Supplementary material for the manuscript

Co(III) Complexes of the Pentadentate NHC ligand PY4Im: Carbene-Induced *Trans* Influences and the Non-Disappearing ¹³C NMR Peak.

Fouad Ismael, Cassandra L. Fleming, Timothy D. Christopher, Tilo Söhnel, Yuchen Zhou, Elizabeth H. Krenske, Lawrence R. Gahan* and Allan G. Blackman*

Figure S1: Structure of the [(PY4Im)Co(NCMe)] ³⁺ cation	Page 2
Figure S2: Structure of the $[(PY4Im)Co(N_3)]^{2+}$ cation	Page 3
Figure S3: Structure of the [(PY4Im)Co(NCS)] ²⁺ cation	Page 4
Figure S4: Structure of the cation [(PY4Im)Co(ONO)] ²⁺	Page 5
Table S1. Crystal and refinement data for the $[(PY4Im)Co(X)]^{n+}$ complexesI	Pages 6-7
Table S2: Computational data for [(Py4Im)Co(OH)] ²⁺	Page 8
Table S3: Computational data for [(Py4Im)Co(N ₃)] ²⁺	Page 10
Table S4: Computational data for [(Py4Im)Co(SCN)] ²⁺	Page 12
Table S5: Computational data for [(Py4Im)Co(ONO)] ²⁺	Page 14
Table S6: Computational data for [(Py4Im)Co(F)] ²⁺	Page 16
Table S7: Computational data for [(Py4Im)Co(OH ₂)] ³⁺	Page 18
Table S8: Computational data for [(Py4Im)Co(CO ₃)] ⁺	Page 20
Table S9: Computational data for [(Py4Im)Co(N ₃) ₃]	Page 22
Table S10: Calculated and experimental ¹³ C chemical shifts for [(Py4Im)Co(F)] ²⁺	Page 24
Table S11: Calculated and experimental ¹³ C chemical shifts for [(Py4Im)Co(OH)] ²⁺	Page 24
Table S12: Calculated and experimental ¹³ C chemical shifts for [(Py4Im)Co(OH ₂)] ³⁺	Page 24
Table S13: Calculated and experimental ¹³ C chemical shifts for [(Py4Im)Co(NCS)] ²⁻	⁺ Page 25
Table S14 : Calculated and experimental 13 C chemical shifts for $[(Py4Im)Co(N_3)]^{2+}$	Page 25
Figure S5: Selected molecular orbitals of [Co(PY4Im)Co(F)] ²⁺ and [Co(PY4Im)Co(F)] ²⁺	$N_3)]^{2+}$

Pages 26-37

Figure S6: ¹ H and ¹³ C spectra of $[Co(PY4Im)(X)]^{2+}$ complexes in D ₂ O	Page 38
Figure S7: ¹ H and ¹³ C spectra of [Co(PY4Im)(N ₃) ₃] in d ⁶ -DMSO	Page 39
Figure S8: ¹ H and ¹³ C spectra of [Co(PY4Im)(O ₂ CO)] ⁺ in d ⁷ -DMF	Page 40
Figure S9: Residual density plot for [(PY4Im)Co(NCS)](ClO ₄) _{1.5} (NCS) _{0.5} .2H ₂ O	Page 41
Figure S10: Residual density plot for [(PY4Im)Co(ONO)](ClO ₄) ₂ .1.5H ₂ O	Page 41
Figure S11 : Residual density plot for <i>fac</i> -[(PY4Im-κ ³ <i>N</i> , <i>N</i> ', <i>C</i>)Co(N ₃) ₃].(CH ₃) ₂ SO	Page 42

Figure S1. Structure of the $[(PY4Im)Co(NCMe)]^{3+}$ cation. The C-H hydrogen atoms have been removed for clarity. Bond lengths (Å) and angles (°): Co(2)-N(2) 1.951(3), Co(2)-N(5) 1.991(2), Co(2)-N4 1.999(2), Co(2)-C(6) 1.835(4); N(2)-Co(2)-N(5) 92.45(8), N(2)-Co(2)-N(4) 92.43(8), N(5)-Co(2)-N(5') 95.21(11), N(5)-Co(2)-N(4) 83.84(8), N(5)-Co(2)-N(4') 175.07(9), N(4)-Co2-N(4') 96.70(12), C(6)-Co(2)-N(2) 179.74(17), C(6)-Co(2)-N(5) 87.73(11), C(6)-Co(2)-N(4) 87.40(12).

Figure S2. Structure of the $[(PY4Im)Co(N_3)]^{2+}$ cation. The C-H hydrogen atoms have been removed for clarity. Bond lengths (Å) and angles (°): Co(1)-C(1) 1.862(2), Co(1)-N(7) 1.9708(18), Co(1)-N(3) 1.9812(18), Co(1)-N(5) 1.9899(18), Co(1)-N(6), 1.9968(17), Co(1)-N(4) 2.0164(18), N(8)-N(9) 1.155(3), N(8)-N(7) 1.210(3); C(1)-Co(1)-N(7) 177.68(8), C(1)-Co(1)-N(3) 87.53(8), N(7)-Co(1)-N(3) 90.16(7), C(1)-Co(1)-N(5) 86.44(8), N(7)-Co(1)-N(5) 93.84(8), N(3)-Co(1)-N(5) 96.77(7), C(1)-Co(1)-N(6) 88.05(8), N(7)-Co(1)-N(6) 94.27(7), N(3)-Co(1)-N(6) 175.48(7), N(5)-Co(1)-N(6) 83.89(7), C(1)-Co(1)-N(4) 87.34(8), N(7)-Co(1)-N(4) 92.37(8), N(3)-Co(1)-N(4) 82.70(7), N(5)-Co(1)-N(4) 173.77(7), N(6)-Co(1)-N(4) 96.16(7), N(9)-N(8)-N(7) 177.7(2), N(8)-N(7)-Co(1) 119.48(14).

