Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Phosphate Selective Binding and Sensing by Halogen
Bonding Tripodal Cu(ll) Metallo-receptors in Aqueous
Media.

Hena Bagha, Robert Hein, Jason Y. C. Lim, William K. Myers, Mark R.
Sambrook and Paul D. Beer*

Email: paul.beer@chem.ox.ac.uk

Contents

S1. General CONSIAEIAtIONS ......uuuuiiiieeeiiiieiiiie e
S2.  Experimental ProCeAUIES.......cciiii it
S3. Characterisation Data ............ccoviieeiiiiiiiiiiiiie e 15
S4.  Isothermal Titration Calorimetry (ITC) Studies and Data ..................... 38
S5, UV-VIS EXPEIMENLS ...uuuicieiii e e e e e e e e e 41
S6.  EPR EXPEIMENTS.. .o 44
S7. Electrochemical Anion Sensing Studi€s ..........ccoovvvviviiiiieeeeiiie e, 45
S8,  REIEIENCES......iiiiii i 51

S1


mailto:paul.beer@chem.ox.ac.uk

S1. General Considerations

S1.1 Solvents and Reagents

All solvents and reagents were purchased from commercial suppliers and used without further
purification. Dry solvents were obtained by passing through a MBraun MPSP-800 column,
degassed with nitrogen and used immediately. Water was de-ionized and micro filtered using
a Milli-Q® Millipore machine. All tetrabutylammonium (TBA) salts as well as [Cu(MeCN)4][PFe],
and Cu(OTf), were stored in a vacuum desiccator at room temperature with P>Os desiccant
prior to use. Triethylamine was distilled from and stored over KOH pellets. Thin layer
chromatography (TLC) analysis was performed using Merck® aluminium-backed DC 60 F254
0.2 mm silica precoated plates, with spots visualised under UV light (254 nm) and/ or staining
with basified agueous KMnO4 solution followed by gentle heating. Column chromatography
was undertaken on Merck®silica gel 60 under a positive pressure of nitrogen. Preparative TLC
was performed using Analtech glass-backed pre-coated plates (20 x 20 cm, 0.1 cm silica
thickness). Where mixtures of solvents were used, ratios are reported by volume. Any
literature procedures used to prepare known compounds are referenced in the text.
Tris(benzyltriazolemethyl)amine (TBTA) was synthesised as described! and stored under

ambient conditions.

S1.2 Instrumentation

'H and *C NMR spectra were recorded using Bruker Avance Ill 400 HD nanobay NMR
spectrometers (Hg400 or Venus400) each equipped with a 9.4 T magnet, or a Bruker Avance
Il 500 machine (AVD500) equipped with a 11.75 T magnet (and cryoprobe) at T = 298 K.
Chemical shifts are quoted in parts per million (ppm) relative to the residual solvent peak. Low
and high resolution ESI mass spectra were recorded on a Waters LCT premier spectrometer
and a Bruker uTOF spectrometer respectively. All pH measurements of solutions of
complexes in aqueous and aqueous-organic media were performed using a Hanna® pH meter.
Isothermal titration calorimetry experiments were performed on a Microcal PEAQ-ITC
automated system. EPR spectra were recorded using a Bruker EMXmicro continuous wave
(CW) spectrometer (X-band) at T = 85 K. UV-vis spectra were recorded on a T60U (PG
Instruments Ltd) spectrophotometer at T = 293 K, using a Hellma quartz cuvette with path

length of 1 cm.
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S2. Experimental Procedures

Tris(TEG)-appended HB Cu(ll) tripod, 1H-20Tf

N\ J 20Tf "~

To tripodal ligand 6H (205 mg, 0.2 mmol) in a 1:1 mixture of CH,Cl,/MeOH (6 mL) was added
copper(ll) trifluoromethansulfonate (72.3 mg, 0.2 mmol) and the solution stirred at room
temperature under a N2 atmosphere for 3 hours. Removal of the solvent in vacuo afforded
metallo-tripodal receptor 1H-20Tf as a deep blue oil, which solidified to a dark blue crystalline
residue upon drying under high vacuum (274 mg, quantitative). UV-vis (CH3;CN/ H20 6:4 vlv,
10 mM HEPES, Amax/ nm, (¢/ M cm™)): 639 (125), 760 (98); EPR (CHzCN/ H20 6:4 v/v, 10
mM HEPES, 85 K): gll = 2.225, g1 = 2.065, All= 182.0 x 10* cm™*; HR-MS (ESI +ve) m/z:
562.24714 ([M — 20Tf]?*, Cs1H7sN13012%°Cu calc. 562.24716).

Tris(TEG)-appended XB Cu(ll) tripod, 11-20Tf

To tripodal ligand 61 (199 mg, 0.139 mmol) in a 1:1 mixture of CH>Cl,/MeOH (6 mL) was added
copper(ll) trifluoromethansulfonate (50.3 mg, 0.139 mmol) and the solution stirred at room
temperature under a N, atmosphere for 3 hours. Removal of the solvent in vacuo afforded
metallo-tripodal receptor 11-20Tf as a deep blue oil, which solidified to a dark blue crystalline
residue upon drying under high vacuum (248 mg, quantitative). UV-vis (CH3CN/ H20 6:4 v/v,
10 mM HEPES, Amnad nm, (¢/ Mt cm™)): 647 (117), 775 (91); EPR (CHsCN/ H2O 6:4 viv, 10
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mM HEPES, 85 K): gll = 2.225, g1 = 2.065, All = 183.0 x 10* cm’; HR-MS (ESI +ve) m/z:
751.09167 ([M — 20Tf]?*, Cs1H72N130121:83Cu calc. 751.09212).

(6-(azidomethyl)pyridine-2-yl)methanol, 22

This literature compound was prepared using modified synthetic procedures: to a solution of
1(1.58 g, 7.82 mmol) in dry, degassed DMF (40 mL) was added NaN3 (1.02 g, 15.6 mmol)
and the reaction stirred under a N, atmosphere at 80 °C overnight. Thereafter, azeotropic
removal of the solvent in vacuo with toluene produced a dark yellow residue which was
redissolved in ethyl acetate (20 mL). The resultant precipitate was removed via filtration
through a pad of celite and the celite thoroughly washed with ethyl acetate. Removal of the
solvent in vacuo afforded the target compound 2 in excellent purity as a deep yellow oil which
was dried in vacuo at less than 7 mbar for 2 days (1.13 g, 88 % yield). *H NMR (400 MHz,
CDCl3) 6 (ppm): 7.73 (1H, t, J = 8.0 Hz, pyridine ArH), 7.26 (1H, d, 3J = 8.0 Hz, pyridine ArH),
7.22 (1H, d, 3J = 8.0 Hz, pyridine ArH), 4.78 (2H, s, pyridine CHy), 4.49 (2H, s, pyridine CH,),
3.70 (1H, br. s, CH,-OH); 3C NMR (125 MHz, CDCls) & (ppm): 159.4, 154.5, 137.5, 120.3,
119.6, 63.8, 54.9; LR-MS (ESI +ve) m/z: 165.1 ([M+H]*, CHsN4O calc. 165.1)

