Supporting Information for

Phosphate Selective Binding and Sensing by Halogen Bonding Tripodal Cu(II) Metallo-receptors in Aqueous Media.

Hena Bagha, Robert Hein, Jason Y. C. Lim, William K. Myers, Mark R. Sambrook and Paul D. Beer*

Email: paul.beer@chem.ox.ac.uk

Contents

S1.	General Considerations	2
S2.	Experimental Procedures	3
S3.	Characterisation Data	15
S4.	Isothermal Titration Calorimetry (ITC) Studies and Data	38
S5.	UV-vis Experiments	41
S6.	EPR Experiments	44
S7.	Electrochemical Anion Sensing Studies	45
S8.	References	51

S1. General Considerations

S1.1 Solvents and Reagents

All solvents and reagents were purchased from commercial suppliers and used without further purification. Dry solvents were obtained by passing through a MBraun MPSP-800 column, degassed with nitrogen and used immediately. Water was de-ionized and micro filtered using a Milli-Q[®] Millipore machine. All tetrabutylammonium (TBA) salts as well as $[Cu(MeCN)_4][PF_6]$, and $Cu(OTf)_2$ were stored in a vacuum desiccator at room temperature with P_2O_5 desiccant prior to use. Triethylamine was distilled from and stored over KOH pellets. Thin layer chromatography (TLC) analysis was performed using Merck[®] aluminium-backed DC 60 F254 0.2 mm silica precoated plates, with spots visualised under UV light (254 nm) and/ or staining with basified aqueous KMnO₄ solution followed by gentle heating. Column chromatography was undertaken on Merck[®] silica gel 60 under a positive pressure of nitrogen. Preparative TLC was performed using Analtech glass-backed pre-coated plates (20 × 20 cm, 0.1 cm silica thickness). Where mixtures of solvents were used, ratios are reported by volume. Any literature procedures used to prepare known compounds are referenced in the text. Tris(benzyltriazolemethyl)amine (TBTA) was synthesised as described¹ and stored under ambient conditions.

S1.2 Instrumentation

¹H and ¹³C NMR spectra were recorded using Bruker Avance III 400 HD nanobay NMR spectrometers (Hg400 or Venus400) each equipped with a 9.4 T magnet, or a Bruker Avance III 500 machine (AVD500) equipped with a 11.75 T magnet (and cryoprobe) at T = 298 K. Chemical shifts are quoted in parts per million (ppm) relative to the residual solvent peak. Low and high resolution ESI mass spectra were recorded on a Waters LCT premier spectrometer and a Bruker µTOF spectrometer respectively. All pH measurements of solutions of complexes in aqueous and aqueous-organic media were performed using a Hanna[®] pH meter. Isothermal titration calorimetry experiments were performed on a Microcal PEAQ-ITC automated system. EPR spectra were recorded using a Bruker EMXmicro continuous wave (CW) spectrometer (X-band) at T = 85 K. UV-vis spectra were recorded on a T60U (PG Instruments Ltd) spectrophotometer at T = 293 K, using a Hellma quartz cuvette with path length of 1 cm.

S2. Experimental Procedures

Tris(TEG)-appended HB Cu(II) tripod, 1H-2OTf

To tripodal ligand **6H** (205 mg, 0.2 mmol) in a 1:1 mixture of CH₂Cl₂/MeOH (6 mL) was added copper(II) trifluoromethansulfonate (72.3 mg, 0.2 mmol) and the solution stirred at room temperature under a N₂ atmosphere for 3 hours. Removal of the solvent *in vacuo* afforded metallo-tripodal receptor **1H**·2OTf as a deep blue oil, which solidified to a dark blue crystalline residue upon drying under high vacuum (274 mg, quantitative). **UV-vis** (CH₃CN/ H₂O 6:4 *v/v*, 10 mM HEPES, λ_{max} / nm, (ϵ / M⁻¹ cm⁻¹)): 639 (125), 760 (98); **EPR** (CH₃CN/ H₂O 6:4 *v/v*, 10 mM HEPES, 85 K): *g*II = 2.225, *g*L = 2.065, *A*II = 182.0 x 10⁻⁴ cm⁻¹; **HR-MS** (ESI +ve) *m/z*: 562.24714 ([M – 2OTf]²⁺, C₅₁H₇₅N₁₃O₁₂⁶³Cu calc. 562.24716).

Tris(TEG)-appended XB Cu(II) tripod, 11.20Tf

To tripodal ligand **6I** (199 mg, 0.139 mmol) in a 1:1 mixture of CH₂Cl₂/MeOH (6 mL) was added copper(II) trifluoromethansulfonate (50.3 mg, 0.139 mmol) and the solution stirred at room temperature under a N₂ atmosphere for 3 hours. Removal of the solvent *in vacuo* afforded metallo-tripodal receptor **1I**·2OTf as a deep blue oil, which solidified to a dark blue crystalline residue upon drying under high vacuum (248 mg, quantitative). **UV-vis** (CH₃CN/ H₂O 6:4 v/v, 10 mM HEPES, λ_{max} / nm, (ϵ / M⁻¹ cm⁻¹)): 647 (117), 775 (91); **EPR** (CH₃CN/ H₂O 6:4 v/v, 10

mM HEPES, 85 K): gII = 2.225, $g\perp = 2.065$, $AII = 183.0 \times 10^{-4} \text{ cm}^{-1}$; **HR-MS** (ESI +ve) m/z: 751.09167 ([M - 20Tf]²⁺, C₅₁H₇₂N₁₃O₁₂I₃⁶³Cu calc. 751.09212).

(6-(azidomethyl)pyridine-2-yl)methanol, 2²

This literature compound was prepared using modified synthetic procedures: to a solution of **1** (1.58 g, 7.82 mmol) in dry, degassed DMF (40 mL) was added NaN₃ (1.02 g, 15.6 mmol) and the reaction stirred under a N₂ atmosphere at 80 °C overnight. Thereafter, azeotropic removal of the solvent *in vacuo* with toluene produced a dark yellow residue which was redissolved in ethyl acetate (20 mL). The resultant precipitate was removed *via* filtration through a pad of celite and the celite thoroughly washed with ethyl acetate. Removal of the solvent *in vacuo* afforded the target compound **2** in excellent purity as a deep yellow oil which was dried *in vacuo* at less than 7 mbar for 2 days (1.13 g, 88 % yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.73 (1H, t, ³J = 8.0 Hz, pyridine Ar*H*), 7.26 (1H, d, ³J = 8.0 Hz, pyridine Ar*H*), 7.22 (1H, d, ³J = 8.0 Hz, pyridine Ar*H*), 4.78 (2H, s, pyridine CH₂), 4.49 (2H, s, pyridine CH₂), 3.70 (1H, br. s, CH₂-O*H*); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 159.4, 154.5, 137.5, 120.3, 119.6, 63.8, 54.9; LR-MS (ESI +ve) *m/z*: 165.1 ([M+H]⁺, C₇H₉N₄O calc. 165.1)

