Electronic Supplementary Information (ESI†)

Structural Modification of Nickel Tetra(thiocyano)corroles during Electrochemical Water Oxidation

Panisha Nayak,*^a* Ajit Kumar Singh*, ^b* Manisha Nayak*, ^a* Subhajit Kar,*^a* Kasturi Sahu,*^a* Kiran Meena,*^a* Dinesh Topwal,*^c* Arindam Indra*,*^b* and Sanjib Kar*,*^a*

^a*School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India. E-mail: sanjib@niser.ac.in*

^bDepartment of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India. E-mail: arindam.chy@iitbhu.ac.in

c Institute of Physics, Bhubaneswar 751005, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.

Appendix 1: Experimental Details of Electrochemical Measurement

- **Appendix 2:** HOMA calculations
- **Appendix 3:** Determination of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles.
- **Table S1** Crystallographic data for **1**.
- **Table S2** UV-Vis. and electrochemical data for **1** and **2**.
- **Table S3** Comparison of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles**.**
- **Fig. S1** Visualization of atomic displacement parameters (ADPs) in the X-ray crystallographic depiction of **1**.
- **Fig. S2** Electronic absorption spectrum of **1** in acetonitrile at 298 K.
- **Fig. S3** Electronic absorption spectrum of **2** in acetonitrile at 298 K.
- **Fig. S4** Evolution of the electronic absorption spectra of **2** in the presence of excess triethylamine and trifluoroacetic acid in CH₃CN.
- **Fig. S5** ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4cyanophenyl)corrolato] nickel(II), **1** in CH3CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- **Fig. S6** ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)-10- $(4\textrm{-bromophenyl})\textrm{-corrolato}$ nickel (II) , **2** in CH₃CN shows the (a) measured spectrum with isotopic distribution pattern (experimental) and (b) isotopic distribution pattern (simulated).
- **Fig. S7** ¹H-NMR spectrum of 1 in CD_3CN solution.
- **Fig. S8** ¹³C $\{^1H\}$ -NMR spectrum of 1 in CD₃CN solution.
- **Fig. S9** ¹H-NMR spectrum of 2 in CD_3CN solution.
- **Fig. S10** ¹³C $\{^1H\}$ -NMR spectrum of **2** in CD₃CN solution.
- Fig. S11 LSV profiles of Ni(O)(OH)/Ni-corrole (active catalyst after 100 CV cycles), $Ni(O)OH$, Ni-corrole, and another molecular complex $Ni(dmgH)$ ₂ and bare CC in a 1.0 M aqueous KOH solution (scan rate 2 mV s^{-1}).

- **Fig.** S13 Electrochemical activation of Ni(O)(OH)/Ni-corrole via the addition of Fe^{3+} to the electrolyte solution, as depicted by a CV cycle.
- **Fig. S14** Potential vs. current density plots showing the oxidation peak used for the area integration curve.
- **Fig. S15** PXRD of the Ni(O)(OH)/Ni-corrode after 3 CV cycles, 30 CV cycles, and 100 CV cycles.⁵
- **Fig. S16** Raman spectra of the Ni(O)(OH)/Ni-corrole after 100 cycles.⁶
- **Fig.** S17 UV-visible spectra showed the peaks corresponding to the Ni(O)(OH)/Nicorrole after 30 CV cycles and 100 CV cycles activation.⁷
- **Fig. S18 (**a-c) The SEM and EDX studies of Ni(O)(OH)/Ni-corrole after the different CV cycle activations showed a change in the morphological feature. **(**e-g) The EDX data of the catalyst after 3 cycles, 30 cycles, and 100 cycles of CV activation showed that Ni, C, N, O, and S but with a varying amount.
- **Fig. S19** The chronoamperometric study of Ni(O)(OH)/Ni-corrole demonstrates the stability of the catalyst for 6 hours.
- **Fig. S20** The plausible mechanism for the formation of Ni(O)OH from the Ni-corrole complex by the anodic activation in the alkaline medium.