Figure S3. Structure of the $[(PY4Im)Co(NCS)]^{2+}$ cation. The C-H hydrogen atoms have been removed for clarity. Bond lengths (Å) and angles (°): Co(1)-N1 1.981(2), Co(1)-N(4) 2.000(2), Co(1)-N(5) 1.994(2), Co(1)-N(6) 1.999(2), Co(1)-N(7) 1.931(2), Co(1)-C(9) 1.841(3); N(1)-Co(1)-N(4) 96.41(9), N(1)-Co(1)-N(5) 176.29(9), N(1)-Co(1)-N(6) 82.60(9), N(5)-Co(1)-N(4) 83.69(9), N(5)-Co(1)-N(6) 96.94(9) N(6)-Co(1)-N(4) 174.40(9), N(7)-Co(1)-N(1) 93.00(10), N(7)-Co(1)-N(4) 91.95(9), N(7)-Co(1)-N(5) 90.70(9), N(7)-Co(1)-N(6) 93.61(9), C(9)-Co(1)-N(1) 88.08(11), C(9)-Co(1)-N(4) 87.51(10), C(9)-Co(1)-N(5) 88.22(11), C(9)-Co(1)-N(6) 86.94(10), C(9)-Co(1)-N(7) 178.84(11) N(7)-C(21)-S(1) 178.1(3), C(21)-N(7)-Co(1) 170.6(2).

Figure S4. Structure of the [(PY4Im)Co(ONO)]²⁺ cation. The C-H hydrogen atoms have been removed for clarity. Bond lengths (Å) and angles (°): Co(1)-C(1) 1.8452(19), Co(1)-O(9) 1.9404(13), Co(1)-N(4) 1.9864(15), Co(1)-N(5) 1.9910(15), Co(1)-N(3) 1.9920(16), Co(1)-N(6) 2.0023(15), O(9)-N(7) 1.314(2), O(10)-N(7) 1.222(2); C(1)-Co(1)-O(9) 173.53(7); C(1)-Co(1)-N(4) 87.28(7), O(9)-Co(1)-N(4) 87.28(6), C(1)-Co(1)-N(5) 87.63(7), O(9)-Co(1)-N(5) 88.26(6), N(4)-Co(1)-N(5) 83.22(6), C(1)-Co(1)-N(3) 88.15(7), O(9)-Co(1)-N(3) 97.23(6), N(4)-Co(1)-N(3) 175.31(6), N(5)-Co(1)-N(3) 95.57(6), C(1)-Co(1)-N(6) 87.67(7), O(9)-Co(1)-N(6) 96.55(6), N(4)-Co(1)-N(6) 98.03(6), N(5)-Co(1)-N(6) 175.07(6), N(3)-Co(1)-N(6) 82.80(6), N(7)-O(9)-Co(1) 119.52(11), O(10)-N(7)-O(9) 113.16(15).

Table S1. Crystal and refinement data for the [(PY4Im)Co(X)]ⁿ⁺ complexes.

	[(PY4Im)Co(N ₃)](CIO ₄) ₂ .H ₂ O	[(PY4Im)Co(NCMe)](CIO ₄) ₃ .MeCN	[(PY4Im)Co(OH)](ClO ₄) ₂ .2.75H ₂ O	[(PY4Im)Co(NCS)](CIO ₄) _{1.5} (NCS) _{0.5} .2H ₂ O	[(PY4Im)Co(ONO)](ClO ₄) ₂ .1.5H ₂ O
Empirical formula	$C_{25}H_{22}CI_2CoN_9O_9$	C ₂₉ H ₂₆ CI ₃ CoN ₈ O ₁₂	C ₂₅ H _{26.5} Cl ₂ CoN ₆ O _{11.75}	$C_{26.50}H_{24}CI_{1.50}CoN_{7.50}O_8S_{1.50}$	C ₂₅ H ₂₃ Cl ₂ CoN ₇ O _{11.50}
Formula weight	722.34	843.86	728.85	735.73	735.33
Temperature / K	105(1)	105.4(8)	104(1)	104(2)	105.5(5)
Wavelength / Å	1.54184	1.54184	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Orthorhombic	Triclinic	Monoclinic	Triclinic
Space group	C2/c	Pnma	P-1	C2/c	P-1
a/Å	22.5235(3)	16.1590(3)	9.0704(2)	12.4803(2) Å	9.0838(2)
b/Å	12.12400(10)	17.8462(3)	12.1819(3)	24.2535(4) Å	12.5241(2)
c / Å	22.4083(3)	13.1978(2)	14.3572(3)	19.8778(3)	13.9453(2)
α/°	90	90	99.034(2)	90	97.658(2)
β/°	116.387(2)	90	105.917(2)	104.524(2)	108.587(2)
γ / °	90	90	107.125(2)	90	107.640(2)
Volume / ų	5481.60(14)	3805.94(11)	1408.29(6)	5824.55(17)	1385.87(5)
Z	8	4	2	8	2
Density (calc) / Mg m ⁻³	1.751	1.473	1.719	1.678	1.762
Absorp coeff / mm ⁻¹	7.361	6.072	7.208	7.464	7.338
F(000)	2944	1720	747	3008	750
Crystal size / mm³	0.5 x 0.4 x 0.3	0.14 x 0.12 x 0.12	0.1 x 0.1 x 0.05	0.18 x 0.15 x 0.12	0.15 x 0.05 x 0.04
Theta range	4.254 to 72.371°	4.166 to 72.452°	3.931 to 72.390°	3.645 to 67.725°	3.458 to 72.468°
Index ranges	-17<=h<=27	-19<=h<=19	-11<=h<=8	-14<=h<=11	-11<=h<=10
	-14<=k<=14	-22<=k<=21	-15<=k<=14	-29<=k<=26	-15<=k<=13
	-27<=l<=26	-11<=l<=16	-17<=l<=17	-21<=l<=23	-15<=l<=17
Reflections collected	20952	17639	17589	24073	18024
Independent reflections	5213 [R(int) = 0.0359]	3806 [R(int) = 0.0343]	5283 [R(int) = 0.0519]	5279 [R(int) = 0.0417]	5271 [R(int) = 0.0282]
Completeness to θ = 67.684° / %	99.3	99.9	98.1	99.8	99.8
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max and min transmission	1.00000 and 0.35920	1.00000 and 0.78181	1.00000 and 0.49502	1.00000 and 0.65298	1.00000 and 0.80828
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	5213 / 0 / 424	3806 / 0 / 248	5283 / 29 / 443	5279 / 81 / 439	5271 / 0 / 435
Goodness of fit on F ²	1.067	1.070	1.097	1.071	1.040
Final R indices [I>2sigma(I)]	R1 = 0.0375, wR2 = 0.1040	R1 = 0.0419, wR2 = 0.1161	R1 = 0.0474, wR2 = 0.1247	R1 = 0.0414, wR2 = 0.1047	R1 = 0.0289, wR2 = 0.0725
R indices (all data)	R1 = 0.0382, wR2 = 0.1046	R1 = 0.0497, wR2 = 0.1214	R1 = 0.0520, wR2 = 0.1271	R1 = 0.0429, wR2 = 0.1058	R1 = 0.0300, wR2 = 0.0731
Extinction coefficient	0.00024(3)	n/a	n/a	n/a	n/a
Largest diff. peak and hole	0.623 and -0.750 e.Å ⁻³	0.281 and -0.377 e.Å ⁻³	1.041 and -0.937 e.Å ⁻³	0.720 and -0.607 e.Å ⁻³	0.456 and -0.403 e.Å ⁻³

