Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Reactivity study of Lewis superacidic carborane-based analogue of 9-

bromo-9-borafluorene towards Lewis bases

Libo Xiang,^{a,b} Alexander Matler,^{a,b} Leibo Tan,^{a,b} Qing Ye*^{a,b}

^a Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)

^b Institute for Sustainable Chemistry& Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland, 97074 Würzburg (Germany)

E-mail: qing.ye@uni-wuerzburg.de

Contents

Contents	2
Experimental procedures	3
Synthesis and characterization	4
NMR Spectroscopy	8
Crystallographic Details	27
Reference	32

Experimental procedures

General remarks

Unless otherwise noted, the following conditions apply.

All the manipulations were carried out using standard schlenk lines or glovebox under an argon atmosphere. All the solvents were dried following standard techniques. Deuterated benzene was distilled from Na/K and stored under an argon atmosphere before use. Ph₃P, Cy₃P, Et₃P and ^tBuNC were purchased form commercial sources and used without further purification. $(C_2B_{10}H_{10})_2BBr$ $(1)^1$, ^{Me}l/Pr², and MesNC³ were synthesized according to the literature. Other reagents were used as received without further purification.

The nuclear magnetic resonance spectroscopy was recorded on a Bruker Avance-400 (¹H 400.1 MHz; ¹¹B 128.5 MHz; ¹³C 101 MHz; ³¹P: 162. MHz) spectrometer at room temperature. ¹¹B NMR, ¹¹B{¹H} spectra were referenced relative to 15% BF₃·OEt₂. ³¹P{¹H} NMR chemical shifts are relative to 85% H₃PO₄. High-resolution mass spectrometry (HRMS) was performed with a Thermo Fisher Scientific Q-Exactive MS System. Elemental analysis (C, H, N) was performed on a vario micro cube CHNS analyzer.

Synthesis and characterization

Synthetic protocols for 2

The 1 mL toluene solution of phosphines ligands (0.32 mmol) was slowly added to a solution of **1** (106 mg, 0.32 mmol) in 5 mL hexane at -78 °C. The reaction mixture was allowed to gradually warm to room temperature for a period of 4 h. The precipitate was collected through filtration and washed with hexane (3*2 mL). The remaining solid was dried under high vacuum to give the crude product as a white solid. The analytically pure product was crystallized from concentrated toluene solution at -30 °C for 12 h to yield **2** as a colorless crystalline solid.

For **2a:**

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 1.88 to 3.78 (m, 20H, BH), 6.72 to 6.77 (m, 2H, *H* of Ph), 6.86 to 6.96 (m, 7H, *H* of Ph), 7.36 to 7.42 (m, 2H, *H* of Ph), 7.90 to 7.95 (m, 4H, *H* of Ph). ¹**H**{¹¹**B**} **NMR** (400 MHz, C₆D₆): δ [ppm] = 2.26 (s, 2H, BH), 2.61 (s, 8H, BH), 2.85 (s, 3H, BH), 3.04 (s, 5H, BH), 4.08 (s, 2H, BH), 6.72 to 6.78 (m, 2H, *H* of Ph), 6.87 to 6.96 (m, 7H, Ph), 6

Ph), 7.37 to 7.42 (m, 2H, *H* of Ph), 7.90 to 7.95 (m, 4H, *H* of Ph). ¹¹B NMR (128 MHz, C₆D₆): δ [ppm] = 1.09 (d. *J* = 145.3 Hz, *B*_{carborane}), -3.87 (d. *J* = 156.4 Hz, *B*_{carborane}), -7.00 to -10.70 (m, *B*_{carborane}). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ [ppm] = 1.06 (s, *B*_{carborane}), -3.85 (s, *C*_{carbene}B), -6.15 (s, *B*_{carborane}), -7.39 (s, *B*_{carborane}), -10.18 (s, *B*_{carborane}). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ [ppm] = 4.14 (q. *J* = 125.8 Hz). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ [ppm] = 80.8 (s, *C*_{carborane}), 121.4 (d, *J*_{P-C} = 57.6 Hz. *C* of Ph), 124.1 (d, *J*_{P-C} = 68.3 Hz. *C* of Ph), 128.2 (d, *J*_{P-C} = 10.9 Hz. *C* of Ph), 128.7 (d, *J*_{P-C} = 11.2 Hz. *C* of Ph), 132.7 (d, *J*_{P-C} = 2.9 Hz. *C* of Ph), 133.2 (d, *J*_{P-C} = 3.0 Hz. *C* of Ph), 134.7 (d, *J*_{P-C} = 8.6 Hz. *C* of Ph), 135.7 (d, *J*_{P-C} = 9.3 Hz. *C* of Ph). Elemental analysis: calcd. for C₂₂H₃₅B₂₁BrP, C, 41.46; H, 5.53; found C, 41.59; H, 5.84. Yield: 78 % (150.9 mg, 0.25 mmol).