Appendix 1: Experimental Details of Electrochemical Measurement

Activation of carbon cloth

1 cm x 2 cm of carbon cloth was first washed with acetone twice under ultrasonication, then five times with water. Clean carbon cloth was dried at 50 \degree C for 12 h and treated with nitric acid for 4 h at 100 $^{\circ}$ C. The activated carbon cloth was dried in an air oven at 50 $^{\circ}$ C and used for catalyst deposition.¹

Deposition of molecular catalyst on the carbon cloth

4 mg of molecular catalysts were dissolved in 100 mL of ethanol by using ultrasonication for 3 minutes, then 10 microliters of an ethanolic 0.05 wt% Nafion solution was added, then again sonicated for 2 minutes. The liquid was then dropped and cast onto activated carbon cloth (CC).

Electrochemical measurement

OER and HER experiments were conducted in a 1.0 M aqueous KOH solution in a single compartment having a three-electrode electrochemical cell. We used molecular complex@CC as the working electrode, a Pt wire counter electrode, and an Ag/AgCl as a reference electrode. The equation $E_{(RHE)} = E_{(Ag/AgCl)} + 0.097 \text{ V} + (0.059 \text{ pH}) \text{ V}$ was used to convert the potentials provided above to the RHE.² A constant potential was used in a 1.0 M KOH solution to conduct a chronoamperometric experiment at 1.60 V vs. RHE. All CV and LSV have been 75% *iR* corrected. To understand this, the electrochemical activation of the molecular catalyst was performed to reach a constant current density. After that, 2 mg of FeCl_3 was added to the electrolyte solution, and the CV cycle was continued.³

- 1. A. Indra, U. Paik and T. Song, *Angew. Chem. Int. Ed.,* 2018, **57**, 1241-1245.
- 2. B. B. Yu, Y. W. Hua, Q. Huang, S. Y. Ye, H. D. Zhang, Z. Yan, R. W. Li, J. Wu, Y. Meng and X. Cao, *CrystEngComm,* 2021, **23**, 4700-4707.
- 3. S. K. Pal, B. Singh, J. K. Yadav, C. L. Yadav, M. G. B. Drew, N. Singh, A. Indra and K. Kumar, *Dalton Trans.,* 2022, **51**, 13003–13014.

Appendix 2: HOMA calculations

The HOMA values¹ of $2,3,17,18$ -tetra(thiocyano)-[5,10,15-tris(4cyanophenyl)corrolato]nickel(II) (1) and [5,10,15-tris(pentafluorophenyl)corrolato]nickel(II) 2 were calculated using the C–C and C–N bond lengths obtained from their X-ray crystallographic structures, according to the following equations:³

 $HOMA = 1 - n\left(\frac{n_c L}{\Delta}\right)$ $\left(\frac{n_b L}{\Delta}\right)$ $\left(\frac{n_b L}{\Delta}\right)$ 1_f $\frac{1}{n} \Big\{ \alpha_{CC} \sum (R_{opt} - R_i)_{CC}^2 + \alpha_{CN} \sum (R_{opt} - R_i)_{CN}^2 \Big\}$

where n = number of bonds taken into summation, α = empirical constant, R_{opt} = optimal bond length and R_i = bond length of i^{th} bond.

HOMA=0.81

Selected bond distances and calculated HOMA values¹ for single-crystal structures of 2,3,17,18−tetra(thiocyano)-[5,10,15-tris(4-cyanophenyl)corrolato] nickel(II), **1**, and [5,10,15 tris(pentafluorophenyl)corrolato]nickel(II).² The bonds used for HOMA calculations are indicated in bold lines.

References:

- 1. (a) J. Kruszewski and T. M. Krygowski, *Tetrahedron Lett.* 1972, 13, 3839– 3842; (b) T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak, *Chem. Rev.* 2014, 114, 6383– 6422; (c) C. P. Frizzo and M. A. P. Martins, *Struct. Chem.* 2012, 23, 375– 380.
- 2. Q. C. Chen, S. Fite, N. Fridman, B. Tumanskii, A. Mahammed and Z. Gross, *ACS Catal.*, 2022, **12**, 4310-4317.
- 3. (a) C. A. Hunter, J. K. M. Sanders, *J. Am Chem. Soc.,* 1990, **112**, 5525–5534; (b) R. Nozawa, H. Tanaka, W.-Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.-Y. Shin, T. Kowalczyk, S. Irle, D. Kim, *Nat. Commun.* **2016**, *7*, 13620.