Complex cation	[(PY4Im)Co(F)](CIO ₄) ₂ .1.5H ₂ O	[(PY4Im)Co(O ₂ CO)](CIO ₄).2H ₂ O	[(PY4Im)Co(N ₃) ₃].DMSO
Empirical formula	C ₂₅ H ₂₃ Cl ₂ CoFN ₆ O _{9.50}	$C_{26}H_{24}CICoN_6O_9$	C ₂₇ H ₂₇ CoN ₁₅ OS
Formula weight	708.32	658.89	668.62
Temperature / K	120(1)	104.5(9)	120.0(4)
Wavelength / Å	1.54184	1.54184	1.54184
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a/Å	12.7950(2)	9.26770(10)	13.4885(5)
b / Å	14.1951(2)	12.22350(10)	15.3951(5)
c / Å	16.8217(2)	12.65450(10)	16.3964(4)
α/°	105.4160(12)	98.3430(10)	89.394(2)
β/°	98.6806(12)	110.8070(10)	66.838(3)
γ/°	107.2355(14)	92.9920(10)	71.033(3)
Volume / ų	2724.15(7)	1317.51(2)	2933.38(18)
Z	4	2	4
Density (calc) / Mg m ⁻³	1.727	1.661	1.514
Absorp coeff / mm ⁻¹	7.425	6.644	5.688
F(000)	1444	676	1380
Crystal size / mm ₃	0.25 x 0.15 x 0.10	0.16 x 0.080 x 0.080	0.15 x 0.04 x 0.04
Theta range	2.814 to 72.449°	3.678 to 72.479°	2.958 to 72.959°
Index ranges	-15<=h<=15	-11<=h<=11	-15<=h<=16
	-17<=k<=17	-15<=k<=14	-16<=k<=19
	-20<=l<=20	-15<= <=15	-20<=I<=20
Reflections collected	86489	16035	40399
Independent reflections	10434 [R(int) = 0.0354]	4733 [R(int) = 0.0287]	11274 [R(int) = 0.0756]
Completeness to θ = 67.684° / %	99.9	99.4	99.8
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents	Semi-empirical from equivalents
Max and min transmission	1.00000 and 0.65891	1.00000 and 0.78951	1.00000 and 0.74245
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data/restraints/parameters	10434 / 42 / 840	4733 / 0 / 405	11274 / 74 / 819
Goodness of fit on F ²	1.033	1.061	1.093
Final R indices {I>2sigma(I)]	R1 = 0.0342, wR2 = 0.0869	R1 = 0.0262, wR2 = 0.0685	R1 = 0.0734, wR2 = 0.1925
R indices (all data)	R1 = 0.0355, wR2 = 0.0876	R1 = 0.0274, wR2 = 0.0689	R1 = 0.0909, wR2 = 0.2049
Extinction coefficient	0.00022(4)	0.00059(14)	0.00056(15)
Largest diff. peak and hole	1.096 and -0.690 e.Å ⁻³	0.306 and -0.329 e.Å ⁻³	2.423 and -1.023 e.Å ⁻³

Computational Data

The Cartesian coordinates of the optimized structures are listed below, along with their computed energies Geometries listed below were computed with M06 functionals using Gaussian 16. Underneath each set of coordinates are reported the number of imaginary frequencies, the electronic potential energy (E) and the Gibbs free energy at 298.15 K and 1 mol/L (G). All energies are given in Hartree.