2,5,8,11-tetraoxatetradec-13-yne, 33

/o/\/o\/\o/\/o\

To a stirring solution of triethylene glycol monomethyl ether (2.0 g, 12.2 mmol) in dry degassed
THF (3 mL) at 0 °C, was added a suspension of potassium tert-butoxide (1.56 g, 13.9 mmol)
in 25 mL THF. Separately 1.82 mL of propargyl bromide (24.2 mmol) was dissolved in THF
(50 mL) and then added dropwise to the solution. The reaction mixture was stirred at room
temperature under a N, atmosphere for 24 h. Thereafter, ethyl acetate (200 mL) was added
and the organics washed with brine (3 x 75 mL). The separated organic layer was dried over
MgSO4 and filtered. Removal of the solvent in vacuo afforded 12 in good purity as a pale
yellow oil (1.69 g, 69 %). 'H NMR (500 MHz, CDCls) & (ppm): 4.21 (2H, d, 4J = 2.4 Hz,
CH2C=C), 3.55 - 3.71 (12H, m, TEG alkyl-CH.), 3.38 (3H, s, TEG alkyl-CHs), 2.43 (1H, t, *J =
2.4 Hz, C=CH); 3C NMR (125 MHz, CDCls) & (ppm): 79.6, 74.4, 71.9, 70.6, 70.5, 70.4, 69.0,
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59.0, 58.3, one peak missing, presumed overlapped; HR-MS (ESI +ve) m/z: 203.12779 (M +
H]*, C10H1004calc. 203.12779).

TEG-appended HB ‘hydroxy-arm’ precursor, 4H

/
s~ o~
AN N:N OIO
| '\(\\/
HO = N/
N
H

To a solution of (6-(azidomethyl)pyridine-2-yl)methanol 2 (350 mg, 2.13 mmol) and TEG
alkyne 3 (431 mg, 2.13 mmol) in dry degassed THF (5 mL) was added [Cu(MeCN)4][PFs] (397
mg, 1.07 mmol) and diisopropylethylamine (DIPEA) (0.18 mL, 1.07 mmol) and the mixture
stirred at room temperature under a N, atmosphere for 2 days. The reaction mixture was
diluted with CH2Cl> (25 mL) and washed with NH4OHaq) (3 X 20 mL), brine (2 x 20 mL) and
dried over MgSO.. After removal of the solvent in vacuo, purification by silica gel column
chromatography (gradient from pure CH2Cl,to 4 % MeOH in CH2Cl,) afforded 4H as a pale
yellow oil (312 mg, 40 %). *H NMR (500 MHz, CDCls) & (ppm): 7.73 (1H, s, triazole CH), 7.69
(1H, t, 33 = 7.7 Hz, pyridine ArH), 7.24 (1H, d, J = 7.8 Hz, pyridine ArH), 7.09 (1H, d,3J=7.6
Hz, pyridine ArH), 5.66 (2H, s, CH-N triazole), 4.77 (2H, d, 3J = 5.2 Hz, CH,OH), 4.70 (2H, s,
CH>-C triazole), 3.53-3.71 (13H, m, TEG alkyl-CH, + OH), 3.36 (3H, s, TEG alkyl-CHz); *C
NMR (125 MHz, CDCls) & (ppm): 159.9, 153.2, 145.3, 137.8, 123.2, 120.6, 120.0, 71.6, 70.3,
70.3, 70.3, 70.2, 69.5, 64.4, 64.0, 58.7, 55.1; HR-MS (ESI +ve) m/z: 367.19698 ([M + HJ*,
Ci17H270sN4 calc. 367.19760).

TEG-appended XB ‘hydroxy-arm’ precursor, 4l

(6-(azidomethyl)pyridine-2-yl)methanol 2 (272 mg, 1.66 mmol) was dissolved in a 1:1 mixture
of dry, degassed THF/CH3sCN (5 mL) and the reaction vessel covered in foil. Sodium iodide

(995 mg, 6.64 mmol) and copper(ll) perchlorate hexahydrate (1.23 g, 3.32 mmol) were added
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and the solution stirred for 5 minutes. Further added were TBTA (17.6 mg, 0.033 mmol), DBU
(252 mg, 1.66 mmol, in 0.5 mL 1:1 THF/CH3CN) and TEG alkyne 3 (335 mg, 1.66 mmol, in
0.5 ml 1:1 THF/CHsCN) and the mixture stirred at room temperature under a N, atmosphere
overnight. The reaction mixture was diluted with CH.Cl, (25 mL) and washed with NHsOHag)
(3 x 20 mL), brine (2 x 20 mL) and dried over MgSOa. After removal of the solvent in vacuo,
purification by silica gel column chromatography (gradient from pure CH2Cl;to 3 % MeOH in
CH,CIl,) afforded 4l as a pale orange oil which solidified to an off-white solid upon standing
overnight (522 mg, 64 %). *H NMR (500 MHz, CDCls) & (ppm): 7.68 (1H, t, 3J = 7.8 Hz, pyridine
ArH), 7.20 (1H, d, 2J = 7.6 Hz, pyridine ArH), 6.93 (1H, d, 3J = 7.6 Hz, pyridine ArH), 5.75 (2H,
s, CH2-N iodotriazole), 4.75 (2H, d, 3J = 5.0 Hz, CH,OH), 4.66 (2H, s, CH-C iodotriazole),
3.54-3.71 (13H, m, TEG alkyl-CH, + OH), 3.37 (3H, s, TEG alkyl-CHs); **C NMR (125 MHz,
CDCls) & (ppm): 159.2, 152.9, 148.9, 137.8, 120.2, 119.9, 81.4, 71.9, 70.6, 70.5, 70.4, 69.7,
64.3, 63.8, 59.0, 55.2; one peak missing, presumed overlapped; HR-MS (ESI +ve) m/z:
493.09458 ([M + H]*, C17H260sNul calc. 493.09424).