For **2b**:

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 1.29 to 1.52 (m, 12H, *H* of Cy), 1.78 to 2.07 (m, 22H, *H* of Cy), 2.18 to 3.96 (m, 20H, B*H*). ¹**H**{¹¹**B**} **NMR** (400 MHz, C₆D₆): δ [ppm] = 1.26 to 1.52 (m, 12H, *H* of Cy), 1.78 to 1.20 (m, 21H, *H* of Cy), 2.28 to 2.48 (s, 17H, B*H*), 2.72 to 2.80 (s, 1H, B*H*), 3.22 (s, 1H, B*H*), 3.61 (s, 1H, B*H*). ¹¹**B NMR** (128 MHz, C₆D₆): δ [ppm] = 0.50 (d. *J*

= 130.8 Hz, $B_{carborane}$), -5.37 to -8.29 (m, $B_{carborane}$). ¹¹B{¹H} NMR (128 MHz, C_6D_6): δ [ppm] = 0.42 (s, $B_{carborane}$), -4.61 (s, $C_{carbene}B$), -5.31 (s, $B_{carborane}$), -6.38 (s, $B_{carborane}$), -7.89 (s, $B_{carborane}$), -10.32 (s, $B_{carborane}$). ³¹P{¹H} NMR (162 MHz, C_6D_6): δ [ppm] = 8.8 (q. J = 140.3 Hz). ¹³C{¹H} NMR (100 MHz, C_6D_6): δ [ppm] = 25.6 (d, J_{P-C} = 1.3 Hz. C of Cy), 25.8 (d, J_{P-C} = 1.3 Hz. C of Cy), 26.9 (d, J_{P-C} = 11.5 Hz. C of Cy), 27.6 (d, J_{P-C} = 10.5 Hz. C of Cy), 27.9 (d, J_{P-C} = 9.6 Hz. C of Cy), 28.6 (d, J_{P-C} = 2.1 Hz. C of Cy),

29.6 (d, $J_{P-C} = 5.6$ Hz. C of Cy), 29.7 (d, $J_{P-C} = 4.6$ Hz. C of Cy), 32.2 (d, $J_{P-C} = 23.1$ Hz. C of Cy), 35.1 (d, $J_{P-C} = 30.1$ Hz. C of Cy), 80.7 (s, $C_{carborane}$). **HRMS**: [M-Br]⁺ calcd. for $C_{22}B_{21}H_{53}P$, 575.5984; found 575.5960. Yield: 86 % (180.1 mg, 0.27 mmol).

For **2c:**

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 0.44 to 0.51 (m, 9H, *H* of CH₂CH₃), 1.54 (quintet, *J* = 8.5 Hz, 6H, CH₂CH₃), 2.11 to 3.77 (br. m, 20H, BH). ¹**H**{¹¹**B**} **NMR** (400 MHz, C₆D₆): δ [ppm] = 0.44 to 0.52 (m, 9H, CH₂CH₃), 1.54 (quintet, *J* = 8.4 Hz, 6H, CH₂CH₃), 2.18 (s, 2H, BH), 2.63 (s, 2H, BH), 2.74 (s, 4H, BH), 2.80 (s, 2H, BH), 2.89 (s, 2H, BH), 3.00 (s, 2H, BH), 3.06