Table S2: [(Py4Im)Co(OH)]²⁺

Imaginary frequencies 0			
Е -1513.246168			
G 298.15 K, 1 atm -1512.87334			
Н	0.835848	-0.000132	-2.770265
Co	-0.000485	0.000014	-0.551880
Ν	1.489523	1.329295	-0.478917
0	-0.070013	-0.000164	-2.447297
Ν	1.105699	-0.000356	2.081435
Ν	-1.503498	1.303697	-0.456823
С	0.025271	0.000318	1.320356
Ν	1.489374	-1.329482	-0.478864
Ν	-1.028406	0.000061	2.116758
Ν	-1.503655	-1.303589	-0.456764
С	-1.667421	-2.241762	-1.391496
Η	-0.984327	-2.204954	-2.229170
С	1.591792	-2.323810	-1.365753
Η	0.856868	-2.350970	-2.157944
С	-0.617232	-0.000797	3.444652
Η	-1.315109	-0.000936	4.266504
С	-3.585899	3.118521	-0.284414
Η	-4.394382	3.836886	-0.206054
С	-2.413659	1.208759	0.534413
С	-2.688896	3.173219	-1.334053
Η	-2.772684	3.916776	-2.117158
С	-2.689211	-3.173047	-1.333938
Η	-2.773074	-3.916576	-2.117063
С	2.442215	1.213941	0.469584
С	3.482870	-2.113804	0.575814
Η	4.223158	-1.976346	1.355550
С	-2.413775	-1.208635	0.534507
С	-2.316947	0.000089	1.438994
Η	-3.123669	0.000186	2.173538
С	3.559408	3.168617	-0.320635
Η	4.364188	3.891850	-0.249925
С	2.442430	-1.213898	0.469235
С	-3.456496	-2.103722	0.653337

Η	-4.163291	-1.988994	1.467113
С	-1.667151	2.241884	-1.391562
Η	-0.984010	2.205028	-2.229194
С	1.591994	2.323693	-1.365734
Η	0.857499	2.350461	-2.158342
С	-3.456358	2.103892	0.653164
Η	-4.163221	1.989191	1.466883
С	2.603982	3.265072	-1.314146
Η	2.632599	4.051434	-2.058387
С	2.604240	-3.264739	-1.314806
Η	2.632739	-4.051061	-2.059095
С	3.560216	-3.167880	-0.321873
Η	4.365465	-3.890646	-0.251746
С	2.374817	-0.000121	1.365816
Η	3.201027	-0.000160	2.077975
С	-3.586142	-3.118339	-0.284242
Η	-4.394656	-3.836664	-0.205839
С	3.482156	2.114350	0.576833
Η	4.222133	1.977105	1.356904
С	0.738416	-0.001150	3.422073
Η	1.463154	-0.001820	4.220336

Table S3: [(Py4Im)Co(N₃)]²⁺

Im	aginary freq	uencies 0		
Е	E -1601.587679			
Gź	298.15 K, 1	atm -160	1.218281	
Co	-0.035835	-0.000352	-0.396443	
Ν	1.438363	-1.340788	-0.177370	
Ν	-1.545501	-1.315734	-0.436107	
Ν	1.151919	-0.002448	-2.902917	
Ν	-1.309297	0.000783	2.154272	
Ν	-1.545919	1.314700	-0.437247	
Ν	0.077937	-0.000114	-2.371755	
Ν	0.819548	0.001119	2.317768	
N	1.437796	1.341032	-0.178865	
C	1.621108	-2.353658	-1.032526	
Н	0.956739	-2 417900	-1 882209	
C	1 620415	2 352638	-1 035538	
н	0.956389	2.552050	-1 885655	
C	0.328511	0.002707	3 617649	
н	0.920511	0.002707	1 178108	
C	-1 623/32	-2 272380	-1 365020	
С U	-1.023432	-2.272380	-1.303029	
Γ	-0.800733	2 200760	-2.130900	
	-2.046130	-3.200709	-1.392049	
П	-2.034913	-3.930340	-2.108383	
	-3.044343	-3.12/309	-0.438/22	
Н	-4.459969	-3.8421//	-0.428910	
C	2.304688	-1.2131//	0.850122	
C	-2.54/493	-1.20988/	0.462256	
C	2.303905	1.215185	0.848982	
N	2.162388	-0.004447	-3.450219	
C	-3.601162	2.099554	0.490390	
Н	-4.380285	1.970744	1.233068	
С	-0.185992	0.000096	1.461936	
С	3.496592	-3.170727	0.187526	
Η	4.296362	-3.887322	0.336388	
С	-3.600925	-2.099781	0.491782	
Η	-4.380147	-1.970439	1.234257	
С	-2.648549	3.199131	-1.394956	
Η	-2.655410	3.954366	-2.171217	
С	2.151334	0.001374	1.731210	
Η	2.901188	0.002006	2.523087	
С	-3.644812	3.126647	-0.440810	
Η	-4.460136	3.841437	-0.431362	
С	-1.623932	2.270663	-1.366866	
Η	-0.867400	2.268910	-2.138958	
С	-2.547775	1.209594	0.461315	
С	3.494951	3.172473	0.184134	
Н	4.294265	3.889727	0.332289	
Ċ	-2.531642	0.000212	1.366595	
Н	-3.397718	0.000396	2.028136	

С	2.628948	-3.287349	-0.881165
Η	2.721250	-4.084675	-1.608134
С	2.627742	3.287046	-0.885142
Η	2.720025	4.083307	-1.613279
С	3.333564	2.108941	1.057970
Η	3.999522	1.959002	1.899708
С	-1.023137	0.002418	3.513874
Η	-1.795820	0.003093	4.265802
С	3.334936	-2.106055	1.059942
Η	4.001051	-1.954608	1.901289

Table S4: [(Py4Im)Co(SCN)] ²⁺		
Imaginary frequencie	es 0	
E	-1928.451077	
G 298.15 K, 1 atm	-1928.08628	