2,5,8,11-tetraoxatetradec-13-yne, 3³

To a stirring solution of triethylene glycol monomethyl ether (2.0 g, 12.2 mmol) in dry degassed THF (3 mL) at 0 °C, was added a suspension of potassium *tert*-butoxide (1.56 g, 13.9 mmol) in 25 mL THF. Separately 1.82 mL of propargyl bromide (24.2 mmol) was dissolved in THF (50 mL) and then added dropwise to the solution. The reaction mixture was stirred at room temperature under a N₂ atmosphere for 24 h. Thereafter, ethyl acetate (200 mL) was added and the organics washed with brine (3 x 75 mL). The separated organic layer was dried over MgSO₄ and filtered. Removal of the solvent *in vacuo* afforded **12** in good purity as a pale yellow oil (1.69 g, 69 %). ¹H **NMR** (500 MHz, CDCl₃) δ (ppm): 4.21 (2H, d, ⁴J = 2.4 Hz, CH₂C=C), 3.55 – 3.71 (12H, m, TEG alkyl-CH₂), 3.38 (3H, s, TEG alkyl-CH₃), 2.43 (1H, t, ⁴J = 2.4 Hz, C=CH); ¹³C **NMR** (125 MHz, CDCl₃) δ (ppm): 79.6, 74.4, 71.9, 70.6, 70.5, 70.4, 69.0,

59.0, 58.3, one peak missing, presumed overlapped; **HR-MS** (ESI +ve) *m/z*: 203.12779 ([M + H]⁺, C₁₀H₁₉O₄ calc. 203.12779).

TEG-appended HB 'hydroxy-arm' precursor, 4H

To a solution of (6-(azidomethyl)pyridine-2-yl)methanol **2** (350 mg, 2.13 mmol) and TEG alkyne **3** (431 mg, 2.13 mmol) in dry degassed THF (5 mL) was added [Cu(MeCN)₄][PF₆] (397 mg, 1.07 mmol) and diisopropylethylamine (DIPEA) (0.18 mL, 1.07 mmol) and the mixture stirred at room temperature under a N₂ atmosphere for 2 days. The reaction mixture was diluted with CH₂Cl₂ (25 mL) and washed with NH₄OH_(aq) (3 x 20 mL), brine (2 x 20 mL) and dried over MgSO₄. After removal of the solvent *in vacuo*, purification by silica gel column chromatography (gradient from pure CH₂Cl₂ to 4 % MeOH in CH₂Cl₂) afforded **4H** as a pale yellow oil (312 mg, 40 %). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm): 7.73 (1H, s, triazole C*H*), 7.69 (1H, t, ³*J* = 7.7 Hz, pyridine Ar*H*), 7.24 (1H, d, ³*J* = 7.8 Hz, pyridine Ar*H*), 7.09 (1H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 5.66 (2H, s, C*H*₂-N triazole), 4.77 (2H, d, ³*J* = 5.2 Hz, C*H*₂OH), 4.70 (2H, s, C*H*₂-C triazole), 3.53–3.71 (13H, m, TEG alkyl-C*H*₂ + O*H*), 3.36 (3H, s, TEG alkyl-C*H*₃); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 159.9, 153.2, 145.3, 137.8, 123.2, 120.6, 120.0, 71.6, 70.3, 70.3, 70.3, 70.2, 69.5, 64.4, 64.0, 58.7, 55.1; **HR-MS** (ESI +ve) *m/z*: 367.19698 ([M + H]⁺, C₁₇H₂₇O₅N₄ calc. 367.19760).

TEG-appended XB 'hydroxy-arm' precursor, 4I

(6-(azidomethyl)pyridine-2-yl)methanol **2** (272 mg, 1.66 mmol) was dissolved in a 1:1 mixture of dry, degassed THF/CH₃CN (5 mL) and the reaction vessel covered in foil. Sodium iodide (995 mg, 6.64 mmol) and copper(II) perchlorate hexahydrate (1.23 g, 3.32 mmol) were added

and the solution stirred for 5 minutes. Further added were TBTA (17.6 mg, 0.033 mmol), DBU (252 mg, 1.66 mmol, in 0.5 mL 1:1 THF/CH₃CN) and TEG alkyne **3** (335 mg, 1.66 mmol, in 0.5 ml 1:1 THF/CH₃CN) and the mixture stirred at room temperature under a N₂ atmosphere overnight. The reaction mixture was diluted with CH₂Cl₂ (25 mL) and washed with NH₄OH_(aq) (3 x 20 mL), brine (2 x 20 mL) and dried over MgSO₄. After removal of the solvent *in vacuo*, purification by silica gel column chromatography (gradient from pure CH₂Cl₂ to 3 % MeOH in CH₂Cl₂) afforded **4I** as a pale orange oil which solidified to an off-white solid upon standing overnight (522 mg, 64 %). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.68 (1H, t, ³*J* = 7.8 Hz, pyridine Ar*H*), 7.20 (1H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 6.93 (1H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 5.75 (2H, s, *CH*₂-N iodotriazole), 4.75 (2H, d, ³*J* = 5.0 Hz, *CH*₂OH), 4.66 (2H, s, *CH*₂-C iodotriazole), 3.54–3.71 (13H, m, TEG alkyl-*CH*₂ + O*H*), 3.37 (3H, s, TEG alkyl-*CH*₃); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 159.2, 152.9, 148.9, 137.8, 120.2, 119.9, 81.4, 71.9, 70.6, 70.5, 70.4, 69.7, 64.3, 63.8, 59.0, 55.2; one peak missing, presumed overlapped; HR-MS (ESI +ve) *m/z*: 493.09458 ([M + H]⁺, C₁₇H₂₆O₅N₄I calc. 493.09424).

TEG-appended HB 'chloro-arm' precursor, 5H

To a solution of **4H** (974 mg, 2.66 mmol) in dry CH₂Cl₂ (20 ml) at 0 °C, was slowly added SOCl₂ (0.29 ml, 3.99 mmol) and the reaction stirred at room temperature under a N₂ atmosphere for 6 hrs. The stirring mixture was carefully quenched and neutralised by the slow addition of a saturated Na₂CO_{3(aq)} solution at 0 °C resulting in vigorous gas evolution. Thereafter, the biphasic mixture was further diluted with CH₂Cl₂ (25 ml) and washed with H₂O (2 x 25 ml). The organic layer was dried over MgSO₄ and the solvent removed *in vacuo*. Purification using silica gel column chromatography (gradient from pure CH₂Cl₂ to 3 % MeOH in CH₂Cl₂) afforded the chloro-arm **5H** as a clear, light orange oil (879 mg, 86 %). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm): 7.74 (1H, s, triazole C*H*), 7.72 (1H, t, ³*J* = 7.78 Hz, pyridine Ar*H*), 7.45 (1H, d, ³*J* = 7.78 Hz, pyridine Ar*H*), 7.11 (1H, d, ³*J* = 7.76 Hz, pyridine Ar*H*), 5.65 (2H, s, CH₂-N triazole), 4.70 (2H, s, CH₂-C triazole), 4.66 (2H, s, CH₂Cl), 3.53–3.71 (12H, m, TEG alkyl-*CH*₂), 3.37 (3H, s, TEG alkyl-*CH*₃); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 156.7, 154.1, 145.6, 138.3, 123.2, 122.3, 121.4, 71.8, 70.5, 70.4, 70.4, 70.4, 69.6, 64.6, 58.9, 55.2, 46.2; **HR-MS** (ESI +ve) *m/z*; 385.16367 ([M + H]⁺, C₁₇H₂₆N₄O₄Cl calc. 385.16371).