(s, 4H, B*H*), 3.84 (s, 2H, B*H*). ¹¹B NMR (128 MHz, C₆D₆): δ [ppm] = 0.49 (d. *J* = 149.9 Hz, *B*_{carborane}), -3.87 (d. *J* = 149.7 Hz, *B*_{carborane}), -5.35 to -10.99 (m, *B*_{carborane}). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ [ppm] = 0.30 (s, *B*_{carborane}), -4.03 (s, *C*_{carbene}B), -5.97 (s, *B*_{carborane}), -7.61 (s, *B*_{carborane}), -10.50 (s, *B*_{carborane}). ³¹P{¹H} NMR (162 MHz, C₆D₆): δ [ppm] = 1.5 (q. *J* = 123.0 Hz). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ [ppm] = 7.5 (d, *J*_{P-C} = 6.6 Hz. CH₂CH₃), 13.9 (d, *J*_{P-C} = 38.3 Hz. *C*H₂CH₃), 80.9 (s). HRMS: [M-Br]⁺ calcd. for C₁₀B₂₁H₃₅P, 413.4576; found 413.4565. Yield: 81 % (127.6 mg, 0.26 mmol).

Synthetic protocols for 3

The 1 mL toluene solution of isocyanide (0.32 mmol) was slowly added to a solution of **1** (106 mg, 0.32 mmol) in 5 mL hexane at -78 °C. The reaction mixture was allowed to gradually warm to room temperature for a period of 4 h. The precipitate was collected through filtration and washed with hexane (3*2 mL). The remaining solid was dried under high vacuum to give the crude product as a white solid. The analytically pure product was crystallized from concentrated toluene solution at -30 °C for 12 h to yield crystalline solids.

For 3a:

¹**H NMR** (400 MHz, C_6D_6): δ [ppm] = 1.75 (s, 3H, CCH₃), 1.78 (s, 6H, CCH₃), 2.13 to 3.63 (br. m, 20H, BH), 6.10 (s, 2H, H of Ar). ¹**H**{¹¹**B**} **NMR** (400 MHz, C_6D_6): δ [ppm] = 1.75 (s, 3H, CCH₃), 1.79 (s, 6H, CCH₃), 2.49 (s, 2H, BH), 2.69 (s, 4H, BH), 2.87 (s, 2H, BH), 2.98 (s, 6H, BH), 3.06 (s, 2H, NCH₃), 3.39 (s, 2H, BH), 3.70 (s, 2H, BH). ¹¹**B NMR** (128 MHz, C_6D_6): δ [ppm] = 0.11 (d. *J* = 157.6 Hz, *B*_{carborane}), -3.40 (d. *J* = 158.0 Hz, *B*_{carborane}), -6.18 to -11.62 (m, *B*_{carborane}), -12.84 (s, C_{isocyanide}*B*). ¹¹**B**{**1H**} **NMR** (128 MHz,

C₆D₆): δ [ppm] = 0.08 (s, *B*_{carborane}), -3.43 (s, C_{isocyanide}*B*), -6.61 (s, *B*_{carborane}), -9.13 (s, *B*_{carborane}), -11.00 (s, *B*_{carborane}), -12.85 (s, C_{isocyanide}*B*). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ [ppm] = 17.5 (s, *C*CH₃), 20.7 (s, CCH₃), 80.7 (s, *C*_{carborane}), 129.1 (s, *C* of Ar), 137.4 (s, *C* of Ar), 144.1 (s, *C* of Ar). HRMS (LIFDI): calc. for C₁₄B₂₁H₃₁BrN, 519.3739; found 519.3736. Yield: 76 % (125.8 mg, 0.24 mmol).

For **3b**:

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 0.45 (s, 9H, C(CH₃)₃), 2.11 to 3.77 (br. m, 20H, BH). ¹**H**{¹¹**B**} **NMR** (400 MHz, C₆D₆): δ [ppm] = 0.46 (s, 9H, C(CH₃)₃), 2.35 (s, 2H, BH), 2.67 (s, 4H, BH), 2.86 (s, 2H, BH), 2.94 (s, 2H, BH), 3.05 (s, 6H, BH), 3.15 (s, 2H, NCH₃), 3.62 (s, 2H, BH). ¹¹**B NMR** (128 MHz, C₆D₆): δ [ppm] = 0.04 (d. *J* = 146.6 Hz, *B*_{carborane}), -3.44 (d. *J* = 153.5 Hz, C_{isocyanide}B), -6.25 to -10.04 (m, *B*_{carborane}), -13.88 (s, C_{isocyanide}B). ¹¹**B**{¹**H**} **NMR** (128 MHz, C₆D₆): δ [ppm] = -0.19 (s, C₁)

 $B_{carborane}$), -3.68 (s, C_{isocyanide}B), -6.97 (s, $B_{carborane}$), -9.43 (s, $B_{carborane}$), -11.43 (s, $B_{carborane}$), -13.96 (s, C_{isocyanide}B). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ [ppm] = 27.2 (s, C(CH₃)₃), 62.1 (s, C(CH₃)₃), 80.7 (s, C_{carborane}). HRMS [M-Br]⁺ calcd. for C₉B₂₁H₂₉N, 378.4399; found 378.4394. Yield: 87 % (127.3 mg, 0.28 mmol).