Table S1 Crystallographic data for **1**.

Compound	UV-vis. Data a	Electrochemical data a,b	
	λ_{max} / nm (ϵ / M ⁻¹ cm ⁻¹)	Oxidation E^0 , V (ΔE_p , mV)	Reduction E^0 , V (ΔE_p , mV)
	401 (70700), 418 (82700), 563 (35300), 592 (69000), 608 (92700)	$+0.71(80),$ $+1.12(80)$	1.29
\mathcal{L}	401 (71700), 418 (85500), 564 (31700), 592 (60600), 611 (87400).	$+0.72(80),$ $+1.14(80)$	1.35

Table S2 UV-Vis. and electrochemical data for **1** and **2**.

a In acetonitrile.

^b The potentials are *versus* Ag/AgCl.

Fig. S1 Visualization of atomic displacement parameters (ADPs) in the X-ray crystallographic depiction of **1**.

Fig. S2 Electronic absorption spectrum of **1** in acetonitrile at 298 K.

Fig. S3 Electronic absorption spectrum of **2** in acetonitrile at 298 K.

Fig. S4 Evolution of the electronic absorption spectra of **2** in the presence of excess triethylamine and trifluoroacetic acid in CH3CN.

Fig. S5 (a) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4 cyanophenyl)corrolato] nickel(II), 1 in CH₃CN shows the measured spectrum (experimental).

Fig. S5 (b) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,10,15-tris(4 cyanophenyl)corrolato] nickel(II), **1** in CH3CN shows the isotopic distribution pattern (simulated).

Fig. S6 (a) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)- 10-(4-bromophenyl)-corrolato] nickel(II), 2 in CH₃CN shows the measured spectrum (experimental).

Fig. S6 (b) ESI-MS spectrum of 2,3,17,18-Tetrathiocyanato-[5,15-bis(4-cyanophenyl)- 10-(4-bromophenyl)-corrolato] nickel(II), **2** in CH3CN shows the isotopic distribution pattern (simulated).

Fig. S7 ¹H-NMR spectrum of 1 in CD₃CN solution.

Fig. S8 ¹³C ${^{1}H}$ -NMR spectrum of 1 in CD₃CN solution.

Fig. S9 ¹H-NMR spectrum of **2** in CD₃CN solution.

Fig. S10 ¹³C 1H -NMR spectrum of **2** in CD₃CN solution.

Fig. S11 LSV profiles of Ni(O)(OH)/Ni-corrole (active catalyst after 100 CV cycles), Ni(O)OH, Ni-corrole, and another molecular complex Ni(dmgH)₂ and bare CC in a 1.0 M aqueous KOH solution (scan rate 2 mV s^{-1}).

Fig. S12 LSV profiles of the Ni(O)(OH)/Ni-corrole@CC with Pt as counter electrode (blue) and $Ni(O)(OH)/Ni$ -corrole $@CC$ with respect to glassy carbon (green) as counter electrode in 1.0 M aqueous KOH solution.

Fig. S13 Electrochemical activation of Ni(O)(OH)/Ni-corrole via the addition of Fe^{3+} to the electrolyte solution, as depicted by a CV cycle.

Fig. S14 Potential vs. current density plots showing the oxidation peak used for the area integration curve.

Appendix 3: Determination of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles.

Determination of the Number of Active Sites after 3 cycle activation ³

The area calculated (associated with the oxidation peak) = 0.0011×10^{-3} V A The associated charge calculated is = 0.0011 x 10⁻³ V A / 0.005 V s⁻¹ = 2.2 x10⁻³ A s = 2.2 x10⁻⁴ \mathcal{C}

Thus the number of electron transferred is = 2.2 x10⁻⁴ C / 1.602 ×10⁻¹⁹ C = 1.37 ×10¹⁵ Since the oxidation of Ni^{2+} to Ni^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is $= 1.37 \times 10^{15}$.