TEG-appended HB ‘chloro-arm’ precursor, 5H

N

To a solution of 4H (974 mg, 2.66 mmol) in dry CH.Cl; (20 ml) at 0 °C, was slowly added
SOCl; (0.29 ml, 3.99 mmol) and the reaction stirred at room temperature under a N
atmosphere for 6 hrs. The stirring mixture was carefully quenched and neutralised by the slow
addition of a saturated Na>COs@nq Solution at O °C resulting in vigorous gas evolution.
Thereatfter, the biphasic mixture was further diluted with CH,Cl, (25 ml) and washed with H>O
(2 x 25 ml). The organic layer was dried over MgSO4 and the solvent removed in vacuo.
Purification using silica gel column chromatography (gradient from pure CH,Cl>to 3 % MeOH
in CH,Cl,) afforded the chloro-arm 5H as a clear, light orange oil (879 mg, 86 %). *H NMR
(500 MHz, CDClIs) d (ppm): 7.74 (1H, s, triazole CH), 7.72 (1H, t, 3J = 7.78 Hz, pyridine ArH),
7.45 (1H, d, 33 = 7.78 Hz, pyridine ArH), 7.11 (1H, d, 3J = 7.76 Hz, pyridine ArH), 5.65 (2H, s,
CH>-N triazole), 4.70 (2H, s, CH»-C triazole), 4.66 (2H, s, CH.Cl), 3.53-3.71 (12H, m, TEG
alkyl-CHy), 3.37 (3H, s, TEG alkyl-CHs); ¥*C NMR (125 MHz, CDClz) & (ppm): 156.7, 154.1,
145.6, 138.3, 123.2, 122.3, 121.4, 71.8, 70.5, 70.4, 70.4, 70.4, 69.6, 64.6, 58.9, 55.2, 46.2;
HR-MS (ESI +ve) m/z: 385.16367 ([M + H]*, C17H26N404Cl calc. 385.16371).
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TEG-appended XB ‘chloro-arm’ precursor, 5I

To a solution of 41 (1.42 g, 2.88 mmol) in dry CH2Cl. (25 ml) at 0 °C, was slowly added SOClI;
(0.32 ml, 4.32 mmol) and the reaction stirred at room temperature under a N> atmosphere for
6 hrs. The stirring mixture was carefully quenched and neutralised by the slow addition of a
saturated Na,COsq Solution at 0 °C resulting in vigorous gas evolution. Thereafter, the
biphasic mixture was further diluted with CH2Cl> (25 ml) and washed with H,O (2 x 25 ml). The
organic layer was dried over MgSO4 and the solvent removed in vacuo. Purification using silica
gel column chromatography (gradient from pure CH,Cl;to 3 % MeOH in CH.Cl,) afforded the
chloro-arm 5l as a clear, amber oil (1.19 g, 81 %). *H NMR (500 MHz, CDCls) & (ppm): 7.70
(1H, t, 3] = 7.8 Hz, pyridine ArH), 7.44 (1H, d, 3J = 7.8 Hz, pyridine ArH), 6.85 (1H, d, 3J = 7.8
Hz, pyridine ArH), 5.74 (2H, s, CH»>-N iodotriazole), 4.67 (2H, s, CH»-C iodotriazole), 4.66 (2H,
s, CH.CI), 3.55-3.71 (12H, m, TEG alkyl-CH,), 3.38 (3H, s, TEG alkyl-CHs); *C NMR (125
MHz, CDCls) & (ppm): 156.6, 153.8, 148.9, 138.2, 122.1, 120.6, 81.4, 71.9, 70.5, 70.5, 70.4,
69.7, 64.2, 59.0, 55.3, 46.3, one peak missing, presumed overlapped; HR-MS (ESI +ve) m/z:
533.04289 ([M + NaJ*, C17H24N4O4ClINa calc. 533.04230).

Tris(TEG)-appended HB tripodal ligand, 6H

o) o} ‘\/0
N ~ b
v a

H
o‘N N
\lNN/
N/

To a solution of 5H (825 mg, 2.14 mmol) fully dissolved in dry CH3CN (30 mL) was added
NH4OAc (3.30 g, 42.8 mmol), Na,COs (4.54 g, 42.8 mmol) and KI (356 mg, 2.14 mmol) as
solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred for

two days at room temperature after which no evidence of 5H was observed by TLC or ESI-
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MS analyses. Thereafter, the creamy off-white suspension was directly transferred to a
separating funnel and ca. 20 ml H2O very gently pipetted into the vessel. The cloudy, lower
aqueous layer was separated, and the remaining clear pale yellow organic layer concentrated
in vacuo. The resultant crude residue was redissolved in CHCI; (50 mL) and washed with
water (2 x 20 mL) and the organics dried over MgSO.. Solvent removal and purification by
preparative thin layer chromatography (5 % MeOH in CHCIs) afforded the tripodal ligand 6H
as a deep yellow oil (501 mg, 66 % yield). *H NMR (500 MHz, CDCls) & (ppm): 7.73 (3H, s,
triazole CH), 7.64 (3H, t, 3J = 7.7 Hz, pyridine ArH), 7.46 (3H, d, 3J = 7.6 Hz, pyridine ArH),
7.01 (38H, d, 3J = 7.6 Hz, pyridine ArH), 5.62 (6H, s, CHx-N triazole), 4.68 (6H, s, CH,-C
triazole), 3.86 (6H, s, CH2-N tertiary amine), 3.53-3.70 (36 H, m, TEG alkyl-CHy), 3.36 (9H, s,
TEG alkyl-CHs); *C NMR (125 MHz, CDCls) d (ppm): 159.4, 153.8, 145.5, 137.7, 123.2, 122.4,
120.5, 71.9, 70.5, 70.5, 70.4, 69.7, 64.6, 59.9, 59.0, 55.5, one peak missing, presumed
overlapped. HR-MS (ESI +ve) m/z: 1062.5746 ([M + H]*, Cs1H76N13012 calc.1062.5736).

Tris(TEG)-appended XB tripodal ligand, 6l

O
z&
zZ o

(O]
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\ N

To a solution of 51 (882 mg, 1.73 mmol) fully dissolved in dry CH3CN (30 mL) was added
NH4OAc (2.67 g, 34.6 mmol), Na,COs (3.67 g, 34.6 mmol) and KI (287 mg, 1.73 mmol) as
solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred for
two days at room temperature after which no evidence of 51 was observed by TLC or ESI-MS
analyses. Thereafter, the creamy off-white suspension was directly transferred to a separating
funnel and ca. 20 ml H2O very gently pipetted into the vessel. The cloudy, lower aqueous layer
was separated, and the remaining clear, light yellow organic layer concentrated in vacuo. The
resultant crude residue was redissolved in CHCI3z (50 mL) and washed with water (2 x 20 mL)
and the organics dried over MgSOa. Solvent removal and purification by preparative thin layer
chromatography (6 % MeOH in CH»Cl,) afforded the tripodal ligand 61 as a dark yellow oil (497
mg, 60 % yield). *H NMR (500 MHz, CDCls) d (ppm): 7.63 (3H, t, 3 = 7.7 Hz, pyridine ArH),
7.43 (3H, d, 3J = 7.6 Hz, pyridine ArH), 6.79 (3H, d, 3J = 7.0 Hz, pyridine ArH), 5.72 (6H, s,
CH2-N iodotriazole), 4.64 (6H, s, CH,-C iodotriazole), 3.84 (6H, s, CH»-N tertiary amine), 3.53—
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3.68 (36H, m, TEG alkyl-CHs), 3.37 (9H, s, TEG-alkyl CHs); 3C NMR (125 MHz, CDCls) &
(ppm): 159.4, 153.4, 148.8, 137.6, 122.4, 119.7, 81.5, 71.9, 70.6, 70.5, 70.4, 69.7, 64.3, 59.6,
59.0, 55.5, one peak missing, presumed overlapped; HR-MS (ESI +ve) m/z: 1440.2665 ([M +
H]*, Cs1H73N13012l5 calc. 1440.2635).