Synthesis of 4

Path A: In an argon-filled glove box, ^{Me}I/Pr (60 mg, 0.32 mmol) was added to a solution of **1** (106 mg, 0.32 mmol) in toluene (5 mL). The reaction mixture was stirred at room temperature, leading to an immediate color change to orange. The orange suspension was further stirred at room temperature for 12 h, then all volatiles were removed under high vacuum. The obtained solid was washed with hexane (3*2 mL). The remaining solid was extracted with 2 mL toluene. The toluene solution was concentrated and stored at -30 °C for 12 h to yield **4** an orange crystalline solid.

¹**H NMR** (400 MHz, C₆D₆): δ [ppm] = 0.84 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 0.99 (d, *J* = 6.9 Hz, 3H, CH(CH₃)₂), 1.07 (d, *J* = 7.0 Hz, 3H, CH(CH₃)₂), 1.18 (s, 3H, CCH₃), 1.33 (dd, *J* = 14.5, 7.8 Hz, 1H, BCH₂CH), 1.42 (s, 3H, CCH₃), 1.89 (dd, *J* = 14.8, 7.7 Hz, 1H, BCH₂CH), 3.67 (sept, *J* = 6.8 Hz, 1H, CH(CH₃)₂), 4.98 (sept, J = 6.8 Hz, 1H, CHCH₃). ¹H{¹¹B} NMR (400 MHz, C₆D₆): δ [ppm] = 0.85 (d, *J* = 6.4 Hz, 3H, CH(CH₃)₂), 1.00 (d, *J* = 6.9 Hz, 3H, CH(CH₃)₂), 1.08 (d, *J* = 7.0 Hz, 3H, CH(CH₃)₂), 1.19 (s, 3H, CCH₃), 1.33

(dd, J = 14.4, 6.7 Hz, 1H, BCH₂CH), 1.42 (s, 3H, CCH₃), 1.89 (dd, J = 14.3, 7.9 Hz, 1H, BCH₂CH), 2.25 (s, 1H, BH), 2.45 (s, 1H, BH), 2.61 (s, 1H, BH), 2.84 to 3.09 (m, 14H, BH), 3.36 (s, 1H, BH), 3.50 (s, 2H, BH), 3.66 (sept, J = 6.8 Hz, 1H, CH(CH₃)₂), 4.98 (sept, J = 6.8 Hz, 1H, CHCH₃). ¹¹B NMR (128 MHz, C₆D₆): δ [ppm] = -0.96 (d. J = 128.1 Hz, $B_{carborane}$), -3.87 (d. J = 171.3 Hz, $B_{carborane}$), -6.11 to -7.04 (m, $B_{carborane}$), -8.03 (s, CH₂B), -9.57(s, $B_{carborane}$). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ [ppm] = -1.26 (s, C_{carborane}), -4.19 (s, $B_{carborane}$), -7.31 (s, $B_{carborane}$), -8.11 (s, CH₂B), -9.40 (s, $B_{carborane}$). ³C{¹H} NMR (100 MHz, C₆D₆): δ [ppm] = 7.9 (s, C(CH₃)), 9.9 (s, C(CH₃)), 21.0 (s, CH(CH₃)), 21.3 (s, C(CH₃)), 22.8 (s, C(CH₃)), 38.1 (br, s, BCH₂), 50.75 (s, CH(CH₃)₂), 54.2 (s, CHCH₃), 80.6 (s, C_{carborane}), 128.2 (s, CCH₃) HRMS (LIFDI): calc. for C₁₅B₂₁N₂H₃₉, 474.5213; found 474.5207. Yield: 34 % (51.6 mg, 0.11 mmol).