TEG-appended XB 'chloro-arm' precursor, 5I

To a solution of **4I** (1.42 g, 2.88 mmol) in dry CH₂Cl₂ (25 ml) at 0 °C, was slowly added SOCl₂ (0.32 ml, 4.32 mmol) and the reaction stirred at room temperature under a N₂ atmosphere for 6 hrs. The stirring mixture was carefully quenched and neutralised by the slow addition of a saturated Na₂CO_{3(aq)} solution at 0 °C resulting in vigorous gas evolution. Thereafter, the biphasic mixture was further diluted with CH₂Cl₂ (25 ml) and washed with H₂O (2 x 25 ml). The organic layer was dried over MgSO₄ and the solvent removed *in vacuo*. Purification using silica gel column chromatography (gradient from pure CH₂Cl₂ to 3 % MeOH in CH₂Cl₂) afforded the chloro-arm **5I** as a clear, amber oil (1.19 g, 81 %). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm): 7.70 (1H, t, ³*J* = 7.8 Hz, pyridine Ar*H*), 7.44 (1H, d, ³*J* = 7.8 Hz, pyridine Ar*H*), 6.85 (1H, d, ³*J* = 7.8 Hz, pyridine Ar*H*), 5.74 (2H, s, C*H*₂-N iodotriazole), 4.67 (2H, s, C*H*₂-C iodotriazole), 4.66 (2H, s, C*H*₂Cl), 3.55–3.71 (12H, m, TEG alkyl-*CH*₂), 3.38 (3H, s, TEG alkyl-*CH*₃); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 156.6, 153.8, 148.9, 138.2, 122.1, 120.6, 81.4, 71.9, 70.5, 70.5, 70.4, 69.7, 64.2, 59.0, 55.3, 46.3, one peak missing, presumed overlapped; **HR-MS** (ESI +ve) *m/z*: 533.04289 ([M + Na]⁺, C₁₇H₂₄N₄O₄ClINa calc. 533.04230).

Tris(TEG)-appended HB tripodal ligand, 6H

To a solution of **5H** (825 mg, 2.14 mmol) fully dissolved in dry CH_3CN (30 mL) was added NH_4OAc (3.30 g, 42.8 mmol), Na_2CO_3 (4.54 g, 42.8 mmol) and KI (356 mg, 2.14 mmol) as solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred for two days at room temperature after which no evidence of **5H** was observed by TLC or ESI-

MS analyses. Thereafter, the creamy off-white suspension was directly transferred to a separating funnel and *ca*. 20 ml H₂O very gently pipetted into the vessel. The cloudy, lower aqueous layer was separated, and the remaining clear pale yellow organic layer concentrated *in vacuo*. The resultant crude residue was redissolved in CHCl₃ (50 mL) and washed with water (2 x 20 mL) and the organics dried over MgSO₄. Solvent removal and purification by preparative thin layer chromatography (5 % MeOH in CHCl₃) afforded the tripodal ligand **6H** as a deep yellow oil (501 mg, 66 % yield). ¹H **NMR** (500 MHz, CDCl₃) δ (ppm): 7.73 (3H, s, triazole *CH*), 7.64 (3H, t, ³*J* = 7.7 Hz, pyridine Ar*H*), 7.46 (3H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 7.01 (3H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 5.62 (6H, s, *CH*₂-N triazole), 4.68 (6H, s, *CH*₂-C triazole), 3.86 (6H, s, *CH*₂-N tertiary amine), 3.53–3.70 (36 H, m, TEG alkyl-*CH*₂), 3.36 (9H, s, TEG alkyl-*CH*₃); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 159.4, 153.8, 145.5, 137.7, 123.2, 122.4, 120.5, 71.9, 70.5, 70.5, 70.4, 69.7, 64.6, 59.9, 59.0, 55.5, one peak missing, presumed overlapped. **HR-MS** (ESI +ve) *m/z*: 1062.5746 ([M + H]⁺, C₅₁H₇₆N₁₃O₁₂ calc.1062.5736).

Tris(TEG)-appended XB tripodal ligand, 61

To a solution of **5I** (882 mg, 1.73 mmol) fully dissolved in dry CH₃CN (30 mL) was added NH₄OAc (2.67 g, 34.6 mmol), Na₂CO₃ (3.67 g, 34.6 mmol) and KI (287 mg, 1.73 mmol) as solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred for two days at room temperature after which no evidence of **5I** was observed by TLC or ESI-MS analyses. Thereafter, the creamy off-white suspension was directly transferred to a separating funnel and *ca.* 20 ml H₂O very gently pipetted into the vessel. The cloudy, lower aqueous layer was separated, and the remaining clear, light yellow organic layer concentrated *in vacuo*. The resultant crude residue was redissolved in CHCl₃ (50 mL) and washed with water (2 x 20 mL) and the organics dried over MgSO₄. Solvent removal and purification by preparative thin layer chromatography (6 % MeOH in CH₂Cl₂) afforded the tripodal ligand **6I** as a dark yellow oil (497 mg, 60 % yield). ¹H **NMR** (500 MHz, CDCl₃) δ (ppm): 7.63 (3H, t, ³*J* = 7.7 Hz, pyridine Ar*H*), 7.43 (3H, d, ³*J* = 7.6 Hz, pyridine Ar*H*), 6.79 (3H, d, ³*J* = 7.0 Hz, pyridine Ar*H*), 5.72 (6H, s, *CH*₂-N iodotriazole), 4.64 (6H, s, *CH*₂-C iodotriazole), 3.84 (6H, s, *CH*₂-N tertiary amine), 3.53–

3.68 (36H, m, TEG alkyl-*CH*₃), 3.37 (9H, s, TEG-alkyl *CH*₃); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 159.4, 153.4, 148.8, 137.6, 122.4, 119.7, 81.5, 71.9, 70.6, 70.5, 70.4, 69.7, 64.3, 59.6, 59.0, 55.5, one peak missing, presumed overlapped; **HR-MS** (ESI +ve) *m/z*: 1440.2665 ([M + H]⁺, C₅₁H₇₃N₁₃O₁₂I₃ calc. 1440.2635).

Succinimidyl-3-propiolate, 7⁴

This literature compound was prepared according to modified procedures. To a stirring solution of propiolic acid (0.5 mL, 8 mmol) in dry acetonitrile (50 mL) at 0 °C was added *N*-hydroxysuccinimide (0.92 g, 8 mmol). Separately, dicyclohexylcarbodiimide (DCC) (1.65 g, 8 mmol) was added portion wise to the reaction mixture, which was kept stirring for 8 hours at 4 °C under N₂. After filtration of the white precipitate under gravity, removal of the solvent *in vacuo* gave the activated ester **7** in excellent purity as a pale yellow oil, which solidified to a crystalline solid upon standing for 1 - 2 hours at room temperature (909 mg, 68 %). (*N.B. due to the unstable nature of the compound, the obtained solid was stored in a vial at -20 °C until further used*). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm): 3.34 (1H, s, C≡C*H*), 2.86 (4H, s, COC*H*₂); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 168.2, 147.7, 82.1, 70.1, 25.5; **LR-MS** (ESI +ve) *m/z*: not observed.