Determination of the Number of Active Sites after 30 cycle activation ³

The area calculated (associated with the oxidation peak) = 0.063×10^{-3} V A The associated charge calculated is = 0.063 x 10⁻³ V A / 0.005 V s⁻¹ = 12.6 x 10⁻³ A s = 12.6 x 10−3 C

Thus the number of electron transferred is = 12.6 x 10⁻³ C / 1.602 ×10⁻¹⁹ C = 7.86 ×10¹⁶ Since the oxidation of Ni^{2+} to Ni^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is = 7.86×10^{16} .

Determination of the Number of Active Sites after 60 cycle activation ³

The area calculated (associated with the oxidation peak) = 0.309×10^{-3} V A The associated charge calculated is = 0.309 x 10⁻³ V A / 0.005 V s⁻¹ = 61.8 x 10⁻³ A s = 61.8 x 10−3 C

Thus the number of electron transferred is = 61.8 x 10⁻³ C / 1.602 ×10⁻¹⁹ C = 38.57 ×10¹⁶

Since the oxidation of Ni^{2+} to Ni^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites.

Hence, the surface-active site that participated in OER is $= 38.57 \times 10^{16}$

Determination of the Number of Active Sites after 100 cycle activation ³

The area calculated (associated with the oxidation peak) = 0.381×10^{-3} V A The associated charge calculated is = 0.381 x 10⁻³ V A / 0.005 V s⁻¹ = 76.2 x 10⁻³ C Thus, the number of electron transferred is = 76.2 x 10⁻³ C / 1.602 ×10⁻¹⁹ C = 47.56 ×10¹⁶ Since the oxidation of Ni^{2+} to Ni^{3+} is a single electron transfer reaction, the number of electrons calculated above is the same as the number of active surface sites. Hence, the surface-active site that participated in OER is $= 47.56 \times 10^{16}$

Calculation of TOF ⁴

TOF= $(i \times N_A) / (4 \times F \times n)$ Where, j = Current density at 330 mV N_A = Avogadro number $F = Faraday constant$ n = Number of active Ni-sites TOF = $[(10.12 \times 10^{-3}) (6.023 \times 10^{23})]/[(96485) (4) (47.565 \times 10^{16})]$ $=$ 3.32 × 10⁻² s⁻¹

Table S3. Comparison of the number of active sites of the Ni(O)(OH)/Ni-corrole with respect to the different activation cycles**.**

Reference:

- 1. A. K. Singh, S. Ji, B. Singh, C. Das, H. Choi, P. W. Menezes and A. Indra, *Mater. Today Chem*. 2022, **23**, 100668.
- 2. S. Anantharaj, M. Jayachandran and S. Kundu, *Chem. Sci.*, 2016, **7**, 3188-3205.

Fig. S15 PXRD of the Ni(O)(OH)/Ni-corrode after 3 CV cycles, 30 CV cycles, and 100 CV cycles.⁵ (Purple*: Ni-corrole complex, Cyan*: Ni(O)OH, \bullet : Carbon cloth)

Reference:

3. Z. Lin, P. Bu, Y. Xiao, Q. Gao and P. Diao, *J. Mater. Chem. A,* 2022, **10**, 20847– 20855.

Fig. S16 Raman spectra of the Ni(O)(OH)/Ni-corrole after 100 cycles.⁶

Reference:

4. K. M. Cole, D. W. Kirk and S. J. Thorpe, *J. Electrochem. Soc*. 2018, **165**, 3122.

Fig. S17 UV-visible spectra showed the peaks corresponding to the Ni(O)(OH)/Nicorrole after 30 CV cycles and 100 CV cycles activation.⁷

Reference:

5. S. Eulberg, N. Schulze, J. Krumsieck, N. Klein and M. Bröring, *Angew. Chemie Int. Ed*. 2023, **62**, e202306598.

Fig. S18 (a-c) The SEM and EDX studies of Ni(O)(OH)/Ni-corrole after the different CV cycle-activation showed a change in the morphological feature. **(**e-g) The EDX data of the catalyst after 3 cycles, 30 cycles, and 100 cycles of CV activation showed that Ni, C, N, O, and S but with a varying amount.

Fig. S19 The chronoamperometric study of Ni(O)(OH)/Ni-corrole demonstrates the stability of the catalyst for 6 hours.

Fig. S20 The plausible mechanism for the formation of Ni(O)OH from the Ni-corrole complex by the anodic activation in the alkaline medium.