Co	0.013994	0.071195	0.165094
S	-0.915774	2.090866	4.313478
Ν	1.511420	1.301186	-0.338639
Ν	1.342156	-0.996658	-2.106478
Ν	-0.782279	-1.095896	-2.297366
Ν	-1.467836	1.169241	-0.621499
Ν	-1.466359	-1.233278	0.516863
Ν	1.517031	-1.096980	0.786905
Ν	-0.194083	0.886755	1.896802
С	1.555598	2.570743	0.078417
Η	0.774321	2.903935	0.746534
С	2.575901	3.433615	-0.276972
Η	2.554857	4.452503	0.088976
С	3.600923	2.968166	-1.077973
Η	4.412574	3.620890	-1.378732
С	3.588081	1.637715	-1.467985
Η	4.386719	1.210133	-2.062966
С	2.538243	0.833349	-1.077969
С	2.548658	-0.646017	-1.375941
Η	3.427903	-0.916209	-1.960718
С	1.088535	-1.581087	-3.340288
Η	1.879717	-1.891641	-4.003244
С	-0.259890	-1.643657	-3.461674
Η	-0.887981	-2.020248	-4.252686
С	0.201803	-0.716506	-1.503427
С	-2.127578	-0.860700	-1.799526
Η	-2.857416	-1.209073	-2.529717
С	-2.304212	0.612247	-1.521968
С	-3.335088	1.320518	-2.103422
Η	-3.977329	0.824031	-2.821596
С	-3.529860	2.645946	-1.746969
Η	-4.329801	3.223620	-2.195991
С	-2.700524	3.203678	-0.793247
Η	-2.826928	4.223806	-0.452757
С	-1.689005	2.434246	-0.248721
Η	-1.062403	2.844366	0.529740
С	-2.304069	-1.576341	-0.483493
С	-3.338368	-2.470542	-0.302414
Η	-3.980707	-2.710225	-1.142065
С	-3.535373	-3.030495	0.950466
Η	-4.337834	-3.740610	1.114856
С	-2.704805	-2.645978	1.985581
Η	-2.833119	-3.025133	2.991739
С	-1.689978	-1.741396	1.733408
Η	-1.062885	-1.396655	2.542725
11	-1.002885	-1.590055	2.542725

С	-0.501665	1.391554	2.911131
С	2.547344	-1.357793	-0.044449
С	3.604638	-2.161560	0.327655
Η	4.407041	-2.338887	-0.378901
С	3.619595	-2.712345	1.599995
Η	4.437169	-3.352428	1.911772
С	2.587786	-2.406917	2.466483
Η	2.566804	-2.779174	3.483081
С	1.561433	-1.590498	2.028468
Η	0.774759	-1.299387	2.709656

Table S5: [(Py4Im)Co(ONO)]²⁺

lm	aginary freq	uencies 0	
E	-1642.513005		
Gź	298.15 K, 1	atm -164	2.145771
Co	-0.020364	0.000321	-0.343703
0	-0.053116	0.000637	-2.291837
Ν	-1.528372	-1.311313	-0.338237
Ν	0.928617	-0.001367	2.334318
С	2.364460	1.212061	0.821019
С	0.479670	-0.003294	3.648804
Η	1.157118	-0.004367	4.487443
Ν	1.459423	1.341894	-0.171145
Ν	-1.204690	-0.000971	2.239558
С	-0.874405	-0.003082	3.588748
Η	-1.623118	-0.003992	4.364430
С	2.241354	-0.001173	1.707842
Н	3.016240	-0.001648	2.475707
С	3.540235	3.161087	0.107783
Н	4.349058	3.873718	0.223166
C	2.630568	3.280802	-0.924828
Н	2 697002	4 076763	-1 656119
C	-0 103946	-0.000081	1 511464
C	1 612860	2 351785	-1.034728
н	0.915392	2.331783	-1.856286
C	3 407223	2.420019	0.988314
с ц	<i>J</i> . 4 07223	1 0/5358	1 802508
Γ	2 151530	0.000636	1.002500
С U	2 206440	-0.000030	2 100005
	-3.290440	-0.000913	2.190093
U N	0.937303	0.005555	-4.1339//
IN NI	-1.328482	1.311019	-0.337282
IN N	1.439327	-1.341030	-0.1/2801
N	1.0/299/	0.003222	-2.934146
C	-3.558/35	-2.092418	0.644485
H	-4.313685	-1.966699	1.4120/9
C	2.364258	-1.213392	0.81964/
C	-2.502459	-1.20/633	0.5904/2
C	-1.640544	-2.25/34/	-1.2/4911
H	-0.905245	-2.261669	-2.066/64
C	1.612856	-2.350276	-1.037884
Н	0.915564	-2.418008	-1.859717
С	3.406820	-2.100948	0.985908
Η	4.105086	-1.948347	1.800428
С	-3.637646	3.109956	-0.292433
Η	-4.456410	3.820197	-0.263715
С	-2.672638	3.179136	-1.278265
Η	-2.708095	3.926779	-2.060903
С	-2.502419	1.207173	0.591522
С	2.630397	-3.279612	-0.929123
Н	2.696882	-4.074487	-1.661588

С	-3.637650	-3.109603	-0.295248
Η	-4.456427	-3.819855	-0.267229
С	-2.672449	-3.178029	-1.280944
Η	-2.707747	-3.925074	-2.064161
С	-1.640753	2.258418	-1.273158
Η	-0.905687	2.263242	-2.065220
С	-3.558619	2.091994	0.646449
Η	-4.313427	1.965719	1.414097
С	3.539829	-3.161605	0.103895
Η	4.348484	-3.874564	0.218438