N.B. For all of the β -cyclodextrin precursor compounds leading up to the synthesis of the key permethylated β -cyclodextrin (pm β CD) alkyne **9**⁵ (see Scheme 2, main paper), all mono-functionalisation procedures were carried out at the 6- position on the narrow rim of the truncated cone as shown in Figure S1. Therefore, this numbering system is also used for the assignment of the relevant ¹H NMR signals in the following characterisation data of the novel pm β CD compounds **10** – **12I** leading to the synthesis of the tris(pm β CD)-appended XB tripod **13I**-2OTf.

Figure S1. (A) Numbering scheme for the glucopyranose units of the β -CD cone and (B) distribution of the primary and secondary alcohol moieties on its narrow and wide rims, respectively.

It should be further noted that by convention, in a mono-substituted β -CD derivative, the functionalised glucopyranose unit is denoted A, with the remaining units labelled B-G. 6^A-substituted therefore means that Carbon 6 of glucopyranose unit A is functionalised.

6^A-amido-pmβCD alkyne, 9

To a solution of succinimidyl-3-propiolate 7^4 (82.3 mg, 0.494 mmol) and permethylated β cyclodextrin amine 8^6 (500 mg, 0.353 mmol) in dry CH₂Cl₂ was added 4-dimethylaminopyridine (DMAP) (10 mg, 0.08 mmol). The mixture was left to stir at room temperature under a N₂ atmosphere overnight, after which no evidence of the permethylated β -cyclodextrin amine was observed by TLC or ESI-MS. After removal of the solvent *in vacuo*, purification by silica gel column chromatography (4 % MeOH in EtOAc) afforded **9** as a crystalline white solid (362 mg, 70 %). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm): 6.74 (1H, t, ${}^{3}J = 5.9$ Hz, amide N*H*), 5.08–5.18 (7H, m, β-CD *H*₁), 3.17–4.08 (102H, m, β-CD *H*₂₋₆ + C*H*₃O), 2.84 (1H, s, C≡C*H*); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 152.2, β-CD signals consistent with loss of C7 symmetry: (99.2–98.6; β-CD *C*₁), 82.1–81.3, 80.6–79.8, 77.7, 73.0, 71.5–70.1, 61.6–61.2, 59.5–58.3; **HR-MS** (ESI +ve) *m/z*: 1488.67853 ([M + Na]⁺, C₆₅H₁₁₁NO₃₅Na calc. 1488.68288).

6^A-amido-pmβCD-appended XB 'hydroxy-arm' precursor, 10I

(6-(azidomethyl)pyridine-2-yl)methanol 2 (41 mg, 0.25 mmol) was dissolved in a 1:1 mixture of dry, degassed THF/CH₃CN (2 mL) and the reaction vessel covered in foil. Sodium iodide (149 mg, 1.00 mmol) and copper(II) perchlorate hexahydrate (185 mg, 0.5 mmol) were added and the solution stirred for 5 minutes. Further added were DBU (37.3 µL, 0.25 mmol) and pm BCD alkyne 9 (366 mg, 0.25 mmol) and the mixture stirred at room temperature under a N2 atmosphere overnight. The reaction mixture was diluted with CHCI₃ (25 mL) and washed with NH₄OH_(aq) (3 x 20 mL), brine (2 x 20 mL) and dried over MgSO₄. After removal of the solvent in vacuo, purification by silica gel column chromatography (gradient from pure CHCl₃ to 3 % MeOH in CHCl₃) afforded the arm precursor **10** as a crystalline off-white solid (232 mg, 53 %). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.70 (1H, t, ³J = 7.8 Hz, pyridine ArH), 7.47 (1H, t, ³J = 5.8 Hz, amide NH), 7.23 (1H, d, ${}^{3}J$ = 7.8 Hz, pyridine ArH), 6.93 (1H, d, ${}^{3}J$ = 7.6 Hz, pyridine Ar*H*), 5.79 (2H, ABquart., $\Delta \delta_{AB} = 0.04$, ${}^{2}J_{AB} = 15.5$ Hz, CH₂-N iodotriazole), 5.12–5.23 (7H, m, β-CD H_1), 4.74 (2H, d, ${}^{3}J$ = 4.9 Hz, C H_2 OH), 3.18–3.99 (103H, m, β-CD H_{2-6} + C H_3 O + OH); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 159.6, 159.4, 152.4, 143.3, 137.9, 120.2, β-CD signals consistent with loss of C7 symmetry: (99.2–98.5; β-CD C₁), 82.1–81.4, 80.4–79.9, 71.5–70.9, 70.1, 63.8, 61.6– 61.3, 59.2–58.3, 55.1, 39.9; HR-MS (ESI +ve) m/z: 1778.64524 ([M + Na]+, C₇₂H₁₁₈O₃₆N₅INa calc. 1778.64934).

6^A-amido-pmβCD-appended XB 'chloro-arm' precursor, **11I**

To a solution of **10I** (1.04 g, 0.59 mmol) in dry CH₂Cl₂ (25 ml) at 0 °C, was slowly added SOCl₂ (0.13 ml, 1.77 mmol) and the reaction stirred at rt under a N₂ atmosphere for 6 hrs. The stirring mixture was carefully quenched and neutralised by the slow addition of a saturated Na₂CO_{3(aq)} solution at 0 °C resulting in vigorous gas evolution. Thereafter, the biphasic mixture was further diluted with CHCl₃ (25 ml) and washed with H₂O (2 x 25 ml). The organic layer was dried over MgSO₄ and solvent removal *in vacuo* gave the chloro-arm **11I** as a cream-coloured powder in good purity which was used without further purification (809 mg, 77 %). ¹H **NMR** (500 MHz, CDCl₃) δ (ppm): 7.72 (1H, t, ³*J* = 7.8 Hz, pyridine Ar*H*), 7.45–7.49 (2H, m, pyridine Ar*H* + amide N*H*), 6.87 (1H, d, ³*J* = 7.8 Hz, pyridine Ar*H*), 5.78 (2H, ABquart., $\Delta \delta_{AB} = 0.05$, ²*J*_{AB} = 16.0 Hz, C*H*₂-N iodotriazole), 5.12–5.23 (7H, m, β -CD *H*₁), 4.64 (2H, s, *CH*₂Cl), 3.18–4.01 (102H, m, β -CD *H*₂₋₆ + *CH*₃O); ¹³**C NMR** (125 MHz, CDCl₃) δ (ppm): 159.4, 157.0, 153.3, 143.3, 138.2, 122.3, 120.5, β -CD signals consistent with loss of C7 symmetry: (99.2–98.6; β -CD *C*₁), 82.2–81.7, 81.4, 80.4–80.0, 71.5 – 70.9, 70.1, 61.6 – 61.3, 59.2 – 58.3, 55.2, 46.2, 39.9; **HR-MS** (ESI +ve) *m/z*: 1796.61119 ([M + Na]⁺, Cr₂H₁₁₇O₃₅N₅ClINa calc. 1796.61545).