Path B: In an argon-filled glove box, a 1 mL benzene solution of ^{Me}I*i*Pr (30 mg, 0.16 mmol) was dropwise added to a 3 mL benzene solution of **1** (106 mg, 0.32 mmol). The reaction mixture was stirred for 10 min to afford a yellowish-green solid **5**. Then added ^{Me}I*i*Pr (30 mg, 0.16 mmol) dropwise to it and stir overnight as the color of the solution changes to orange. The **5** was obtained after the removal of all volatiles under high vacuum.

Note: **5** decomposes in $CDCl_3$ and CD_2Cl_2 . Therefore, NMR spectra of **5** were acquired in C_6D_6 despite its poor solubility in C_6D_6 . As a consequence, the NMR signals are weak and some of the signals were not observed.

¹**H NMR** (500 MHz, C_6D_6): δ [ppm] = 0.74 (d, J = 6.7 Hz, 12H, CH(CH₃)₂), 1.28 (s, 6H, CH₃), 3.27 (sept,

J = 6.8 Hz, $CH(CH_3)_2$), 2.06 to 3.44 (br. m, BH). ¹¹B NMR (160 MHz, C_6D_6): δ [ppm] = -0.25 (s), -3.71 (d, J = 142.5 Hz, $B_{carborane}$), -5.33 to -8.15 (m, $B_{carborane}$). ¹¹B{¹H} NMR (160 MHz, C_6D_6): δ [ppm] = -0.26 (s), -3.87 (s, $B_{carborane}$), -7.30 (m, $B_{carborane}$). ¹³C{¹H} NMR (125 MHz, C_6D_6): δ [ppm] = 7.4 (s, CH₃), 21.6 (s, CH₃), 50.2 (s, CHCH₃), 80.4 (s, $C_{carborane}$), 128.0 (s, CCH₃)

HRMS (m/z): [M]+ calcd. for $C_{15}H_{40}B_{21}N_2$, 479.5146; found 479.5140. Yield: 69 % (112.4 mg, 0.12 mmol).

NMR Spectroscopy

Figure S1. ¹H NMR spectra of 2a in C₆D₆ at 298 K.

Figure S2. ${}^{1}H{}^{11}B{}$ NMR spectra of 2a in C₆D₆ at 298 K.

Figure S3. ¹¹B NMR spectra of 2a in C₆D₆ at 298 K.

Figure S4. ${}^{11}B{}^{1}H$ NMR spectra of **2a** in C₆D₆ at 298 K.

Figure S5. ³¹P{¹H} NMR spectrum of **2a** in C₆D₆ at 298 K.

Figure S6. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectra of 2a in C_6D_6 at 298 K.

Figure S7. ¹H NMR spectra of 2b in C₆D₆ at 298 K.

Figure S8. $^1H\{^{11}B\}$ NMR spectra of 2b in C_6D_6 at 298 K.

Figure S9. ¹¹B NMR spectra of 2b in C₆D₆ at 298 K.

Figure S10. ${}^{11}B{}^{1}H{}$ NMR spectra of **2b** in C₆D₆ at 298 K.

Figure S11. ${}^{31}P{}^{1}H$ NMR spectrum of **2b** in C₆D₆ at 298 K.

Figure S12. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectra of 2b in C_6D_6 at 298 K.

Figure S13. ¹H NMR spectra of 2c in C₆D₆ at 298 K.

Figure S14. ${}^{1}H{}^{11}B{}$ NMR spectra of 2c in C₆D₆ at 298 K.

Figure S15. ¹¹B NMR spectra of 2c in C₆D₆ at 298 K.

Figure S16. ${}^{11}B{}^{1}H{}$ NMR spectra of 2c in C₆D₆ at 298 K.

Figure S17. ${}^{31}P{}^{1}H$ NMR spectrum of 2c in C₆D₆ at 298 K.

Figure S18. $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of 2c in C_6D_6 at 298 K.

Figure S19. ¹H NMR spectra of 3a in C₆D₆ at 298 K.

Figure S20. ¹H{¹¹B} NMR spectra of **3a** in C₆D₆ at 298 K.

Figure S21. ¹¹B NMR spectra of 3a in C₆D₆ at 298 K.

Figure S22. $^{11}\text{B}\{^1\text{H}\}$ NMR spectra of 3a in C_6D_6 at 298 K.

Figure S23. ¹³C{¹H} NMR spectra of 3a in C₆D₆ at 298 K.

Figure S24. ¹H NMR spectra of 3b in C₆D₆ at 298 K.