Table S6: [(Py4Im)Co(F)]²⁺

Imaginary frequencies 0			
E -1537.291099			7.291099
G 298.15 K, 1 atm -1536.930015			
Co	0.000011	0.000083	-0.516992
F	-0.000043	-0.000158	-2.394448
Ν	-1.488418	-1.313816	-0.433772
Ν	1.488571	1.313959	-0.433845
Ν	1.490877	-1.299140	-0.470307
Ν	-1.068248	0.019221	2.111288
С	1.633207	-2.213352	-1.432404
Η	0.931680	-2.164829	-2.253628
Ν	-1.491086	1.299163	-0.470275
С	2.348373	-0.023320	1.416622
Η	3.164872	-0.033877	2.139654
Ν	1.068728	-0.018580	2.111109
С	1.617601	2.280862	-1.344943
Η	0.896462	2.296996	-2.149429
С	0.000172	0.000102	1.335319
С	-1.633781	2.213325	-1.432353
Н	-0.932303	2.165216	-2.253647
С	3.578654	-3.110289	-0.390266
Н	4.389559	-3.828933	-0.347709
C	2.425532	-1.221599	0.498100
Ċ	0.678140	-0.010221	3.444794
Н	1.389888	-0.020888	4.254513
C	-1 617871	-2 280352	-1 345195
н	-0.897086	-2 296069	-2 150019
C	2 645685	3 205534	-1 301922
н	2.619009	3 972485	-2 064767
C	2.077000	1 194388	0 522833
C	-2 425662	1 221381	0.498196
C	-2 347977	0.023284	1 416961
н	-3 164396	0.023204	2 140089
C	-3.10+370	2 116036	0 572529
н	-1 100383	2.110030	1 370522
C	0.677428	0.011203	3 /// 000
с u	1 280024	0.011295	J. 444 900
Γ	-1.389024	0.022320	4.234740
с u	-3.385005	-3.110+07	-0.292408
Γ	-4.400149	-3.828437	-0.22/444
C	-2.432130	-1.194307	0.323370
	3.484293	2.080499	0.024332
H C	4.21/4/3	1.944290	1.410953
	2.65/144	-3.143100	-1.419/59
П	2.124283	-3.80/0/3	-2.221913
U	-5.48541/	-2.080986	0.020304
H	-4.210182	-1.945169	1.41235/
C	5.4/2033	-2.116698	0.5/248/
Н	4.198942	-2.016840	1.3/044/

С	-3.579624	3.109509	-0.390289
Η	-4.390876	3.827763	-0.347807
С	-2.645823	-3.205158	-1.301921
Η	-2.699644	-3.971738	-2.065110
С	3.585552	3.116174	-0.293165
Η	4.400931	3.827985	-0.228445
С	-2.658090	3.142674	-1.419750
Η	-2.725462	3.867210	-2.221918

Table S7: [(Py4Im)(Imaginary frequencie	Co(OH ₂)] ³⁺ es 0
E	-1513.706242
G 298.15 K, 1 atm	-1513.320315

Co	-0.000311	-0.002243	-0.532162
0	-0.017012	-0.167078	-2.540492
Η	0.663808	0.300417	-3.041898
Η	-0.856958	0.019003	-2.981438
Ν	-1.064074	0.036554	2.085529
Ν	1.512672	-1.313551	-0.465440
Ν	-1.491203	-1.343937	-0.409928
Ν	1.073041	-0.003822	2.083132
Ν	-1.510920	1.313624	-0.474968
Ν	1.491609	1.345545	-0.427240
С	-2.438718	-1.200112	0.540883
С	2.443825	1.210083	0.520116
С	2.448157	-1.210285	0.500820
С	1.661484	-2.265345	-1.393605
Η	0.956091	-2.276787	-2.211675
С	2.359325	-0.008240	1.406142
Η	3.163953	-0.013114	2.142780
С	-0.671241	0.029908	3.417327
Η	-1.384803	0.042976	4.225413
С	-2.352430	0.028439	1.412490
Η	-3.154808	0.041847	2.151473
С	0.003696	0.014890	1.309896
С	2.623537	3.288559	-1.227613
Η	2.655353	4.087401	-1.958021
С	-3.486388	-2.085809	0.673752
Η	-4.218720	-1.923149	1.455800
С	3.502813	-2.092811	0.599408
Η	4.224642	-1.965589	1.397738
С	-2.690180	3.179894	-1.379279
Η	-2.753804	3.924548	-2.162912
С	-1.607514	-2.360684	-1.271339
Η	-0.877233	-2.428828	-2.064841
С	2.695084	-3.182957	-1.356386
Η	2.760239	-3.932884	-2.134934
С	-1.657908	2.261060	-1.408135
Η	-0.949498	2.275295	-2.224939
С	1.601232	2.360117	-1.292024
Η	0.865697	2.427296	-2.081048
С	-2.445319	1.219761	0.493104
С	-2.630934	-3.287220	-1.194429
Η	-2.668932	-4.089793	-1.920470
С	3.491152	2.098112	0.641656
Η	4.227202	1.941676	1.421511
С	-3.581007	-3.157965	-0.200273
Η	-4.393337	-3.870243	-0.110089

С	3.621662	-3.110767	-0.334532
Η	4.439313	-3.820074	-0.272910
С	0.683463	0.007616	3.415792
Η	1.398952	-0.001593	4.222231
С	3.580326	3.165021	-0.239175
Η	4.392907	3.878104	-0.158116
С	-3.498583	2.104936	0.585107
Η	-4.219358	1.985883	1.385682
С	-3.617152	3.115210	-0.356999
Η	-4.434383	3.825429	-0.300833