Tris(6^A-amido-pmβCD)-appended XB tripodal ligand, **12I**

To a solution of **11I** (423 mg, 0.238 mmol) fully dissolved in dry CH₃CN (20 mL) was added NH₄OAc (550 mg, 7.14 mmol), Na₂CO₃ (757 mg, 7.14 mmol) and KI (39.5 mg, 0.238 mmol) as solid portions. The reaction flask was completely sealed, and the mixture vigorously stirred for two days at room temperature after which no evidence of **11I** was observed by TLC or ESI-MS analyses. Thereafter, the creamy white suspension was directly transferred to a separating funnel and *ca.* 5-10 ml H₂O very gently pipetted into the vessel. The cloudy, lower aqueous layer was separated, and the remaining clear pale yellow organic layer concentrated in vacuo. The resultant crude residue was redissolved in CHCl₃ (25 mL) and washed with brine (2 x 10 mL) and the organics dried over MgSO₄. Solvent removal and purification by preparative thin layer chromatography (6 % MeOH in CH_2CI_2) afforded the tripodal ligand **12I** as a crystalline off-white solid upon drying *in vacuo* (216 mg, 52 % yield). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.66 (3H, t, ³*J* = 7.7 Hz, pyridine Ar*H*), 7.46–7.49 (6H, m, pyridine Ar*H* + amide N*H*), 6.73 (3H, d, ${}^{3}J$ = 7.8 Hz, pyridine Ar*H*), 5.77 (6H, ABquart., $\Delta \delta_{AB}$ = 0.05, ${}^{2}J_{AB}$ = 16.1 Hz, CH₂-N iodotriazole), 5.13–5.23 (21H, m, β-CD H₁), 3.17–3.97 (312H, m, β-CD H₂₋₆ + CH₃O + CH₂-N tertiary amine); ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 159.5, 153.1, 143.3, 137.7, 122.3, 119.5, β -CD signals consistent with loss of C7 symmetry: (99.0–98.6; β -CD C₁), 82.3–81.2, 80.4– 79.9, 71.5–70.0, 61.5–61.4, 59.7–58.4, 55.5, 39.8; HR-MS (ESI +ve) m/z: 2627.98525 ([M + $H + Na^{2+}$, $C_{216}H_{352}O_{105}N_{16}I_3Na$ calc. 2627.98919).

To tripodal ligand **12I** (100 mg, 0.02 mmol) in a 1:1 mixture of CH₂Cl₂/MeOH (6 mL) was added copper(II) trifluoromethansulfonate (7.23 mg, 0.02 mmol) and the solution stirred at room temperature under a N₂ atmosphere for 3 hours. After removal of the solvent *in vacuo*, the resultant deep blue residue was triturated with ice cold Et₂O (*ca.* 5 mL). The ethereal layer was carefully decanted with a pipette and the contents of the flask dried under high vacuum to afford metallo-tripodal receptor **13I**·2OTf as a fine, pale blue crystalline powder (106 mg, quantitative). **UV-vis** (CH₃CN/ H₂O 6:4 *v/v*, 10 mM HEPES, λ_{max} / nm, (ϵ / M⁻¹ cm⁻¹)): 645 (182), 770 (119); **EPR** (CH₃CN/ H₂O 6:4 *v/v*, 10 mM HEPES, 105 K): *g*II = 2.225, *g*_⊥ = 2.065, *A*II₁ = 185.0 x 10⁻⁴ cm⁻¹, *A*II₂ = 220.0 x 10⁻⁴ cm⁻¹; **HR-MS** (ESI +ve) *m/z*: 2647.46450 ([M – 2OTf]²⁺, C₂₁₆H₃₅₁N₁₆O₁₀₅I₃⁶³Cu calc. 2647.45519).

Tetrabutylammonium salt of pinacolyl methylphosphonic acid, TBA PMP

To a chilled solution of 1.0 eqv of a methanolic solution of tetrabutylammonium (TBA) hydroxide at 0 °C directly was added 1.0 eqv of neutral pinacolyl methylphoshonic acid over 5 minutes. The resulting reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The appropriate TBA pinacolyl methyl phosphonate salt was obtained by removal of the solvent *in vacuo* and leaving the salt to dry under high vacuum for at least 5 days. The resultant salt was obtained a white powder and stored in a vacuum desiccator with P_2O_5 desiccant at room temperature.

S3. Characterisation Data

S3.1 ¹H, ¹³C NMR and HR-MS of all novel compounds

Figure S2. ¹H NMR of alkyne 3 in CDCI₃ (500 MHz, T = 298 K).

Figure S3. ¹³C NMR of alkyne 3 in CDCl₃ (125 MHz, T = 298 K).

Figure S4. High-resolution mass spectrum of alkyne 3.

TEG-appended HB 'hydroxy-arm' precursor, 4H

Figure S5. ¹H NMR of precursor 4H in CDCI₃ (500 MHz, T = 298 K).

Figure S6. ¹³C NMR of precursor 4H in CDCl₃ (125 MHz, T = 298 K).

Figure S7. High-resolution mass spectrum of precursor 4H.

TEG-appended XB 'hydroxy-arm' precursor, 4I

Figure S8. ¹H NMR of precursor 4I in CDCl₃ (500 MHz, T = 298 K).

Figure S9. ¹³C NMR of precursor 4I in CDCI₃ (125 MHz, T = 298 K).

Figure S10. High-resolution mass spectrum of precursor 4I.

TEG-appended HB 'chloro-arm' precursor, 5H

Figure S11. ¹H NMR of precursor 5H in CDCI₃ (500 MHz, T = 298 K).

Figure S12. ¹³C NMR of precursor 5H in CDCI₃ (125 MHz, T = 298 K).

Figure S13. High-resolution mass spectrum of precursor 5H.

TEG-appended XB 'chloro-arm' precursor, 5I

Figure S14. ¹H NMR of precursor 5I in CDCl₃ (500 MHz, T = 298 K).

Figure S15. ¹³C NMR of precursor 5I in CDCl₃ (125 MHz, T = 298 K).

Figure S16. High-resolution mass spectrum of precursor 5I.

Tripodal HB ligand, 6H

Figure S17. ¹H NMR of ligand 6H in CDCI₃ (500 MHz, T = 298 K).

Figure S18. ¹³C NMR of ligand 6H in CDCl₃ (125 MHz, T = 298 K).

Figure S19. High-resolution mass spectrum of ligand 6H.

Tripodal XB ligand, 6I

Figure S20. ¹H NMR of ligand 6I in CDCl₃ (500 MHz, T = 298 K).

Figure S21. ¹³C NMR of ligand 6I in CDCI₃ (125 MHz, T = 298 K).

Figure S22. High-resolution mass spectrum of ligand 6I.

Succinimidyl-3-propiolate, 7

Figure S23. ¹H NMR of precursor 7 in CDCl₃ (500 MHz, T = 298 K).

Figure S24. ¹³C NMR of precursor 7 in CDCl₃ (125 MHz, T = 298 K).

Figure S25. ¹H NMR of alkyne 9 in CDCl₃ (500 MHz, T = 298 K).

Figure S26. ¹³C NMR of alkyne 9 in CDCI₃ (125 MHz, T = 298 K).

Figure S27. High-resolution mass spectrum of alkyne 9.

 6^{A} -amido-pm β CD-appended XB 'hydroxy-arm' precursor, 10I

Figure S28. ¹H NMR of precursor 10I in CDCl₃ (500 MHz, T = 298 K).