Figure S25. ${}^{1}H{}^{11}B{}$ NMR spectra of **3a** in C₆D₆ at 298 K.

Figure S26. ¹¹B NMR spectra of 3b in C₆D₆ at 298 K.

Figure S27. $^{11}\text{B}\{^{1}\text{H}\}$ NMR spectra of 3b in C₆D₆ at 298 K.

Figure S28. $^{13}C{^{1}H}$ NMR spectra of 3b in C₆D₆ at 298 K.

Figure S29. ¹H NMR spectra of 4 in C₆D₆ at 298 K.

Figure S30. $^1H\{^{11}B\}$ NMR spectra of 4 in C_6D_6 at 298 K.

Figure S32. $^{11}\text{B}\{^1\text{H}\}$ NMR spectra of 4 in C₆D₆ at 298 K.

Figure S33. ¹³C $\{^{1}H\}$ NMR spectra of 4 in C₆D₆ at 298 K.

Figure S34. HSQC spectra of 4 in C₆D₆ at 298 K.

Figure S35. ¹H NMR spectra of 5 in C₆D₆ at 298 K.

Figure S36. ¹¹B NMR spectra of 5 in C₆D₆ at 298 K.

Figure S37. $^{11}B{}^{1}H{}$ NMR spectra of 5 in C₆D₆ at 298 K.

Figure S38. $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of 5 in C_6D_6 at 298 K.

Crystallographic Details

The crystal data of **4** and **5** was collected on a Bruker D8 VENTURE diffractometer with graphite monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å). Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, 2013). The structure was solved with the XT structure solution program using the Intrinsic Phasing solution method⁴ and by using Olex2⁵ as the graphical interface. The model was refined with the ShelXL program⁶ using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized geometric positions.

The crystal data of **2a** and **3a** were collected on a Rigaku XtaLAB Synergy-R diffractometer with a HPA area detector and multi-layer mirror monochromated Cu_{Ka} radiation. The structure was solved using intrinsic phasing method⁴, refined with the ShelXL program⁶ and expanded using Fourier techniques.

The X-ray crystal structures have been deposited in the Cambridge Crystallographic Data Centre (CCDC) CODE. The data can be obtained free of charge from the CCDC (www.ccdc.cam.ac.uk/data_request/cif). Details of the data collection and refinement for complexes **2–5** are given in Table S1-S5.

Table S1. Crystal data and structure refinement for 2a.		
Identification code	2359952	
Empirical formula	C ₄₄ H ₇₀ B ₄₂ P ₂ Br ₂	
Formula weight	1274.78	
Temperature/K	100(2)	
Crystal system	monoclinic	
Space group	C2/c	
a/Å	22.582(5)	
b/Å	18.782(3)	
c/Å	16.656(6)	
α/°	90	
β/°	117.637(12)	
γ/°	90	
Volume/ų	6258(3)	
Z	4	
ρ _{calc} g/cm ³	1.353	
µ/mm⁻¹	1.384	
F(000)	2576.0	
Crystal size/mm ³	$0.358 \times 0.238 \times 0.171$	
Radiation	Μο _{Kα} (λ = 0.71073)	
20 range for data collection/°	4.656 to 52.742	
Index ranges	$-28 \le h \le 24, 0 \le k \le 23, 0 \le l \le 20$	
Reflections collected	6413	
Independent reflections	6413	
Data/restraints/parameters	6413/0/407	
Goodness-of-fit on F ²	1.055	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0288, wR_2 = 0.0728$	
Final R indexes [all data]	$R_1 = 0.0319, wR_2 = 0.0750$	
Largest diff. peak/hole / e Å ⁻³	0.34/-0.34	

