Electronic Supplementary Information (ESI[†])

StructuralModificationofNickelTetra(thiocyano)corrolesduringElectrochemicalWater Oxidation

Panisha Nayak,^{*a*} Ajit Kumar Singh,^{*b*} Manisha Nayak,^{*a*} Subhajit Kar,^{*a*} Kasturi Sahu,^{*a*} Kiran Meena,^{*a*} Dinesh Topwal,^{*c*} Arindam Indra^{*,*b*} and Sanjib Kar^{*,*a*}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India. E-mail: sanjib@niser.ac.in

^bDepartment of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India. E-mail: arindam.chy@iitbhu.ac.in

^cInstitute of Physics, Bhubaneswar 751005, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India. Appendix 1: Experimental Details of Electrochemical Measurement

- **Appendix 2:** HOMA calculations
- **Appendix 3:** Determination of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles.
- **Table S1**Crystallographic data for 1.
- **Table S2**UV-Vis. and electrochemical data for 1 and 2.
- **Table S3**Comparison of the number of active sites of the Ni(O)(OH)/Ni-corrole with
respect to the different activation cycles.
- **Fig. S1** Visualization of atomic displacement parameters (ADPs) in the X-ray crystallographic depiction of 1.
- Fig. S2 Electronic absorption spectrum of 1 in acetonitrile at 298 K.
- Fig. S3 Electronic absorption spectrum of 2 in acetonitrile at 298 K.
- **Fig. S4** Evolution of the electronic absorption spectra of **2** in the presence of excess triethylamine and trifluoroacetic acid in CH₃CN.
- Fig. S5 ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4cyanophenyl)corrolato] nickel(II), 1 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- Fig. S6 ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-corrolato] nickel(II), 2 in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- **Fig. S7** ¹H-NMR spectrum of 1 in CD₃CN solution.
- Fig. S8 ${}^{13}C {}^{1}H$ -NMR spectrum of 1 in CD₃CN solution.
- **Fig. S9** ¹H-NMR spectrum of **2** in CD_3CN solution.
- Fig. S10 ${}^{13}C {}^{1}H$ -NMR spectrum of 2 in CD₃CN solution.
- Fig. S11 LSV profiles of Ni(O)(OH)/Ni-corrole (active catalyst after 100 CV cycles), Ni(O)OH, Ni-corrole, and another molecular complex Ni(dmgH)₂ and bare CC in a 1.0 M aqueous KOH solution (scan rate 2 mV s⁻¹).

S3

- **Fig. S12** LSV profiles of the Ni(O)(OH)/Ni-corrole@CC with Pt as counter electrode (blue) and Ni(O)(OH)/Ni-corrole@CC with respect to glassy carbon (green) as counter electrode in 1.0 M aqueous KOH solution.
- **Fig. S13** Electrochemical activation of Ni(O)(OH)/Ni-corrole via the addition of Fe³⁺ to the electrolyte solution, as depicted by a CV cycle.
- Fig. S14Potential vs. current density plots showing the oxidation peak used for the area
integration curve.
- Fig. S15 PXRD of the Ni(O)(OH)/Ni-corrode after 3 CV cycles, 30 CV cycles, and 100 CV cycles.⁵
- Fig. S16 Raman spectra of the Ni(O)(OH)/Ni-corrole after 100 cycles.⁶
- **Fig. S17** UV-visible spectra showed the peaks corresponding to the Ni(O)(OH)/Nicorrole after 30 CV cycles and 100 CV cycles activation.⁷
- Fig. S18 (a-c) The SEM and EDX studies of Ni(O)(OH)/Ni-corrole after the different CV cycle activations showed a change in the morphological feature. (e-g) The EDX data of the catalyst after 3 cycles, 30 cycles, and 100 cycles of CV activation showed that Ni, C, N, O, and S but with a varying amount.
- **Fig. S19** The chronoamperometric study of Ni(O)(OH)/Ni-corrole demonstrates the stability of the catalyst for 6 hours.
- **Fig. S20** The plausible mechanism for the formation of Ni(O)OH from the Ni-corrole complex by the anodic activation in the alkaline medium.

Appendix 1: Experimental Details of Electrochemical Measurement

Activation of carbon cloth

1 cm x 2 cm of carbon cloth was first washed with acetone twice under ultrasonication, then five times with water. Clean carbon cloth was dried at 50 °C for 12 h and treated with nitric acid for 4 h at 100°C. The activated carbon cloth was dried in an air oven at 50°C and used for catalyst deposition.¹

Deposition of molecular catalyst on the carbon cloth

4 mg of molecular catalysts were dissolved in 100 mL of ethanol by using ultrasonication for 3 minutes, then 10 microliters of an ethanolic 0.05 wt% Nafion solution was added, then again sonicated for 2 minutes. The liquid was then dropped and cast onto activated carbon cloth (CC).