Succinimidyl-3-propiolate, 74

This literature compound was prepared according to modified procedures. To a stirring
solution of propiolic acid (0.5 mL, 8 mmol) in dry acetonitrile (50 mL) at 0 °C was added N-
hydroxysuccinimide (0.92 g, 8 mmol). Separately, dicyclohexylcarbodiimide (DCC) (1.65 g, 8
mmol) was added portion wise to the reaction mixture, which was kept stirring for 8 hours at 4
°C under Na. After filtration of the white precipitate under gravity, removal of the solvent in
vacuo gave the activated ester 7 in excellent purity as a pale yellow oil, which solidified to a
crystalline solid upon standing for 1 — 2 hours at room temperature (909 mg, 68 %). (N.B. due
to the unstable nature of the compound, the obtained solid was stored in a vial at -20 °C until
further used). *H NMR (500 MHz, CDCls) 6 (ppm): 3.34 (1H, s, C=CH), 2.86 (4H, s, COCHy,);
13C NMR (125 MHz, CDCls) & (ppm): 168.2, 147.7, 82.1, 70.1, 25.5; LR-MS (ESI +ve) m/z: not

observed.
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N.B. For all of the B-cyclodextrin precursor compounds leading up to the synthesis of the key
permethylated B-cyclodextrin (pmBCD) alkyne 9° (see Scheme 2, main paper), all mono-
functionalisation procedures were carried out at the 6- position on the narrow rim of the
truncated cone as shown in Figure S1. Therefore, this numbering system is also used for the
assignment of the relevant *H NMR signals in the following characterisation data of the novel
pmBCD compounds 10 — 12| leading to the synthesis of the tris(pmBCD)-appended XB tripod
131-20Tf.

(A) (B) Wide rim:

secondary alcohols

(2 and 3) \ .

14(Ho

oH),

™~

Narrow rim:
primary alcohols (6)

Figure S1. (A) Numbering scheme for the glucopyranose units of the B-CD cone and (B)
distribution of the primary and secondary alcohol moieties on its narrow and wide rims,
respectively.

It should be further noted that by convention, in a mono-substituted 3-CD derivative, the
functionalised glucopyranose unit is denoted A, with the remaining units labelled B-G. 6*-
substituted therefore means that Carbon 6 of glucopyranose unit A is functionalised.

6*-amido-pmBCD alkyne, 9

To a solution of succinimidyl-3-propiolate 74 (82.3 mg, 0.494 mmol) and permethylated (-
cyclodextrin amine 8° (500 mg, 0.353 mmol) in dry CH.Cl, was added 4-dimethylaminopyridine
(DMAP) (10 mg, 0.08 mmol). The mixture was left to stir at room temperature under a N>
atmosphere overnight, after which no evidence of the permethylated (3-cyclodextrin amine was

observed by TLC or ESI-MS. After removal of the solvent in vacuo, purification by silica gel
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column chromatography (4 % MeOH in EtOAc) afforded 9 as a crystalline white solid (362 mg,
70 %). 'H NMR (500 MHz, CDCl3) d (ppm): 6.74 (1H, t, 3J = 5.9 Hz, amide NH), 5.08-5.18
(7H, m, B-CD Ha), 3.17-4.08 (102H, m, B-CD Ha6 + CH30), 2.84 (1H, s, C=CH); *C NMR (125
MHz, CDCls) & (ppm): 152.2, B-CD signals consistent with loss of C7 symmetry: (99.2—98.6;
B-CD C,), 82.1-81.3, 80.6-79.8, 77.7, 73.0, 71.5-70.1, 61.6-61.2, 59.5-58.3; HR-MS (ESI
+ve) m/z: 1488.67853 ([M + Na]*, CesH111NOssNa calc. 1488.68288).

6*-amido-pmBCD-appended XB ‘hydroxy-arm’ precursor, 10l

(6-(azidomethyl)pyridine-2-yl)methanol 2 (41 mg, 0.25 mmol) was dissolved in a 1:1 mixture
of dry, degassed THF/CH3CN (2 mL) and the reaction vessel covered in foil. Sodium iodide
(149 mg, 1.00 mmol) and copper(ll) perchlorate hexahydrate (185 mg, 0.5 mmol) were added
and the solution stirred for 5 minutes. Further added were DBU (37.3 uL, 0.25 mmol) and
pmBCD alkyne 9 (366 mg, 0.25 mmol) and the mixture stirred at room temperature under a N
atmosphere overnight. The reaction mixture was diluted with CHCIs (25 mL) and washed with
NH4OHg) (3 x 20 mL), brine (2 x 20 mL) and dried over MgSO,. After removal of the solvent
in vacuo, purification by silica gel column chromatography (gradient from pure CHCIls;to 3 %
MeOH in CHCIs) afforded the arm precursor 10l as a crystalline off-white solid (232 mg, 53
%). 'H NMR (500 MHz, CDCls) & (ppm): 7.70 (1H, t, 3J = 7.8 Hz, pyridine ArH), 7.47 (1H, t, 3J
= 5.8 Hz, amide NH), 7.23 (1H, d, 3J = 7.8 Hz, pyridine ArH), 6.93 (1H, d, 3J = 7.6 Hz, pyridine
ArH), 5.79 (2H, ABquart., Adas = 0.04, 2Jas = 15.5 Hz, CH,-N iodotriazole), 5.12-5.23 (7H, m,
B-CD Hi), 4.74 (2H, d, 3J = 4.9 Hz, CH,OH), 3.18-3.99 (103H, m, B-CD Ha.s + CH30 + OH);
13C NMR (125 MHz, CDCls) & (ppm): 159.6, 159.4, 152.4, 143.3, 137.9, 120.2, B-CD signals
consistent with loss of C7 symmetry: (99.2-98.5; 3-CD C,), 82.1-81.4, 80.4-79.9, 71.5-70.9,
70.1, 63.8, 61.6— 61.3, 59.2-58.3, 55.1, 39.9; HR-MS (ESI +ve) m/z: 1778.64524 ([M + Na]",
C72H118036NsINa calc. 1778.64934).
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6”-amido-pmBCD-appended XB ‘chloro-arm’ precursor, 111

