Hydrothermal synthesis of (Zr,U)SiO₄, an efficient pathway to incorporate uranium in zircon

Paul Estevenon¹, Thomas Barral², Arthur Avallone², Mateo Jeffredo², Alexis De La Hos²,
Andrew Strzelecki^{3,4,5}, Xavier Le Goff², Stephanie Szenknect², Kristina Kvashnina^{6,7},
Philippe Moisy¹, Renaud Podor², Xiaofeng Guo^{3,4,5}, Nicolas Dacheux^{2,*}

¹ CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France

² ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Bagnols-sur-Cèze, France

³ Department of Chemistry, Washington State University, Pullman, Washington 99164, United States

⁴ Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States

⁵ Materials Science and Engineering, Washington State University, Pullman, Washington 99164, United States

⁶ Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology, 01314

Dresden, Germany

⁷ The Rossendorf Beamline at ESRF–The European Synchrotron, 38043 Grenoble, Cedex 9, France

SUPPORTING INFORMATION

Table SI 1. Synthesis parameters for the presented (Zr,U)SiO4 hydrothermal syntheses(starting pH = 3.0, $T = 250^{\circ}C$ and t = 7 days).

Label	Zr:U mol ratio	C _{Zr} (mol·L ⁻¹)	C _U (mol·L ⁻¹)	Final phase
(1)	100:0	0.20	0.00	$ZrSiO_4$
(2)	90:10	0.18	0.02	(Zr,U)SiO ₄
(3)	80:20	0.16	0.04	$(Zr,U)SiO_4 + UO_2$
(4)	70:30	0.14	0.06	$(Zr,U)SiO_4 + UO_2$
(5)	60:40	0.12	0.08	$(Zr,U)SiO_4 + UO_2$
(6)	50:50	0.10	0.10	$(Zr,U)SiO_4 + UO_2$
(7)	40:60	0.08	0.12	$(Zr,U)SiO_4 + UO_2$
(8)	30:70	0.06	0.14	$(Zr,U)O_2$
(9)	20:80	0.04	0.16	$(Zr,U)O_2$
(10)	90:10	0.02	0.18	$(Zr,U)O_2$

Table SI 2. Unit cell and volume of the zircon-type phase obtained by Rietveld refinements performed from PXRD patterns of pristine $(Zr,U)SiO_4$ solid solutions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ with different chemical compositions.

		Pristine samples			Purified samples			Annealed at 1200°C		
	$\frac{U}{Zr+U}$	a (Å)	c (Å)	$V(Å^3)$	a (Å)	c (Å)	$V(Å^3)$	a (Å)	c (Å)	$V(Å^3)$
(1)	0	6.6103(5)	5.9768(4)	261.16(6)	6.6103(5)	5.9768(4)	261.16(6)	6.6025(5)	5.9770(5)	260.55(6)
(2)	0.1	6.6306(6)	5.9927 (6)	263.47(8)	6.6306(6)	5.9927 (6)	263.47(8)	6.631(1)	5.999(1)	263.8(2)
(3)	0.2	6.7341(5)	6.0556(6)	274.61(7)	6.725(2)	6.049(2)	273.6(2)	6.677(2)	6.033(2)	268.9(3)
(4)	0.3	6.7468(7)	6.0648(7)	276.06(9)	6.740(2)	6.063(2)	275.4(2)	6.723(1)	6.063(1)	274.0(1)
(5)	0.4	6.7697(5)	6.0796(5)	278.62(7)	6.761(1)	6.078(1)	277.8(1)	6.753(1)	6.085(1)	277.5(2)
(6)	0.5	6.7997(9)	6.099(1)	282.0(1)	6.793(3)	6.098(3)	281.4(4)	6.782(1)	6.105(1)	280.8(1)
(7)	0.6	6.8343(7)	6.1174(7)	285.73(9)	6.827(2)	6.117(2)	285.1(3)	6.807(1)	6.122(1)	283.6(1)

Table SI 3.Unit cell and volume of oxide phases obtained from PXRD patterns of pristine
 $(Zr,U)SiO_4$ solid solutions prepared under hydrothermal conditions (T = 250°C,
7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹
with different chemical compositions.

		UC) _{2+x}	(Zr,U)O _{2+x}		
	$\frac{U}{Zr+U}$	a (Å)	$V(Å^3)$	a (Å)	$V(Å^3)$	
(3)	0.2	5.4703(3)	163.69(3)	-	-	
(4)	0.3	5.467(1)	163.4(1)	-	-	
(5)	0.4	5.4698(5)	163.65(4)	5.437(1)	160.7(1)	
(6)	0.5	5.4636(7)	163.09(6)	5.353(5)	153.4(5)	
(7)	0.6	5.460(2)	162.8(2)	5.385(1)	156.2(1)	
(8)	0.7	5.463(1)	163.06(9)	5.386(2)	156.3(2)	
(9)	0.8	5.4588(5)	162.66(5)	5.419(2)	159.1(2)	
(10)	0.9	5.464(2)	163.1(2)	5.445(1)	161.4(1)	

Figure SI 1. Unit cell parameters *a* obtained by Rietveld refinements for the oxide phases performed from PXRD patterns of pristine $(Zr,U)SiO_4$ solid solutions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ with different chemical compositions.