Table S8: [(Py4Im)Co(CO₃)]⁺

Imaginary frequenci	es 0
E	-1701.362433
G 298.15 K, 1 atm	-1700.991655

Co	-0.360954	0.156426	-0.566126
Ν	0.822039	0.106132	2.099806
Ν	-1.531638	-1.441463	-0.685325
С	0.907932	2.639143	-1.240235
Η	0.180660	2.532067	-2.033626
С	-2.328548	2.319182	-0.724305
Η	-1.632452	2.694681	-1.462558
С	0.443294	-0.148785	3.409170
Η	1.127445	-0.022487	4.233341
С	-0.180137	-0.163832	1.273911
0	1.087736	-0.798326	-1.353837
0	-0.314019	0.370236	-2.504918
Ν	0.944914	1.652224	-0.331550
С	0.778276	-0.347808	-2.555444
0	1.425701	-0.595261	-3.565433
С	1.764269	3.721434	-1.219656
Η	1.672844	4.483200	-1.984100
С	1.905953	1.695148	0.617511
С	-3.276184	-2.773434	0.253197
Η	-3.988820	-2.914554	1.057982
С	-2.436258	-1.678459	0.281231
С	2.715090	3.795690	-0.220359
Η	3.399686	4.634304	-0.158848
С	-2.245362	-3.425310	-1.792739
Η	-2.129659	-4.091200	-2.638936
С	-3.180836	-3.665179	-0.803224
Η	-3.826877	-4.534839	-0.848031
С	2.783165	2.764596	0.699644
Η	3.527883	2.769114	1.488539
С	-1.438177	-2.307117	-1.700987
Η	-0.703005	-2.110825	-2.469172
Ν	-1.206197	-0.552181	2.029095
Ν	-2.013028	1.176985	-0.107208
С	-2.879919	0.667412	0.787328
С	2.915294	-0.599477	1.029701
С	2.100894	0.559499	1.601048
Н	2.647653	0.964616	2.460213
C	-2.511375	-0.665003	1.391118
Н	-3.249037	-0.965985	2.135453
C	-4.383160	2.489214	0.470648
H	-5.308999	3.004214	0.701823
C	-0.848540	-0.545763	3.369559
H	-1.536641	-0.828826	4.149636
C	-4.068759	1.294220	1.099985
Н	-4.732510	0.839902	1.826812

С	-3.500051	3.004739	-0.460122
Η	-3.705116	3.926983	-0.989631
С	4.318475	-2.709027	0.048375
Η	4.837093	-3.582788	-0.329549
С	3.230149	-2.852065	0.890819
Η	2.895926	-3.843544	1.188140
С	4.722157	-1.425279	-0.286106
Η	5.576418	-1.263340	-0.935257
Ν	2.537460	-1.822901	1.382962
С	4.012868	-0.348073	0.215046
Η	4.300017	0.667056	-0.038475

Table S9: [(Py4Im)Co(N ₃) ₃]				
E	uginary neq		80 106221	
E G'	008 15 K 1	-19.	0.190221	
U 4	290.13 K, 1	auni -192	29.013113	
Co	1.195756	0.122541	0.680441	
Ν	0.631210	-0.434304	-2.010857	
Ν	-1.269992	-0.442001	-1.031800	
Ν	2.122319	1.445203	-0.466156	
Ν	2.488584	-1.236882	0.019957	
Ν	-0.445732	1.476169	2.363610	
Ν	-0.917318	1.460321	3.412627	
Ν	0.260040	-1.176380	1.798068	
Ν	2.306469	0.140782	3.243805	
Ν	2.191246	-0.287032	4.308768	
Ν	0.149246	-3.417693	1.107623	
Ν	2.475304	0.593346	2.153230	
Ν	-0.008244	1.546191	1.252867	
С	0.046243	-0.273655	-0.814975	
Ν	0.210119	-2.313418	1.420024	
С	3.117647	3.579305	-0.775541	
Η	3.354779	4.551415	-0.360398	
С	3.108371	-2.079497	0.853321	
Н	2.850151	-2.014331	1.904168	
С	-4.651745	-0.739137	-0.896623	
Η	-4.763881	0.275386	-1.265143	
С	3.152163	1.976332	-2.545903	
Η	3.412288	1.662654	-3.550510	
С	2.074634	-0.278692	-2.155735	
Η	2.336531	-0.433204	-3.203743	
С	2.782356	-1.283865	-1.287510	
С	2.466983	1.109761	-1.717077	
С	4.038789	-2.999722	0.408634	
Η	4.512523	-3.663202	1.121776	
С	-3.486879	-1.134704	-0.252177	
С	-2.321696	-0.187428	-0.042822	
Η	-1.881199	-0.436613	0.929273	
С	3.483583	3.234398	-2.065244	
Η	4.018418	3.937029	-2.694931	
С	2.436344	2.656754	-0.002236	
Н	2 130785	2 873109	1 014113	

Η	4.512523	-3.663202	1.121776
С	-3.486879	-1.134704	-0.252177
С	-2.321696	-0.187428	-0.042822
Η	-1.881199	-0.436613	0.929273
С	3.483583	3.234398	-2.065244
Η	4.018418	3.937029	-2.694931
С	2.436344	2.656754	-0.002236
Η	2.130785	2.873109	1.014113
С	-0.304174	-0.689002	-2.998153
Η	-0.025988	-0.848211	-4.027597
Ν	-3.304732	-2.372745	0.215221
С	-1.501264	-0.686181	-2.378991
Η	-2.494426	-0.837946	-2.771715
С	4.344873	-3.047118	-0.940752
Η	5.071155	-3.758151	-1.318812
С	3.706759	-2.170997	-1.804422
Η	3.912042	-2.166639	-2.868941

С	-5.485856	-2.952882	-0.586816
Η	-6.252793	-3.711797	-0.693651
С	-4.288383	-3.253435	0.044517
Η	-4.114859	-4.253208	0.436318
С	-5.667541	-1.667983	-1.067815
Η	-6.587243	-1.387577	-1.570775
Ν	-2.451394	2.031922	-1.076177
С	-2.728582	1.269919	-0.022827
С	-3.397055	1.741650	1.103349
Η	-3.601768	1.070814	1.933000
С	-3.762201	3.073806	1.147645
Η	-4.270855	3.477302	2.017332
С	-2.813629	3.316711	-1.020629
Η	-2.570910	3.923054	-1.890714
С	-3.459718	3.885529	0.062234
Η	-3.720169	4.937969	0.052658