Cl

To a solution of 101 (1.04 g, 0.59 mmol) in dry CH2ClI, (25 ml) at 0 °C, was slowly added SOCI,
(0.13 ml, 1.77 mmol) and the reaction stirred at rt under a N> atmosphere for 6 hrs. The stirring
mixture was carefully quenched and neutralised by the slow addition of a saturated Na>CO3(aq)
solution at 0 °C resulting in vigorous gas evolution. Thereafter, the biphasic mixture was further
diluted with CHCI; (25 ml) and washed with H>O (2 x 25 ml). The organic layer was dried over
MgSO, and solvent removal in vacuo gave the chloro-arm 111 as a cream-coloured powder in
good purity which was used without further purification (809 mg, 77 %). *H NMR (500 MHz,
CDCl3) & (ppm): 7.72 (1H, t, 3J = 7.8 Hz, pyridine ArH), 7.45-7.49 (2H, m, pyridine ArH + amide
NH), 6.87 (1H, d, 3J = 7.8 Hz, pyridine ArH), 5.78 (2H, ABquart., Adas = 0.05, 2Jas = 16.0 Hz,
CHa-N iodotriazole), 5.12-5.23 (7H, m, 3-CD Ha), 4.64 (2H, s, CHCl), 3.18-4.01 (102H, m, -
CD Haz. + CH30); *C NMR (125 MHz, CDCl3) d (ppm): 159.4, 157.0, 153.3, 143.3, 138.2,
122.3, 120.5, B-CD signals consistent with loss of C7 symmetry: (99.2-98.6; B-CD C.), 82.2—
81.7, 81.4, 80.4-80.0, 71.5 — 70.9, 70.1, 61.6 — 61.3, 59.2 — 58.3, 55.2, 46.2, 39.9; HR-MS
(ESI +ve) m/z: 1796.61119 ([M + Na]*, C72H117035NsClINa calc. 1796.61545).
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Tris(6”-amido-pmBCD)-appended XB tripodal ligand, 12l

To a solution of 111 (423 mg, 0.238 mmol) fully dissolved in dry CH3;CN (20 mL) was added
NH4OAc (550 mg, 7.14 mmol), Na,COs (757 mg, 7.14 mmol) and KI (39.5 mg, 0.238 mmol)
as solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred
for two days at room temperature after which no evidence of 111 was observed by TLC or ESI-
MS analyses. Thereafter, the creamy white suspension was directly transferred to a separating
funnel and ca. 5-10 ml H,O very gently pipetted into the vessel. The cloudy, lower aqueous
layer was separated, and the remaining clear pale yellow organic layer concentrated in vacuo.
The resultant crude residue was redissolved in CHCI; (25 mL) and washed with brine (2 x 10
mL) and the organics dried over MgSO.. Solvent removal and purification by preparative thin
layer chromatography (6 % MeOH in CH2Cl,) afforded the tripodal ligand 121 as a crystalline
off-white solid upon drying in vacuo (216 mg, 52 % yield). *H NMR (500 MHz, CDCls) & (ppm):
7.66 (3H, t, 3J = 7.7 Hz, pyridine ArH), 7.46-7.49 (6H, m, pyridine ArH + amide NH), 6.73 (3H,
d, 3 = 7.8 Hz, pyridine ArH), 5.77 (6H, ABquart., Adas = 0.05, 2Jag = 16.1 Hz, CHx-N
iodotriazole), 5.13-5.23 (21H, m, B-CD Hs), 3.17-3.97 (312H, m, B-CD H..s + CH3O + CH>-N
tertiary amine); *C NMR (125 MHz, CDCls) & (ppm): 159.5, 153.1, 143.3, 137.7, 122.3, 119.5,
B-CD signals consistent with loss of C7 symmetry: (99.0-98.6; B-CD C,), 82.3-81.2, 80.4—
79.9, 71.5-70.0, 61.5-61.4, 59.7-58.4, 55.5, 39.8; HR-MS (ESI +ve) m/z: 2627.98525 ([M +
H + Na]**, Cz16H3520105N16l5Na calc. 2627.98919).
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Tris(pmBCD)-appended XB Cu(ll) tripod, 131-20Tf

20Tf

To tripodal ligand 121 (100 mg, 0.02 mmol) in a 1:1 mixture of CH.Cl,/MeOH (6 mL) was added
copper(ll) trifluoromethansulfonate (7.23 mg, 0.02 mmol) and the solution stirred at room
temperature under a N, atmosphere for 3 hours. After removal of the solvent in vacuo, the
resultant deep blue residue was triturated with ice cold Et>O (ca. 5 mL). The ethereal layer
was carefully decanted with a pipette and the contents of the flask dried under high vacuum
to afford metallo-tripodal receptor 131-20Tf as a fine, pale blue crystalline powder (106 mag,
quantitative). UV-vis (CHsCN/ H20 6:4 v/v, 10 mM HEPES, Amax/ Nm, (¢/ M cm™)): 645 (182),
770 (119); EPR (CHsCN/ H,0 6:4 viv, 10 mM HEPES, 105 K): gll = 2.225, gL = 2.065, All; =
185.0 x 10* cm?, All, = 220.0 x 10* cm*; HR-MS (ESI +ve) m/z: 2647.46450 (M — 20Tf]*,
Ca216H351N16010513%3Cu calc. 2647.45519).

Tetrabutylammonium salt of pinacolyl methylphosphonic acid, TBA PMP

To a chilled solution of 1.0 eqv of a methanolic solution of tetrabutylammonium (TBA)
hydroxide at 0 °C directly was added 1.0 eqgv of neutral pinacolyl methylphoshonic acid over
5 minutes. The resulting reaction mixture was allowed to warm to room temperature and stirred
for 3 hours. The appropriate TBA pinacolyl methyl phosphonate salt was obtained by removal
of the solvent in vacuo and leaving the salt to dry under high vacuum for at least 5 days. The
resultant salt was obtained a white powder and stored in a vacuum desiccator with P;0s

desiccant at room temperature.
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S3. Characterisation Data

S3.1  !H, 3C NMR and HR-MS of all novel compounds

2,5,8,11-tetraoxatetradec-13-yne, 3

I
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Figure S2. *H NMR of alkyne 3 in CDCls (500 MHz, T = 298 K).
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Figure S3. 3C NMR of alkyne 3 in CDCls (125 MHz, T = 298 K).
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Figure S4. High-resolution mass spectrum of alkyne 3.
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Figure S5. *H NMR of precursor 4H in CDCl; (500 MHz, T = 298 K).
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Figure S6. 3C NMR of precursor 4H in CDCl; (125 MHz, T = 298 K).
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Figure S7. High-resolution mass spectrum of precursor 4H.
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TEG-appended XB ‘hydroxy-arm’ precursor, 4l
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Figure S8. *H NMR of precursor 4l in CDCl; (500 MHz, T = 298 K).
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Figure S9. 13C NMR of precursor 41 in CDCl; (125 MHz, T = 298 K).
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Figure S10. High-resolution mass spectrum of precursor 4l.
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Figure S11. 'H NMR of precursor 5H in CDCl; (500 MHz, T = 298 K).
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Figure S12. ¥C NMR of precursor 5H in CDCl; (125 MHz, T = 298 K).

