx.doi.org/10.1016/j.jcis.2023.07.147.

[10] S.K. Wang, D.F. Zhang, P. Su, X.T. Yao, J.C. Liu, X.P. Pu, H.S. Li, P.Q. Cai, In-situ preparation of mossy tile-like $ZnIn_2S_4/Cu_2MoS_4$ S-scheme heterojunction for efficient photocatalytic H₂ evolution under visible light, J. Colloid Interface Sci. 650 (2023) 825-835, http://dx.doi.org/10.1016/j.jcis.2023.07.052.

[11] C.M. Zhang, J. Ma, H.B. Zhu, H.H. Ding, H.H. Wu, K.H. Zhang, X.L. Zhao, X.F. Wang, C.L. Cheng, Self-assembled ZnIn₂S₄/SnS₂ QDs S-scheme heterojunction for boosted photocatalytic hydrogen evolution: Energy band engineering and mechanism, J. Alloys Compd. 960 (2023) 170932, http://dx.doi.org/10.1016/j.jallcom.2023.170932.

[12] G.Q. Li, H.O. Liang, X.Y. Fan, X.L. Lv, X.W. Sun, H.G. Wang, J. Bai, Modulating and optimizing 2D/2D Fe-Ni₂P/ZnIn₂S₄ with S vacancy through surface engineering for efficient photocatalytic H₂ evolution, J. Mater. Chem. A 11(27) (2023) 14809-14818, <u>http://dx.doi.org/10.1039/d3ta02519e</u>.

[13] H. Su, H.M. Lou, D.J. Yang, D.W. Gao, Y.X. Pang, X.Q. Qiu, 0D/2D Nb₂O₅/ZnIn₂S₄

heterojunctions with enhanced utilization of light and separation of photogenerated carrier for efficient visible light photocatalytic performance, Appl. Surf. Sci. 629 (2023) 157455, http://dx.doi.org/10.1016/j.apsusc.2023.157455.

[14] D.F. Zhang, R.Q. Zhang, J.C. Liu, X.P. Pu, P.Q. Cai, 3D/2D ZnIn₂S₄/BiFeO₃ as S-scheme heterojunction photocatalyst for boosted visible-light hydrogen evolution, J. Am. Ceram. Soc. 106(8) (2023) 4785-4793, <u>http://dx.doi.org/10.1111/jace.19135</u>.

[15] Q. Xi, F.X. Xie, J.X. Liu, X.C. Zhang, J.C. Wang, Y.W. Wang, Y.F. Wang, H.F. Li, Z.B. Yu, Z.J. Sun, X. Jian, X.M. Gao, J. Ren, C.M. Fan, R. Li, In Situ Formation ZnIn₂S₄/Mo₂TiC₂ Schottky Junction for Accelerating Photocatalytic Hydrogen Evolution Kinetics: Manipulation of Local Coordination and Electronic Structure, Small 19(24) (2023) 2300717, <u>http://dx.doi.org/10.1002/smll.202300717</u>.