Electrochemical measurement

OER and HER experiments were conducted in a 1.0 M aqueous KOH solution in a single compartment having a three-electrode electrochemical cell. We used molecular complex@CC as the working electrode, a Pt wire counter electrode, and an Ag/AgCl as a reference electrode. The equation $E_{(RHE)} = E_{(Ag/AgCl)} + 0.097 \text{ V} + (0.059 \text{ pH}) \text{ V}$ was used to convert the potentials provided above to the RHE.² A constant potential was used in a 1.0 M KOH solution to conduct a chronoamperometric experiment at 1.60 V vs. RHE. All CV and LSV have been 75% *iR* corrected. To understand this, the electrochemical activation of the molecular catalyst was performed to reach a constant current density. After that, 2 mg of FeCl₃ was added to the electrolyte solution, and the CV cycle was continued.³

- 1. A. Indra, U. Paik and T. Song, Angew. Chem. Int. Ed., 2018, 57, 1241-1245.
- B. B. Yu, Y. W. Hua, Q. Huang, S. Y. Ye, H. D. Zhang, Z. Yan, R. W. Li, J. Wu, Y. Meng and X. Cao, *CrystEngComm*, 2021, 23, 4700-4707.
- S. K. Pal, B. Singh, J. K. Yadav, C. L. Yadav, M. G. B. Drew, N. Singh, A. Indra and K. Kumar, *Dalton Trans.*, 2022, **51**, 13003–13014.

Appendix 2: HOMA calculations

The HOMA values¹ of 2,3,17,18-tetra(thiocyano)-[5,10,15-tris(4cyanophenyl)corrolato]nickel(II) (1) and [5,10,15-tris(pentafluorophenyl)corrolato]nickel(II) ² were calculated using the C–C and C–N bond lengths obtained from their X-ray crystallographic structures, according to the following equations:³

HOMA = 1 - $\frac{1}{n} \{ \alpha_{CC} \sum (R_{opt} - R_i)_{CC}^2 + \alpha_{CN} \sum (R_{opt} - R_i)_{CN}^2 \}$

where n = number of bonds taken into summation, α = empirical constant, R_{opt} = optimal bond length and R_i = bond length of i^{th} bond.

Selected bond distances and calculated HOMA values¹ for single-crystal structures of 2,3,17,18–tetra(thiocyano)-[5,10,15-tris(4-cyanophenyl)corrolato] nickel(II), **1**, and [5,10,15-tris(pentafluorophenyl)corrolato]nickel(II).² The bonds used for HOMA calculations are indicated in bold lines.

References:

- (a) J. Kruszewski and T. M. Krygowski, *Tetrahedron Lett.* 1972, 13, 3839–3842; (b)
 T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak, *Chem. Rev.* 2014, 114, 6383–6422; (c) C. P. Frizzo and M. A. P. Martins, *Struct. Chem.* 2012, 23, 375–380.
- Q. C. Chen, S. Fite, N. Fridman, B. Tumanskii, A. Mahammed and Z. Gross, ACS Catal., 2022, 12, 4310-4317.
- (a) C. A. Hunter, J. K. M. Sanders, *J. Am Chem. Soc.*, 1990, **112**, 5525–5534; (b) R. Nozawa, H. Tanaka, W.-Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.-Y. Shin, T. Kowalczyk, S. Irle, D. Kim, *Nat. Commun.* **2016**, *7*, 13620.

Table S1Crystallographic data for 1.

compound code	1
chemical formula	$C_{88}H_{30.40}N_{22}Ni_2S_8$
formula mass	1769.64
crystal system	Triclinic
crystal size (mm)	0.13×0.12×0.10
space group	P-1
Radiation	Μο <i>Κ</i> α
a(Å)	13.5052 (3)
b(Å)	16.0286 (4)
$c(\text{\AA})$	25.3258 (7)
α (deg)	97.682 (2)
$\beta(\deg)$	102.718 (2)
$\gamma(\text{deg})$	90.036 (2)
$V(Å^3)$	5297.2 (2)
Z	2
<i>T</i> (K)	100.01(11)
D_{calcd} (g cm ⁻³)	1.109
measured reflections	46982
e data (R_{int})	11888 (0.0614)
parameters	1081
restraints	1004
$\mu (\mathrm{mm}^{-1})$	0.561
2θ range (deg)	6.43 - 50.00
R1 (<i>I</i> >2σ(<i>I</i>))	0.0784
WR2 (all data)	0.2106
S (GooF) all data	1.025
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.884, -0.559