Figure S29. ¹³C NMR of precursor 10I in CDCI₃ (125 MHz, T = 298 K).

Figure S30. High-resolution mass spectrum of precursor 10I.

6^A-amido-pmβCD-appended XB 'chloro-arm' precursor, 11I

Figure S31. ¹H NMR of precursor **11I** in CDCl₃ (500 MHz, T = 298 K).

Figure S32. ¹³C NMR of precursor 11I in CDCI₃ (125 MHz, T = 298 K).

Figure S33. High-resolution mass spectrum of precursor 11I.

Tris(pmβCD)-appended XB tripodal ligand, 12I

Figure S34. ¹H NMR of ligand 12I in $CDCI_3$ (500 MHz, T = 298 K).

Figure S35. ¹³C NMR of ligand 12I in CDCl₃ (125 MHz, T = 298 K).

Figure S36. High-resolution mass spectrum of ligand 12l.

S3.2 Further comparative ¹H NMR spectra of tripodal XB ligand formation

Figure S37. Stacked ¹H NMR spectra of (A) XB trimer **6I** and (B) synthon **5I** in CDCI₃ (500 MHz, T = 298 K). See Scheme 1 of the main paper for proton assignment.

Figure S38. Stacked ¹H NMR spectra of (A) XB trimer **12I** and (B) synthon **11I** in CDCl₃ (500 MHz, T = 298 K). See Scheme 2 of the main paper for proton assignment. (The methylene H_e protons of both compounds are diastereotopic and hence appear as an AB quartet signal).

Tripodal XB Cu(II) receptor, 1I-2OTf

Figure S39. (left) UV-vis spectrum of **1**-2OTf in CH₃CN/ H₂O 6:4 v/v, 10 mM HEPES ([host] = 2 mM, T = 293 K): peak absorption wavelengths $\lambda_{abs,max}$ (ϵ / M⁻¹ cm⁻¹) at 647 nm (117) and 775 nm (91) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T = 85 K): gII = 2.225 and $g\perp = 2.056$ ($AII = 183.0 \times 10^{-4}$ cm⁻¹).

Figure S40. High-resolution mass spectrum of receptor 11.20Tf.

Tripodal HB Cu(II)-receptor, 1H-2OTf

Figure S41. (left) UV-vis spectrum of **1H**·2OTf in CH₃CN/ H₂O 6:4 v/v, 10 mM HEPES ([host] = 2 mM, T = 293 K): peak absorption wavelengths $\lambda_{abs,max}$ (ϵ / M⁻¹ cm⁻¹) at 639 nm (125) and 760 nm (98) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T = 85 K): gII = 2.285 and $g\perp = 2.055$ ($AII = 180.0 \times 10^{-4}$ cm⁻¹).

Figure S42. High-resolution mass spectrum of receptor 1H.2OTf.

Figure S43. (left) UV-vis spectrum of **13I**·2OTf in CH₃CN/ H₂O 6:4 ν/ν , 10 mM HEPES (2 mM, T = 293 K): peak absorption wavelengths $\lambda_{abs,max}$ (ϵ / M⁻¹ cm⁻¹) at 645 nm (182) and 770 nm (119) (shoulder); (right) the corresponding X-band EPR spectrum in frozen solution (T = 85 K): gII = 2.225 and $g\perp = 2.065$ ($AII_1 = 185.0 \times 10^{-4}$ cm⁻¹, $AII_2 = 220.0 \times 10^{-4}$ cm⁻¹).

N.B. the asterisk denotes a smaller, secondary component of the EPR spectral signature, which is suggestive of a minority receptor species where there is a subtle difference in the coordination geometry of the Cu(II) center compared to that discussed in the main paper – possibly, a consequence of the nature of the sterically bulky $pm\beta CD$ -appendages which affect the metal's coordination sphere in frozen solution.

Figure S44. High-resolution mass spectrum of receptor 131.20Tf.

S4. Isothermal Titration Calorimetry (ITC) Studies and Data

S4.1 General comments and titration protocols

All isothermal titration calorimetry experiments were performed on a Microcal PEAQ-ITC automated system, utilising unbuffered distilled water at T = 298 K.

M²⁺ titration protocol for 6I and 13I

An initial concentration of the XB tripodal ligand of 0.5 mM was used, with a 4 mM solution of CuOTf₂ added in 35 aliquots. The data from the first addition of 0.5 μ L was discarded, with data collected for the subsequent 34 additions of 1 μ L. Heats of dilution were measured by a preliminary titration of individual solutions of the respective metal salt into unbuffered water. Values of K_a and ΔH were calculated using the MicroCal PEAQ-ITC Analysis Software, *via* a non-linear least squares regression fit of the experimental data to the one-set-of-sites model. These values were then used to determine the ΔG and ΔS values.

Figure S45. (top) Raw ITC data for the sequential addition of CuOTf₂ to **6I** (unbuffered water, T = 298 K); (bottom) integrated heat plot obtained from titration.

Figure S46. (top) Raw ITC data for the sequential addition of CuOTf₂ to **12I** (unbuffered water, T = 298 K); (bottom) integrated heat plot obtained from titration.

S5. UV-vis Experiments

S5.1 General information and titration protocol

All UV-vis spectroscopy titrations were performed on a T60U (PG Instruments Ltd) spectrophotometer and the data processed using the OriginPro 2015 software package. In each case, titrations were performed in the stated solvent systems at T = 293 K, using a standard 1 mL Hellma quartz cuvette with path length of 1 cm

M²⁺ titration protocol for **6I** with Cu(II) in CH₃CN

A 0.75 mL initial volume of the host was used at a concentration of 2 mM. A 15 mM solution of the cationic Cu(II) guest was prepared by dissolving copper triflate salt in a solution containing the same concentration of the host (*i.e.* 2 mM). Aliquots of the Cu(II) solution were added to the UV-vis cuvette, the samples thoroughly mixed using a syringe needle and the absorption spectra recorded at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 equivalents of cation (0.1 eq = 10 μ L). The absorbances for each addition, at a chosen wavelength (640 nm), were used to calculate the delta absorbances relative to the first absorbance reading. These values were then plotted versus the equivalents of the added Cu(II) guest for each aliquot, to obtain a qualitative isotherm which affirmed the expected 1:1 stoichiometry of ligand to metal binding.

Anion titration protocol for **1I**·2OTf, **1H**·2OTf and **13I**·2OTf in CH₃CN/ H₂O 6:4 v/v (at pH 6.3 with 10 mM HEPES)

In a typical titration experiment, a 0.75 mL initial volume of the host was used at a concentration of 2 mM, with 600 mM solutions of anion guests. Specifically, each of the anion solutions were prepared by dissolving the tetrabutylammonium salt of the desired anion in a solution containing the same concentration of the host (*i.e.* 2 mM), to ensure that the total host concentration remained constant throughout the titration - thus any absorption changes could be reasonably attributed to anion complexation and not dilution effects upon anion addition. Aliquots of anion solutions (1.0 eq = $2.5 \,\mu$ L) were added to the UV-vis cuvette, the samples thoroughly mixed using a syringe needle and the changes in the absorption spectra recorded from 0 equivalents to up to 100 equivalents of anion, with at least 15 data sets collected, until saturation of the binding curve was seen. After each aliquot addition, the spectra were calculated from the UV-vis titration data by non-linear global fitting analysis to a host-guest 1:1 or 1:2 stoichiometric binding model (as appropriate) using the Bindfit⁷ software, monitoring the change in absorbance in the range 800–850 nm.