Figure SI 2. First derivative of the infrared spectra, focussed on the SiO₄ group v₄ band, recorded for pristine (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions without purification (T = 250°C, 7 days, pH = 3.0) from Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 100:0 (1), 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7), 30:70 (8), 20:80 (9) and 10:90 (10). The reference ZrSiO₄ v₄ band position has been taken from ref. ⁹¹

Figure SI 3. First derivative of the Raman spectra, focussed on the SiO₄ group v₃ band, recorded for pristine (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions without purification (T = 250°C, 7 days, pH = 3.0) from Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 100:0 (1), 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7), 30:70 (8), 20:80 (9) and 10:90 (10). Reference ZrSiO₄ and USiO₄ v₃ band positions taken from ref ⁹³.

Figure SI 4. Position of the v_2 band in Raman spectroscopy plotted as a function of the expected U/(Zr+U) molar fraction for pristine (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting from Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 100:0 (1), 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6) and 40:60 (7). Reference ZrSiO₄ and USiO₄ v_2 band positions taken from ref ⁹³. The shaded area corresponds to the expected linear variation of the v_2 band of the SiO₄ group in Raman spectroscopy, based on reference values reported in the literature, with a confidence interval of 5 cm⁻¹.

Figure SI 5. First derivative of the Raman spectra, focussed on the SiO₄ group v_2 band, recorded for pristine (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions without purification (T = 250°C, 7 days, pH = 3.0) from Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 100:0 (1), 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7), 30:70 (8), 20:80 (9) and 10:90 (10). Reference ZrSiO₄ and USiO₄ v_2 band positions taken from ref ⁹³.

Figure SI 6. Infrared spectra recorded for purified $(Zr,U)SiO_4$ solid solutions of different chemical compositions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7) and washed in nitric media.

Figure SI 7. SEM micrographs of purified (Zr,U)SiO₄ solid solutions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 80:20 (3) (a, b and c), 60:40 (5) (d, e and f) and 40:60 (7) (g, h and i) and washed in nitric media.

Figure SI 8. Results of Thermogravimetric analyses recorded in inert atmosphere (Ar) for purified (Zr,U)SiO₄ solid solutions of different chemical compositions prepared under hydrothermal conditions (T = 250° C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7) and after washing in nitric media.

Figure SI 9. PXRD patterns recorded for purified (Zr,U)SiO₄ solid solutions heated at 1000°C under argon atmosphere with different chemical compositions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0) starting with Zr + U and silicate concentrations of 0.2 mol·L⁻¹ for Zr:U = 90:10 (2), 80:20 (3), 70:30 (4), 60:40 (5), 50:50 (6), 40:60 (7). Bragg positions of the characteristic peaks of ZrSiO₄ and UO₂ were extracted from Refs ⁸⁹ and ⁹⁴.

Figure SI 10. Position of the v_4 band in infrared spectroscopy plotted as a function of the expected U/(Zr+U) molar fraction for pristine, purified and calcined (Zr,U)SiO₄ solid solutions (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0). The reference ZrSiO₄ v_4 band position has been taken from ref. ⁹¹ The shaded area corresponds to the expected linear variation of the v_4 band of the SiO₄ group in IR spectroscopy, based on reference values reported in the literature, with a confidence interval of 5 cm⁻¹.

Figure SI 11. Position of the v₃ band in Raman spectroscopy plotted as a function of the expected U/(Zr+U) molar fraction for pristine and calcined (Zr,U)SiO₄ solid solutions (Zr,U)SiO₄ solid solutions with different chemical compositions

prepared under hydrothermal conditions (T = 250° C, 7 days, pH = 3.0). Reference ZrSiO₄ and USiO₄ v₃ band positions taken from ref ⁹³. The shaded area corresponds to the expected linear variation of the v₃ band of the SiO₄ group in Raman spectroscopy, based on reference values reported in the literature, with a confidence interval of 5 cm⁻¹.

Figure SI 12. Position of the v_2 band in Raman spectroscopy plotted as a function of the expected U/(Zr+U) molar fraction for pristine and calcined (Zr,U)SiO₄ solid solutions (Zr,U)SiO₄ solid solutions with different chemical compositions prepared under hydrothermal conditions (T = 250°C, 7 days, pH = 3.0). Reference ZrSiO₄ and USiO₄ v_2 band positions taken from ref ⁹³. The shaded area corresponds to the expected linear variation of the v_2 band of the SiO₄ group in Raman spectroscopy, based on reference values reported in the literature, with a confidence interval of 5 cm⁻¹.