Compound	UV–vis. Data ^{<i>a</i>}	Electrocher	mical data ^{<i>a,b</i>}
	λ_{max} / nm (ϵ / M ⁻¹ cm ⁻¹)	Oxidation E^0 , V (ΔE_p , mV)	Reduction E^0 , V (ΔE_p , mV)
1	401 (70700), 418 (82700), 563 (35300), 592 (69000), 608 (92700)	+0.71 (80), +1.12 (80)	1.29
2	401 (71700), 418 (85500), 564 (31700), 592 (60600), 611 (87400).	+0.72 (80), +1.14 (80)	1.35

Table S2UV-Vis. and electrochemical data for 1 and 2.

^{*a*} In acetonitrile.

^b The potentials are versus Ag/AgCl.

Fig. S1Visualization of atomic displacement parameters (ADPs) in the X-ray
crystallographic depiction of 1.

Fig. S2 Electronic absorption spectrum of **1** in acetonitrile at 298 K.

Fig. S3Electronic absorption spectrum of 2 in acetonitrile at 298 K.

Fig. S4 Evolution of the electronic absorption spectra of **2** in the presence of excess triethylamine and trifluoroacetic acid in CH₃CN.

Fig. S5 (a) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4cyanophenyl)corrolato] nickel(II), 1 in CH₃CN shows the measured spectrum (experimental).

Fig. S5 (b) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4cyanophenyl)corrolato] nickel(II), **1** in CH₃CN shows the isotopic distribution pattern (simulated).

Fig. S6 (a) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-corrolato] nickel(II), **2** in CH₃CN shows the measured spectrum (experimental).

Fig. S6 (b) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)-10-(4-bromophenyl)-corrolato] nickel(II), 2 in CH₃CN shows the isotopic distribution pattern (simulated).

Fig. S7 ¹H-NMR spectrum of **1** in CD₃CN solution.

Fig. S8 ${}^{13}C {}^{1}H$ -NMR spectrum of 1 in CD₃CN solution.

Fig. S9 ¹H-NMR spectrum of 2 in CD₃CN solution.

Fig. S10 ${}^{13}C {}^{1}H$ -NMR spectrum of 2 in CD₃CN solution.

Fig. S11 LSV profiles of Ni(O)(OH)/Ni-corrole (active catalyst after 100 CV cycles), Ni(O)OH, Ni-corrole, and another molecular complex Ni(dmgH)₂ and bare CC in a 1.0 M aqueous KOH solution (scan rate 2 mV s⁻¹).

Fig. S12 LSV profiles of the Ni(O)(OH)/Ni-corrole@CC with Pt as counter electrode (blue) and Ni(O)(OH)/Ni-corrole@CC with respect to glassy carbon (green) as counter electrode in 1.0 M aqueous KOH solution.

Fig. S13 Electrochemical activation of Ni(O)(OH)/Ni-corrole via the addition of Fe³⁺ to the electrolyte solution, as depicted by a CV cycle.

Fig. S14 Potential vs. current density plots showing the oxidation peak used for the area integration curve.

Appendix 3: Determination of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles.

Determination of the Number of Active Sites after 3 cycle activation ³

The area calculated (associated with the oxidation peak) = $0.0011 \times 10^{-3} \text{ V A}$ The associated charge calculated is = $0.0011 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = 2.2 \times 10^{-3} \text{ A s} = 2.2 \times 10^{-4} \text{ C}$

Thus the number of electron transferred is = $2.2 \times 10^{-4} \text{ C} / 1.602 \times 10^{-19} \text{ C} = 1.37 \times 10^{15}$ Since the oxidation of Ni²⁺ to Ni³⁺ is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is = 1.37×10^{15} .

Determination of the Number of Active Sites after 30 cycle activation ³

The area calculated (associated with the oxidation peak) = $0.063 \times 10^{-3} \text{ V A}$ The associated charge calculated is = $0.063 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = 12.6 \times 10^{-3} \text{ A s} = 12.6 \times 10^{-3} \text{ C}$

Thus the number of electron transferred is = $12.6 \times 10^{-3} \text{ C} / 1.602 \times 10^{-19} \text{ C} = 7.86 \times 10^{16}$ Since the oxidation of Ni²⁺ to Ni³⁺ is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is = 7.86×10^{16} .