Table S2. Crystal data and structure refinement for 3a.		
Identification code	2359953	
Empirical formula	C ₁₄ H ₃₁ B ₂₁ BrN	
Formula weight	520.32	
Temperature/K	100(2)	
Crystal system	triclinic	
Space group	P-1	
a/Å	7.324(2)	
b/Å	12.901(4)	
c/Å	14.453(3)	
α/°	76.495(14)	
β/°	85.066(14)	
γ/°	89.27(2)	
Volume/ų	1323.0(6)	
Z	2	
ρ _{calc} g/cm ³	1.306	
µ/mm ⁻¹	1.563	
F(000)	524.0	
Crystal size/mm ³	0.24 × 0.23 × 0.12	
Radiation	Μο _{κα} (λ = 0.71073)	
20 range for data collection/°	4.84 to 54.206	
Index ranges	-9 ≤ h ≤ 9, -16 ≤ k ≤ 16, -18 ≤ l ≤ 18	
Reflections collected	17106	
Independent reflections	5809 [R _{int} = 0.0471, R _{sigma} = 0.0507]	
Data/restraints/parameters	5809/0/337	
Goodness-of-fit on F ²	1.029	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0342, wR_2 = 0.0819$	
Final R indexes [all data]	$R_1 = 0.0416, wR_2 = 0.0859$	
Largest diff. peak/hole / e Å ⁻³	0.37/-0.32	

Table S3. Crystal data and struct	ture refinement for 4 •(C ₇ H ₈).
Identification code	2359954
Empirical formula	C ₃₇ H ₈₆ B ₄₂ N ₄
Formula weight	1041.740
Temperature/K	100.15
Crystal system	triclinic
Space group	P-1
a/Å	10.4445(3)
b/Å	11.4808(4)
c/Å	14.0816(5)
α/°	67.709(3)
β/°	86.457(3)
γ/°	76.241(3)
Volume/ų	1516.76(10)
Z	1
ρ _{calc} g/cm ³	1.140
µ/mm⁻¹	0.384
F(000)	547.2
Crystal size/mm ³	$0.142 \times 0.121 \times 0.089$
Radiation	Cu _{Kα} (λ = 1.54184)
20 range for data collection/°	6.78 to 149.72
Index ranges	-13 ≤ h ≤ 12, -14 ≤ k ≤ 14, -17 ≤ l ≤ 13
Reflections collected	29929
Independent reflections	5998 [R _{int} = 0.0663, R _{sigma} = 0.0396]
Data/restraints/parameters	5998/0/361
Goodness-of-fit on F ²	1.003
Final R indexes [I>=2σ (I)]	$R_1 = 0.0751, wR_2 = 0.2109$
Final R indexes [all data]	$R_1 = 0.0883, wR_2 = 0.2273$
Largest diff. peak/hole / e Å ⁻³	0.59/-0.40

Table S4. Crystal data and structure refinement for 5.		
Identification code	2359955	
Empirical formula	C ₁₉ H ₆₀ B ₄₂ Br _{1.34} N ₂	
Formula weight	878.19	
Temperature/K	100	
Crystal system	monoclinic	
Space group	P21/c	
a/Å	12.3887(13)	
b/Å	12.963(2)	
c/Å	29.552(3)	
α/°	90	
β/°	92.692(5)	
γ/°	90	
Volume/ų	4740.5(10)	
Z	4	
$\rho_{calc}g/cm^3$	1.230	
µ/mm⁻¹	1.183	
F(000)	1780.0	
Crystal size/mm ³	0.2 × 0.2 × 0.1	
Radiation	Μο _{Kα} (λ = 0.71073)	
20 range for data collection/°	4.182 to 52.896	
Index ranges	-15 ≤ h ≤ 15, -16 ≤ k ≤ 16, -37 ≤ l ≤ 36	
Reflections collected	129764	
Independent reflections	9751 [Rint = 0.0943, Rsigma = 0.0403]	
Data/restraints/parameters	9751/0/594	
Goodness-of-fit on F ²	1.043	
Final R indexes [I>=2σ (I)]	<i>R1</i> = 0.0371, <i>wR2</i> = 0.0954	
Final R indexes [all data]	<i>R1</i> = 0.0517, <i>wR2</i> = 0.1043	
Largest diff. peak/hole / e Å ⁻³	0.39/-0.26	

Reference

- 1 C. Zhang, J. Wang, Z. Lin, Q. Ye, *Inorg. Chem.* **2022**, *61*, 18275–18284.
- 2 S. J. Ryan, S. D. Schimler, D. C. Bland, M. S. Sanford, *Org. Lett.* **2015**, *17*, 1866-1869.
- 3 M. A. Kinzhalov, A. A. Zolotarev and V. P. Boyarskiy, J. Struct. Chem. 2016, 57, 822–825.
- 4 G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst. A* **2015**, *71*, 3–8.
- 5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.
- 6. G. M. Sheldrick, A short history of SHELX. Acta Cryst. A 2008, 64, 112-122.