NL: 1.14E8
100 38516367 ESIGE203 #13-28 RT. 0.14-0.3AV. 8 NL
d 1.37E+008
g0 T:FTMS (1,1} +p ESI Full ms
4 [80.00-1600.001
80—
g 70
g
g o Measured
3
3 o Spectrum
® 40|
£ 4 387.16085
30+
204
10‘ 381.13652
4 37913956 | 350 14100 (8816421 306.14833
-ttt
385 390 395
miz
100- 385.16371 NL:6.14E5
d CATH2604N4CI1: Cis Hae O N CI Chrg 1
90 R: 1000000 Res. Pwr. @FWHM
80
704
Z ool Theoretical
2
2 ol Spectrum
o
2
5 40
4 B 38716076
30
20+
10+ 388.16411
380 385 390 395
mz

Figure S13. High-resolution mass spectrum of precursor 5H.
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TEG-appended XB ‘chloro-arm’ precursor, 5I
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Figure S14. 'H NMR of precursor 51 in CDCl; (500 MHz, T = 298 K).
-l
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

Chemical Shift (ppm)

Figure S15. ¥C NMR of precursor 5l in CDCl; (125 MHz, T = 298 K).
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Figure S16. High-resolution mass spectrum of precursor 5I.
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Figure S17. *H NMR of ligand 6H in CDCls (500 MHz, T = 298 K).
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Figure S18. 13C NMR of ligand 6H in CDCl; (125 MHz, T = 298 K).
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Figure S19. High-resolution mass spectrum of ligand 6H.
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Figure S20. *H NMR of ligand 61 in CDCls (500 MHz, T = 298 K).

IO 0GR DRSO X AU W

T T T T T T T T T T T T T T T T T T
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

Figure S21. 3C NMR of ligand 61 in CDCls (125 MHz, T = 298 K).
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Figure S22. High-resolution mass spectrum of ligand 6.
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Figure S23. 'H NMR of precursor 7 in CDClz (500 MHz, T = 298 K).
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Figure S24. *C NMR of precursor 7 in CDClz (125 MHz, T = 298 K).
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Figure S25. 'H NMR of alkyne 9 in CDCl; (500 MHz, T = 298 K).
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Figure S26. 13C NMR of alkyne 9 in CDCl; (125 MHz, T = 298 K).
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Figure S27. High-resolution mass spectrum of alkyne 9.
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CDClj4 H,0
o ) 1)1 WM A
7.5 7.0 6.5 6.0 55 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

Chemical Shift (ppm)

Figure S28. 'H NMR of precursor 10l in CDCl; (500 MHz, T = 298 K).
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Figure S29. ¥C NMR of precursor 101 in CDCl; (125 MHz, T = 298 K).
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Figure S30. High-resolution mass spectrum of precursor 10I.
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Figure S31. 'H NMR of precursor 111 in CDCl; (500 MHz, T = 298 K).
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Figure S32. *C NMR of precursor 111 in CDCl; (125 MHz, T = 298 K).
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Figure S33. High-resolution mass spectrum of precursor 111.
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Tris(pmBCD)-appended XB tripodal ligand, 12I
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Figure S34. *H NMR of ligand 121 in CDCls (500 MHz, T = 298 K).
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Figure S35. 3C NMR of ligand 121 in CDCls (125 MHz, T = 298 K).
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Figure S36. High-resolution mass spectrum of ligand 12I.
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S3.2 Further comparative *H NMR spectra of tripodal XB ligand formation
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Figure S37. Stacked 'H NMR spectra of (A) XB trimer 6l and (B) synthon 5! in CDCl; (500
MHz, T = 298 K). See Scheme 1 of the main paper for proton assignment.
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Figure S38. Stacked 'H NMR spectra of (A) XB trimer 12l and (B) synthon 111 in CDCl; (500
MHz, T = 298 K). See Scheme 2 of the main paper for proton assignment. (The methylene He
protons of both compounds are diastereotopic and hence appear as an AB quartet signal).
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S3.3

Tripodal XB Cu(ll) receptor, 11-20Tf
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Figure S39. (left) UV-vis spectrum of 11-20Tf in CH3CN/ H>O 6:4 v/v, 10 mM HEPES ([host]
=2 mM, T = 293 K): peak absorption wavelengths Aabsmax (¢/ Mt cm™) at 647 nm (117) and
775 nm (91) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T
=85K): gl =2.225 and g1 = 2.056 (All = 183.0 x 10 cm™).
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Figure S40. High-resolution mass spectrum of receptor 11-20Tf.
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Tripodal HB Cu(ll)-receptor, 1H-20Tf
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Figure S41. (left) UV-vis spectrum of 1H-20Tf in CH3sCN/ H.O 6:4 v/v, 10 mM HEPES ([host]
=2 mM, T = 293 K): peak absorption wavelengths Aasmax (6/ M cm™) at 639 nm (125) and
760 nm (98) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T
=85K): gl =2.285 and g1 = 2.055 (All = 180.0 x 104 cm™).
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Figure S42. High-resolution mass spectrum of receptor 1H-20TT.

S36



Tripodal XB Cu(ll) receptor, 131-20Tf
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Figure S43. (left) UV-vis spectrum of 13I-20Tf in CH3CN/ H20 6:4 v/v, 10 mM HEPES (2 mM,
T = 293 K): peak absorption wavelengths Aapsmax (6/ Mt cm™) at 645 nm (182) and 770 nm
(119) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T = 85
K): gll = 2.225 and gL = 2.065 (All; = 185.0 x 10* cm?, All,=220.0 x 10* cm™).

N.B. the asterisk denotes a smaller, secondary component of the EPR spectral signature, which is
suggestive of a minority receptor species where there is a subtle difference in the coordination geometry
of the Cu(ll) center compared to that discussed in the main paper — possibly, a consequence of the

nature of the sterically bulky pmBCD-appendages which affect the metal’s coordination sphere in frozen
solution.
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Figure S44. High-resolution mass spectrum of receptor 131-20Tf.
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S4. Isothermal Titration Calorimetry (ITC) Studies and Data

S4.1 General comments and titration protocols

All isothermal titration calorimetry experiments were performed on a Microcal PEAQ-ITC

automated system, utilising unbuffered distilled water at T = 298 K.

M?* titration protocol for 61 and 13l

An initial concentration of the XB tripodal ligand of 0.5 mM was used, with a 4 mM solution of
CuOTf, added in 35 aliquots. The data from the first addition of 0.5 pL was discarded, with
data collected for the subsequent 34 additions of 1 uL. Heats of dilution were measured by a
preliminary titration of individual solutions of the respective metal salt into unbuffered water.
Values of Ky and AH were calculated using the MicroCal PEAQ-ITC Analysis Software, via a
non-linear least squares regression fit of the experimental data to the one-set-of-sites model.