Calculated shifts / ppm	Experimental shifts / ppm	delta / ppm
201.04	158.0 (indirect)	43.04
129.61	126.48	3.13
70.91	68.16	2.75
159.65	154.88	4.77
132.62	129.66	2.96
148.03	144.85	3.18
131.15	129.22	1.93
158.14	155.24	2.90

Table S10: Calculated and experimental ¹³C chemical shifts for [(Py4Im)Co(F)]²⁺

Table S11: Calculated and experimental ¹³C chemical shifts for [(Py4Im)Co(OH)]²⁺

Calculated shifts / ppm	Experimental shifts / ppm	delta
204.83	167.7 (indirect)	37.13
128.87	122.70	6.17
70.92	65.28	5.64
160.26	152.47	7.79
132.46	126.15	6.31
147.55	141.17	6.38
130.89	125.64	5.25
158.91	153.23	5.68

Table S12: Calculated and experimental ¹³C chemical shifts for [(Py4Im)Co(OH₂)]³⁺

Calculated shifts / ppm	Experimental shifts / ppm	delta
196.19	155.4	40.79
155.83	152.72	3.10
128.21	126.68	1.53
145.43	142.45	2.98
128.15	127.35	0.80
161.46	151.72	9.74
65.58	65.39	0.19
130.24	123.98	6.26

Calculated shifts / ppm	Experimental shifts / ppm	delta
198.73	158.9	39.83
129.83	126.90	2.93
71.03	65.46	5.57
159.12	151.66	7.46
133.23	129.66	3.57
148.52	141.84	6.68
131.72	126.90	4.82
159.86	154.35	5.51

Table S13: Calculated and experimental ¹³C chemical shifts for [(Py4Im)Co(NCS)]²⁺

Table S14: Calculated and experimental ¹³C chemical shifts for [(Py4Im)Co(N₃)]²⁺

Calculated shifts / ppm	Experimental shifts / ppm	delta
202.8	163.02	39.78
128.86	126.08	2.78
64.98	68.41	3.43
161.56	155.03	6.53
128.15	129.82	1.67
144.99	144.67	0.32
129.2	129.54	0.34
157.72	156.79	0.93

Figure S5: Selected molecular orbitals of [Co(PY4Im)Co(F)]²⁺ and [Co(PY4Im)Co(N₃)]²⁺

Fluorido complex Mayer bond order: C-0.879-Co-0.545-F

HOMO; Carbene C 14.9%, Co 14.2%, and F 3.30%

LUMO; Carbene 0.0160%, Co 61.5%, and F 0.00004%

HOMO-7; π orbital between carbene 4.09% and Co 29.44% with an antibonding orbital between Co and F (26.8%)

HOMO-13; mostly a bonding π orbital between Co (5.45%) and F (20.4%), Carbene (0.588%)

HOMO-14; very weak π bonding between Co (8.40%) and F (3.87%) and little on the carbene (0.243%)

HOMO-16; significant π bonding Co (36.6%) and F (35.8%) and little on the carbene (0.449%)

HOMO-17; significant π bonding Co (39.1%) and F (29.8%) with tiny bonding orbital between Co and C (1.51%)

HOMO-23; σ bonding between Co (4.90%) and F (4.39%) with carbene (0.276%)

HOMO-24; strong σ bonding between Co (31.1%) and carbene (16.8%) with F (27.4%)

Azido complexMayer bond order: C -0.836-Co-0.566-N(azide)HOMO; Co (8.22%), N (azide donor) (45.7%), carbene (0.351%)

LUMO; Co (62.4%), N (azide donor) (0.00109%), carbene (0.00228%)

HOMO-1; Co (6.46%), N ((azide N) 49.0%), carbene (5.55%); Co-N σ bond.

HOMO-2; Co (3.79%), N ((azide N) 2.34%), carbene (16.5%); very weak Co-N π bond.

HOMO-12; Co (33.9%), N ((azide N) 1.91%), carbene (0.172%); weak Co-N π bond.

HOMO-16; Co (32.1%), N (azide N) 0.514%), carbene (2.75%); an extended π bond from the carbene C to the Co over the adjacent N donors from the ligand itself.

HOMO-18; Co (27.3%), N (azide donor) (6.06%) and carbene (19.9%); a strong Co-C σ bond.

HOMO-24; Co (2.07%), N (azide donor) (1.88%) and carbene (4.78%); a weak N-Co-C σ bond.

HOMO-25; Co (6.43%), N (azide donor) (9.29%) and carbene (3.12%); a banana σ bond over N-Co-C.

HOMO-37; Co (10.4%), N (azide donor) (3.01%) and carbene (0.761%); a weak N-Co σ bond.

HOMO-43; Co (3.54%), N (azide donor) (23.4%) and carbene (0.572%); a N-Co σ bond.

HOMO-46; Co (5.23%), N (azide donor) (15.7%) and carbene (0.361%); a N-Co σ bond.

HOMO-49; Co (7.91%), N (azide donor) (16.3%) and carbene (1.25%); a N-Co-C σ bond.

Figure S6: ¹H and ¹³C spectra of [Co(PY4Im)(X)]²⁺ complexes in D₂O

[(Py4) Co(NCS)]2+

[(Py4) Co(Cl)]2+

[(Py4) Co(N3)]2+

[(Py4) Co(F)]2+

Figure S7: ¹H and ¹³C spectra of [Co(PY4Im)(N₃)₃] in d⁶-DMSO

Figure S8: ¹H and ¹³C spectra of [Co(PY4Im)(O₂CO)]⁺ in d⁷-DMF

Figure S9: Residual density plot for [(PY4Im)Co(NCS)](ClO₄)_{1.5}(NCS)_{0.5}.2H₂O

Figure S10: Residual density plot for [(PY4Im)Co(ONO)](ClO₄)₂.1.5H₂O

Figure S11: Residual density plot for *fac*-[(PY4Im-κ³N,N',C)Co(N₃)₃].(CH₃)₂SO