N.B. The interaction of Cu(II) with the zwitterionic HEPES buffer has previously been shown to be negligible⁸ and hence the observed changes in the UV-vis titration spectra were attributed to arise invariably from the interactions of the guest anions with the respective Cu(II)-host.

S5.2 UV-vis titration data and isotherms

(A) XB Cu(II)-Tripod 11-20Tf

PPi³⁻ <u>CI</u>-OAc⁻ 0.4 Absorbance Absorbance 0.2 Absort 0.1 0.1 0.1 0.0 0.0 600 λ / nm 600 λ / nm 400 500 400 500 400 500 700 600 700 700 λ/nm (B) HB Cu(II)-Tripod 1H·2OTf <u>CI</u>-<u>Br</u>⁻ <u>OAc</u> 0.4 Absorbance 0.2 0.3 Absorb Abso 03 0.1 0.1 0.0 0.0 600 λ / nm 500 600 λ / nm 0.0 600 λ / nm 500 400 700 700 500 <u>H₂PO₄</u> <u>PMP</u>⁻ 0.4 0.4 pance Absorbance 0.3 osqv 0.2 0.2 0.1 0.1 0.0 0.0 400 600 λ/nm 400 500 500 λ/nm 0.0 eqv. - 1.0 eqv. – 2.0 eqv. - 5.0 eqv. 10.0 eqv. - 20.0 eqv. -— 60.0 eqv. — 100.0 eqv.

Figure S47. UV-vis titration spectra of (A) **1I**·2OTf and (B) **1H**·2OTf in the presence of up to 120 equivalents of various anions ([host] = 2 mM, CH₃CN/H₂O 6:4 buffered with 10 mM HEPES at pH 6.3, T = 293 K).

Figure S48. Plots of change in absorbance of **1I**-2OTf at 810 nm against equivalents of anion added ([host] = 2 mM, CH₃CN/H₂O 6:4 buffered with 10 mM HEPES at pH 6.3, T = 293 K).

Figure S49. Plots of change in absorbance of **1H**-2OTf at 810 nm against equivalents of anion added ([host] = 2 mM, CH₃CN/H₂O 6:4 buffered with 10 mM HEPES at pH 6.3, T = 293 K).

S6. EPR Experiments

S6.1 General information and titration protocol

All EPR spectroscopy titrations were performed on a Bruker EMXmicro continuous wave (CW) spectrometer (X-band) and the data processed using the OriginPro 2015 software package. In each case, titrations were performed in the stated solvent system at T = 293 K and the EPR spectra recorded at T = 85 K.

Anion titration protocol for 11-20Tf and 1H-20Tf in CH₃CN/ H₂O 6:4 v/v (at pH 6.3 with 10 mM HEPES)

In a typical titration experiment, a 0.75 mL initial volume of the host was used at a concentration of 2 mM, with 600 mM solutions of anion guests. Specifically, each of the anion solutions were prepared by dissolving the tetrabutylammonium salt of the desired anion in a solution containing the same concentration of the host (*i.e.* 2 mM), to ensure that the total host concentration remained constant throughout the titration - thus any spectral intensity changes could be reasonably attributed to anion complexation and not dilution effects upon anion addition. Aliquots of anion solutions (1.0 eq = 2.5μ L) were added to a solution of the host in a cuvette, the sample thoroughly mixed using a syringe needle and 100 µL of this host-guest solution taken for the EPR measurement. The sample solution in the EPR tube was then recombined with the rest of the solution in the cuvette, and the procedure repeated with the next addition of anion equivalents (up to 100 equivalents). At least 15 data sets of the changes in the EPR spectra were recorded, until saturation of the binding curve was seen. Anion association constants were calculated from the EPR titration data by non-linear global fitting analysis to a host-quest 1:2 stoichiometric binding model using the Bindfit⁷ software, monitoring the change in spectral signature intensity in the range 280-290 mT for both XB/HB receptors.

S7. Electrochemical Anion Sensing Studies

S7.1 General comments and titration protocols

All Cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV) voltammetric measurements were performed using an Autolab Potentiostat/Galvanostat model PG-STAT 12 (Metrohm Autolab, Netherlands), using a standard single compartment three-electrode electrochemical cell placed inside a Faraday cage and the data processed using the OriginPro 2015 software package. In each case, titrations were performed in the stated solvent systems at T = 293 K.

Titration protocol for 11.20Tf and 1H.20Tf in CH₃CN

The same three-electrode cell was used with the same working and counter electrodes as stated above except using a Ag/ AgCI (3.4 M KCI) leak-free reference electrode (Innovative Instruments) in a 0.1 M TBACIO₄ supporting electrolyte solution. All experiments were conducted in Argon purged solutions under an Argon blanket. The working electrode was polished with alumina slurry (0.05 µm) before each experiment. (In order to circumvent the development of junction potentials of the latter reference electrode in the presence of various ions a Ag/ AgCl reference electrode with a Pt wire frit was utilized for titration experiments). Prior to performing redox titration experiments, the redox reversibility of each receptor was first studied by recording successive CV scans at scan rates of 25, 50, 75, 100, 200, 400, 600 and 800 mV s⁻¹. After establishing receptor redox quasi-reversibility and reproducibility of each receptor's Cu^I/Cu^{II} E_{1/2} value, electrochemical SWV titrations were carried out using a 0.9 mL initial volume of the host at a concentration of 0.5 mM and the measurements recorded with 1 s equilibration time, utilising a frequency of 25 Hz, an amplitude of 20 mV and a step potential of 2 mV. A 100 mM solution of TBA Br was added in aliquots, the samples thoroughly mixed by mechanical agitation and the voltammograms recorded at 0, 1.0, 2.0, 10.0, 20.0, 35.0, 60.0 and 100.0 equivalents of anion (1.0 eq = 4.5 μ L). The delta $E_{1/2}$ values were recorded and plotted against the concentration of anion. The resulting binding isotherms were curve fit as described by Schöllhorn.9

Electrochemical reversibility studies of **1I**·2OTf and **1H**·2OTf in water were also performed by recording CV scans (at the same scan rates as above) and a SWV voltammogram (using the same parameters as above). The same three-electrode cell was used as above, with the same working, counter and reference electrodes instead in a 0.05 M KPF₆ supporting electrolyte solution. A host solution of 0.25 mM was used for all measurements.

S7.2 Criteria for reversibility

For a reversible electrochemical system displaying fast electron transfer kinetics, the following criteria needs to be met:

- *E*_{pa} and *E*_{pc} independent of scan rate
- *I*_{pa}/ *I*_{pc} = 1
- $\Delta E_p = (E_{pa} E_{pc}) = (59/n)$ mV, where *n* is the number of electrons transferred during the redox process. Therefore, for a one-electron transfer process, the difference = 59 mV.
- I_{pa} and I_{pc} varies proportionally to the square root of the scan rate.