Determination of the Number of Active Sites after 60 cycle activation ³

The area calculated (associated with the oxidation peak) = $0.309 \times 10^{-3} \text{ V A}$ The associated charge calculated is = $0.309 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = 61.8 \times 10^{-3} \text{ A s} = 61.8 \times 10^{-3} \text{ C}$

Thus the number of electron transferred is = 61.8 x 10^{-3} C / 1.602×10^{-19} C = 38.57 $\times 10^{16}$

Since the oxidation of Ni^{2+} to Ni^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites.

Hence, the surface-active site that participated in OER is = 38.57×10^{16}

Determination of the Number of Active Sites after 100 cycle activation ³

The area calculated (associated with the oxidation peak) = $0.381 \times 10^{-3} \text{ V A}$ The associated charge calculated is = $0.381 \times 10^{-3} \text{ V A} / 0.005 \text{ V s}^{-1} = 76.2 \times 10^{-3} \text{ C}$ Thus, the number of electron transferred is = $76.2 \times 10^{-3} \text{ C} / 1.602 \times 10^{-19} \text{ C} = 47.56 \times 10^{16}$ Since the oxidation of Ni²⁺ to Ni³⁺ is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is = 47.56×10^{16}

Calculation of TOF⁴

$$\begin{split} \text{TOF} &= (j \times N_A) / (4 \times F \times n) \\ \text{Where,} \\ j &= \text{Current density at 330 mV} \\ N_A &= \text{Avogadro number} \\ \text{F} &= \text{Faraday constant} \\ n &= \text{Number of active Ni-sites} \\ \text{TOF} &= [(10.12 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (47.565 \times 10^{16})] \\ &= 3.32 \times 10^{-2} \text{ s}^{-1} \end{split}$$

Table S3. Comparison of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles.

S.No.	Active catalyst	Number active sites
1	Ni(O)(OH)/Ni-corrole (3 rd cycle)	1.37 ×10 ¹⁵
2	Ni(O)(OH)/Ni-corrole (30 th cycle)	7.86 ×10 ¹⁶
3	Ni(O)(OH)/Ni-corrole (60 th cycle)	38.57 ×10 ¹⁶
4	Ni(O)(OH)/Ni-corrole (100 th cycle)	47.56
		$ imes 10^{16}$

Reference:

- A. K. Singh, S. Ji, B. Singh, C. Das, H. Choi, P. W. Menezes and A. Indra, *Mater. Today Chem.* 2022, 23, 100668.
- 2. S. Anantharaj, M. Jayachandran and S. Kundu, Chem. Sci., 2016, 7, 3188-3205.

Fig. S15 PXRD of the Ni(O)(OH)/Ni-corrode after 3 CV cycles, 30 CV cycles, and 100 CV cycles.⁵ (Purple*: Ni-corrole complex, Cyan*: Ni(O)OH, ♦: Carbon cloth)

Reference:

3. Z. Lin, P. Bu, Y. Xiao, Q. Gao and P. Diao, J. Mater. Chem. A, 2022, 10, 20847–20855.

Fig. S16 Raman spectra of the Ni(O)(OH)/Ni-corrole after 100 cycles.⁶

Reference:

4. K. M. Cole, D. W. Kirk and S. J. Thorpe, *J. Electrochem. Soc.* 2018, **165**, 3122.

Fig. S17 UV-visible spectra showed the peaks corresponding to the Ni(O)(OH)/Nicorrole after 30 CV cycles and 100 CV cycles activation.⁷

Reference:

5. S. Eulberg, N. Schulze, J. Krumsieck, N. Klein and M. Bröring, *Angew. Chemie Int. Ed.* 2023, **62**, e202306598.

Fig. S18 (a-c) The SEM and EDX studies of Ni(O)(OH)/Ni-corrole after the different CV cycle-activation showed a change in the morphological feature. (e-g) The EDX data of the catalyst after 3 cycles, 30 cycles, and 100 cycles of CV activation showed that Ni, C, N, O, and S but with a varying amount.

Fig. S19 The chronoamperometric study of Ni(O)(OH)/Ni-corrole demonstrates the stability of the catalyst for 6 hours.

Fig. S20The plausible mechanism for the formation of Ni(O)OH from the Ni-corrole
complex by the anodic activation in the alkaline medium.