These values were then used to determine the AG and AS values.
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S4.2 ITC Data
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Figure S45. (top) Raw ITC data for the sequential addition of CuOTf; to 61 (unbuffered water,
T = 298 K); (bottom) integrated heat plot obtained from titration.
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Figure S46. (top) Raw ITC data for the sequential addition of CuOTf, to 121 (unbuffered water,
T = 298 K); (bottom) integrated heat plot obtained from titration.
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S5.  UV-vis Experiments

S5.1 General information and titration protocol

All UV-vis spectroscopy titrations were performed on a T60U (PG Instruments Ltd)
spectrophotometer and the data processed using the OriginPro 2015 software package. In
each case, titrations were performed in the stated solvent systems at T = 293 K, using a
standard 1 mL Hellma quartz cuvette with path length of 1 cm

M?* titration protocol for 61 with Cu(ll) in CH:CN

A 0.75 mL initial volume of the host was used at a concentration of 2 mM. A 15 mM solution
of the cationic Cu(ll) guest was prepared by dissolving copper triflate salt in a solution
containing the same concentration of the host (i.e. 2 mM). Aliquots of the Cu(ll) solution were
added to the UV-vis cuvette, the samples thoroughly mixed using a syringe needle and the
absorption spectra recorded at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6,
1.8 and 2.0 equivalents of cation (0.1 eq = 10 pL). The absorbances for each addition, at a
chosen wavelength (640 nm), were used to calculate the delta absorbances relative to the first
absorbance reading. These values were then plotted versus the equivalents of the added
Cu(ll) guest for each aliquot, to obtain a qualitative isotherm which affirmed the expected 1:1

stoichiometry of ligand to metal binding.

Anion titration protocol for 11-20Tf, 1H-20Tf and 131-20Tf in CHsCN/ H,O 6:4 v/v (at pH 6.3
with 10 mM HEPES)

In a typical titration experiment, a 0.75 mL initial volume of the host was used at a
concentration of 2 mM, with 600 mM solutions of anion guests. Specifically, each of the anion
solutions were prepared by dissolving the tetrabutylammonium salt of the desired anion in a
solution containing the same concentration of the host (i.e. 2 mM), to ensure that the total host
concentration remained constant throughout the titration - thus any absorption changes could
be reasonably attributed to anion complexation and not dilution effects upon anion addition.
Aliquots of anion solutions (1.0 eq = 2.5 pL) were added to the UV-vis cuvette, the samples
thoroughly mixed using a syringe needle and the changes in the absorption spectra recorded
from O equivalents to up to 100 equivalents of anion, with at least 15 data sets collected, until
saturation of the binding curve was seen. After each aliquot addition, the spectra were
recorded at least twice till consistent spectra were obtained. Association constants were
calculated from the UV-vis titration data by non-linear global fitting analysis to a host-guest 1:1
or 1:2 stoichiometric binding model (as appropriate) using the Bindfit” software, monitoring the

change in absorbance in the range 800—-850 nm.
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N.B. The interaction of Cu(ll) with the zwitterionic HEPES buffer has previously been shown
to be negligible® and hence the observed changes in the UV-vis titration spectra were

attributed to arise invariably from the interactions of the guest anions with the respective Cu(ll)-

host.

S5.2 UV-vis titration data and isotherms

(A) XB Cu(ll)-Tripod 11-20Tf
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Figure S47. UV-vis titration spectra of (A) 11-20Tf and (B) 1H-20Tf in the presence of up to
120 equivalents of various anions ([host] = 2 mM, CH3CN/H.O 6:4 buffered with 10 mM

HEPES at pH 6.3, T = 293 K).
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Figure S48. Plots of change in absorbance of 11-20Tf at 810 nm against equivalents of anion
added ([host] = 2 mM, CH3;CN/H20 6:4 buffered with 10 mM HEPES at pH 6.3, T = 293 K).
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Figure S49. Plots of change in absorbance of 1H-20Tf at 810 nm against equivalents of anion
added ([host] = 2 mM, CH3;CN/H20 6:4 buffered with 10 mM HEPES at pH 6.3, T = 293 K).
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S6. EPR Experiments

S6.1 General information and titration protocol

All EPR spectroscopy titrations were performed on a Bruker EMXmicro continuous wave (CW)
spectrometer (X-band) and the data processed using the OriginPro 2015 software package.
In each case, titrations were performed in the stated solvent system at T = 293 K and the EPR
spectra recorded at T = 85 K.

Anion titration protocol for 11-20Tf and 1H-20Tf in CH3CN/ H.O 6:4 v/v (at pH 6.3 with 10 mM
HEPES)

In a typical titration experiment, a 0.75 mL initial volume of the host was used at a
concentration of 2 mM, with 600 mM solutions of anion guests. Specifically, each of the anion
solutions were prepared by dissolving the tetrabutylammonium salt of the desired anion in a
solution containing the same concentration of the host (i.e. 2 mM), to ensure that the total host
concentration remained constant throughout the titration - thus any spectral intensity changes
could be reasonably attributed to anion complexation and not dilution effects upon anion
addition. Aliquots of anion solutions (1.0 eq = 2.5 pL) were added to a solution of the host in
a cuvette, the sample thoroughly mixed using a syringe needle and 100 uL of this host-guest
solution taken for the EPR measurement. The sample solution in the EPR tube was then
recombined with the rest of the solution in the cuvette, and the procedure repeated with the
next addition of anion equivalents (up to 100 equivalents). At least 15 data sets of the changes
in the EPR spectra were recorded, until saturation of the binding curve was seen. Anion
association constants were calculated from the EPR titration data by non-linear global fitting
analysis to a host-guest 1:2 stoichiometric binding model using the Bindfit" software,
monitoring the change in spectral signature intensity in the range 280-290 mT for both XB/HB

receptors.
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S7. Electrochemical Anion Sensing Studies

S7.1 General comments and titration protocols

All Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave
voltammetry (SWV) voltammetric measurements were performed using an Autolab
Potentiostat/Galvanostat model PG-STAT 12 (Metrohm Autolab, Netherlands), using a
standard single compartment three-electrode electrochemical cell placed inside a Faraday
cage and the data processed using the OriginPro 2015 software package. In each case,

titrations were performed in the stated solvent systems at T = 293 K.