For all of the following receptors described herein, E_{pa} and E_{pc} were almost independent of scan rate at lower rates. With a few exceptions, I_{pa} / I_{pc} are typically in the range of 0.90 – 1.10 and ΔE_p show notable variations from 60 mV to 260 mV. In all cases, I_{pa} and I_{pc} vary almost proportionally with the square root of the scan rate (Pearsons's R² > 0.94). Thus the redoxactive hosts generally showed 'quasi-reversible' electrochemical behaviour.

S7.3 Electrochemical Reversibility Studies

XB Cu(II)-tripod, 1I-20Tf

Studies performed in 0.1 M TBACIO₄ in anhydrous CH₃CN.

Figure S50. CV's of 11-2OTf at different scan rates ([host] = 0.5 mM, T = 293 K).

Table S1. Values of E _{pc}	, E _{pa} , I _{pc} , I _{pa}	ΔE and I_{pa}/I_{pc} for	11.20Tf at different scan rates.
-------------------------------------	---	------------------------------------	----------------------------------

Scan rate/ mV s ⁻¹	E _{pa} / V	Epc/V	<i>I_{pa}</i> / μΑ	<i>Ι_{ρσ}/</i> μΑ	$\Delta E_{ ho}/V$	I _{pa} /I _{pc}
25	0.381	0.268	3.119	3.284	0.113	0.949
50	0.391	0.266	4.143	4.372	0.125	0.948
75	0.393	0.261	4.764	5.173	0.132	0.921
100	0.395	0.256	5.219	5.683	0.139	0.918
200	0.403	0.246	6.839	7.441	0.157	0.919
400	0.422	0.232	8.808	9.957	0.19	0.885
600	0.439	0.222	9.947	11.297	0.217	0.880
800	0.481	0.219	10.084	12.149	0.262	0.830

Figure S51. Plots of (left) I_{pa} and (right) I_{pc} against (scan rate)^{1/2} for 11.20Tf.

HB Cu(II)-tripod, 1H-2OTf

Studies performed in 0.1 M TBACIO₄ in anhydrous CH₃CN.

Figure S52. CV's of 1H·2OTf at different scan rates ([host] = 0.5 mM, T = 293 K).

Table S2. Values of E_{pc} , E_{pa} , I_{pc} , I_{pa} , ΔE and I_{pa}/I_{pc} for 1H ·2OTf at different	scan rates
--	------------

Scan rate/ mV s ⁻¹	E _{pa} / V	Epc/V	<i>I_{pa}</i> / μΑ	<i>Ι_{pc}</i> / μΑ	$\Delta E_{ ho}$ /V	I _{pa} /I _{pc}
25	0.288	0.219	2.951	2.883	0.069	1.024
50	0.290	0.215	4.191	4.192	0.075	0.999
75	0.295	0.210	5.051	5.074	0.085	0.995
100	0.293	0.210	5.744	5.839	0.083	0.984
200	0.295	0.210	8.029	8.384	0.085	0.958
400	0.300	0.205	10.981	11.442	0.095	0.959
600	0.302	0.205	13.161	13.821	0.097	0.952
800	0.310	0.202	14.892	15.642	0.108	0.952

Figure S53. Plots of (left) I_{pa} and (right) I_{pc} against (scan rate)^{1/2} for 1H-2OTf.

XB Cu(II)-tripod, 1I-20Tf

Studies performed in 0.05 M KPF₆ in pure H_2O .

Figure S54. CV's of 11.2OTf at different scan rates ([host] = 0.25 mM, T = 293 K).

Scan rate/	E _{pa} / V	Epc/V	<i>I_{pa}</i> / μΑ	<i>Ι_{ρσ}/</i> μΑ	$\Delta E_{ ho}/V$	I _{pa} /I _{pc}
1117.5						
25	0.291	0.071	1.021	1.016	0.22	1.005
50	0.269	0.079	1.515	1.553	0.19	0.976
75	0.269	0.078	2.046	1.844	0.191	1.109
100	0.271	0.081	2.259	2.521	0.19	0.896
200	0.279	0.083	3.286	3.225	0.196	1.019
400	0.279	0.096	4.842	4.771	0.183	1.015
600	0.276	0.105	6.159	5.913	0.171	1.042
800	0.276	0.115	6.968	7.493	0.161	0.929

Table S3. Values of E_{pc} , E_{pa} , I_{pc} , I_{pa} , ΔE and I_{pa}/I_{pc} for **1**I-2OTf at different scan rates.

Figure S55. Plots of (left) I_{pa} and (right) I_{pc} against (scan rate)^{1/2} for 11-20Tf.

HB Cu(II)-tripod, 1H-2OTf

Studies performed in 0.05 M KPF₆ in pure H_2O .

Figure S56. CV's of 1H·2OTf at different scan rates ([host] = 0.25 mM, T = 293 K).

Scan rate/	E _{pa} / V	Epd V	<i>I_{pa}</i> / μA	I _{pc} / μΑ	$\Delta E_{p}/V$	I _{pa} /I _{pc}
mv s '						
25	0.191	0.039	2.726	1.667	0.152	1.635
50	0.19	0.037	3.507	2.395	0.153	1.464
75	0.191	0.044	3.918	3.304	0.147	1.186
100	0.191	0.042	4.244	3.640	0.149	1.166
200	0.193	0.044	5.476	5.355	0.149	1.023
400	0.196	0.044	7.406	7.919	0.152	0.935
600	0.205	0.044	9.198	9.781	0.161	0.940
800	0.203	0.041	10.728	11.501	0.162	0.933

Table S4. Values of E_{pc} , E_{pa} , I_{pc} , I_{pa} , ΔE and I_{pa}/I_{pc} for **1H**·2OTf at different scan rates.

Figure S57. Plots of (left) I_{pa} and (right) I_{pc} against (scan rate)^{1/2} for **1H**·2OTf.

S8. References

- 1 B.-Y. Lee, S. R. Park, H. B. Jeon and K. S. Kim, *Tetrahedron Lett.*, 2006, **47**, 5105–5109.
- 2 T. Zhang and E. V. Anslyn, *Tetrahedron*, 2004, **60**, 11117–11124.
- 3 T. Shiraki, A. Dawn, Y. Tsuchiya and S. Shinkai, *J. Am. Chem. Soc.*, 2010, **132**, 13928–13935.
- 4 J. Chao, W.-Y. Huang, J. Wang, S.-J. Xiao, Y.-C. Tang and J.-N. Liu, *Biomacromolecules*, 2009, **10**, 877–883.
- 5 T. Bunchuay, A. Docker, A. J. Martinez-Martinez and P. D. Beer, *Angew. Chem. Int. Ed.*, 2019, **58**, 13823–13827.
- 6 M. J. Langton, S. W. Robinson, I. Marques, V. Félix and P. D. Beer, *Nat. Chem.*, 2014, **6**, 1039–1043.
- 7 P. Thordarson, *Chem. Soc. Rev.*, 2011, **40**, 1305–1323.
- 8 S. L. Tobey and E. V. Anslyn, J. Am. Chem. Soc., 2003, 125, 14807–14815.
- 9 R. Oliveira, S. Groni, C. Fave, M. Branca, F. Mavré, D. Lorcy, M. Fourmigué and B. Schöllhorn, *Phys. Chem. Chem. Phys.*, 2016, **18**, 15867–15873.