Titration protocol for 11-20Tf and 1H-20Tf in CHsCN

The same three-electrode cell was used with the same working and counter electrodes as
stated above except using a Ag/ AgCl (3.4 M KCI) leak-free reference electrode (Innovative
Instruments) in a 0.1 M TBACIO4 supporting electrolyte solution. All experiments were
conducted in Argon purged solutions under an Argon blanket. The working electrode was
polished with alumina slurry (0.05 um) before each experiment. (In order to circumvent the
development of junction potentials of the latter reference electrode in the presence of various
ions a Ag/ AgCl reference electrode with a Pt wire frit was utilized for titration experiments).
Prior to performing redox titration experiments, the redox reversibility of each receptor was
first studied by recording successive CV scans at scan rates of 25, 50, 75, 100, 200, 400, 600
and 800 mV s. After establishing receptor redox quasi-reversibility and reproducibility of each
receptor’'s Cu'/Cu" E12 value, electrochemical SWV titrations were carried out using a 0.9 mL
initial volume of the host at a concentration of 0.5 mM and the measurements recorded with 1
s equilibration time, utilising a frequency of 25 Hz, an amplitude of 20 mV and a step potential
of 2 mV. A 100 mM solution of TBA Br was added in aliquots, the samples thoroughly mixed
by mechanical agitation and the voltammograms recorded at 0, 1.0, 2.0, 10.0, 20.0, 35.0, 60.0
and 100.0 equivalents of anion (1.0 eq = 4.5 uL). The delta Ei» values were recorded and
plotted against the concentration of anion. The resulting binding isotherms were curve fit as
described by Schollhorn.®

Electrochemical reversibility studies of 11-20Tf and 1H-20Tf in water were also performed
by recording CV scans (at the same scan rates as above) and a SWV voltammogram (using
the same parameters as above). The same three-electrode cell was used as above, with the
same working, counter and reference electrodes instead in a 0.05 M KPF¢ supporting

electrolyte solution. A host solution of 0.25 mM was used for all measurements.
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S7.2 Criteria for reversibility

For a reversible electrochemical system displaying fast electron transfer kinetics, the following

criteria needs to be met:

e Epaand E,c independent of scan rate

o ool le=1

o AE;, = (Epa — Epc) = (59/n) mV, where n is the number of electrons transferred during
the redox process. Therefore, for a one-electron transfer process, the difference = 59
mV.

e Ipa and lpc varies proportionally to the square root of the scan rate.

For all of the following receptors described herein, Epa and E,c were almost independent of
scan rate at lower rates. With a few exceptions, lpa / Ipc are typically in the range of 0.90 — 1.10
and AE, show notable variations from 60 mV to 260 mV. In all cases, lpa and I, vary almost
proportionally with the square root of the scan rate (Pearsons’s R? > 0.94). Thus the redox-

active hosts generally showed ‘quasi-reversible’ electrochemical behaviour.
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S7.3 Electrochemical Reversibility Studies
XB Cu(l)-tripod, 11-20Tf

Studies performed in 0.1 M TBACIO, in anhydrous CH3;CN.

Current/ pA

Potential/ V

Figure S50. CV’s of 11-20Tf at different scan rates ([host] = 0.5 mM, T = 293 K).

Table S1. Values of Epc, Epa, Ipc, lpa, AE and lpa/ Ipc for 11-20Tf at different scan rates.

Scan rate/ Epa/ V Ep/ V lpa/ A loc/ A AEy/ V lpallpc
mV s?
25 0.381 0.268 3.119 3.284 0.113 0.949
50 0.391 0.266 4.143 4.372 0.125 0.948
75 0.393 0.261 4,764 5.173 0.132 0.921
100 0.395 0.256 5.219 5.683 0.139 0.918
200 0.403 0.246 6.839 7.441 0.157 0.919
400 0.422 0.232 8.808 9.957 0.19 0.885
600 0.439 0.222 9.947 11.297 0.217 0.880
800 0.481 0.219 10.084 12.149 0.262 0.830
1. 2 < 8
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Figure S51. Plots of (left) lpa and (right) lpc against (scan rate)Y? for 11-20Tf.
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HB Cu(ll)-tripod, 1H-20Tf

Studies performed in 0.1 M TBACIO, in anhydrous CH3CN.
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Figure S52. CV’s of 1H-20Tf at different scan rates ([host] = 0.5 mM, T = 293 K).

Table S2. Values of Epc, Epa, lpc, lpa, AE and lpa/ Ipc for 1H-20TT at different scan rates.

Scan rate/ Epa/ V Ep/ V lpa/ A loc/ A AEy/ V lpallpc
mV st
25 0.288 0.219 2.951 2.883 0.069 1.024
50 0.290 0.215 4.191 4.192 0.075 0.999
75 0.295 0.210 5.051 5.074 0.085 0.995
100 0.293 0.210 5.744 5.839 0.083 0.984
200 0.295 0.210 8.029 8.384 0.085 0.958
400 0.300 0.205 10.981 11.442 0.095 0.959
600 0.302 0.205 13.161 13.821 0.097 0.952
800 0.310 0.202 14.892 15.642 0.108 0.952
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Figure S53. Plots of (left) Ipa and (right) Ipc against (scan rate)Y? for 1H-20Tf.
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XB Cu(ll)-tripod, 11-20Tf

Studies performed in 0.05 M KPFs in pure H2O.
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Figure S54. CV’s of 11-20Tf at different scan rates ([host] = 0.25 mM, T = 293 K).

Table S3. Values of Epc, Epa, lpc, lpa, AE and lpa/ Ipc for 11-20Tf at different scan rates.

Scan rate/ Epal V Epe/ V lpa/ MA loe/ HA AE,/ V lpallpe
mV s?
25 0.291 0.071 1.021 1.016 0.22 1.005
50 0.269 0.079 1.515 1.553 0.19 0.976
75 0.269 0.078 2.046 1.844 0.191 1.109
100 0.271 0.081 2.259 2.521 0.19 0.896
200 0.279 0.083 3.286 3.225 0.196 1.019
400 0.279 0.096 4.842 4771 0.183 1.015
600 0.276 0.105 6.159 5.913 0.171 1.042
800 0.276 0.115 6.968 7.493 0.161 0.929
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Figure S55. Plots of (left) Ipa and (right) Ipc against (scan rate)*? for 11-20Tf.
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HB Cu(ll)-tripod, 1H-20Tf

Studies performed in 0.05 M KPFs in pure H2O.
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Figure S56. CV’s of 1H-20Tf at different scan rates ([host] = 0.25 mM, T = 293 K).

Table S4. Values of Epc, Epa, Ipc, lpa, AE and lpa/ lpc for 1H-20TT at different scan rates.

Scan rate/ Epa/ V Epd/ V lpa/ HA loc/ A AE,/ V lpallpe
mV s*
25 0.191 0.039 2.726 1.667 0.152 1.635
50 0.19 0.037 3.507 2.395 0.153 1.464
75 0.191 0.044 3.918 3.304 0.147 1.186
100 0.191 0.042 4.244 3.640 0.149 1.166
200 0.193 0.044 5.476 5.355 0.149 1.023
400 0.196 0.044 7.406 7.919 0.152 0.935
600 0.205 0.044 9.198 9.781 0.161 0.940
800 0.203 0.041 10.728 11.501 0.162 0.933
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Figure S57. Plots of (left) l,a and (right) loc against (scan rate)Y? for 1H-20Tf.
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