## Solution-Processable Benzothiazole-Substituted Formazanate Zinc(II)

## **Complex Designed for Robust Resistive Memory Device**

Sunita Birara <sup>[a]</sup>, Shalu Saini<sup>[b]</sup>, Moumita Majumder<sup>\*[c]</sup>, Shree Prakash Tiwari<sup>\*[b]</sup>, Ramesh K.

Metre \*[a]

[a] Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan- 342030, India

[b] Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan- 342030,

India

[c] Department of Chemistry, School of Science and Environmental Studies, Dr. Vishwanath Karad

MIT World Peace University, Pune 411038, Maharashtra, India.

**RECEIVED DATE** (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

CORRESPONDING AUTHOR FOOTNOTE: \* To whom correspondence should be addressed. E-mail: <u>rkmetre@iitj.ac.in</u> Phone (Office): (+91) 291-280-1309; <u>sptiwari@iitj.ac.in</u>

Phone (Office): +91 291 280 1356; moumita83iitd@gmail.com

## Table of Contents

| Crystal data and structure refinement for 1                                                                                      | 3   |
|----------------------------------------------------------------------------------------------------------------------------------|-----|
| <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of LH and <b>1</b>                                               | 4-5 |
| HRMS analysis for LH and 1                                                                                                       | 6   |
| Thermogravimetric analysis of 1                                                                                                  | 7   |
| Elemental analysis of 1                                                                                                          | 7   |
| Supramolecular studies of 1                                                                                                      | 8   |
| Experimental and Computed absorption spectra of [ML <sub>2</sub> ], complex 1                                                    | 9   |
| BP86 computed frontier molecular orbitals of the Zn-metal complex 1 and uncoordinated benzothiazole-substituted formazan ligand  | 10  |
| Molecular orbital energy levels and energy band gap of 1                                                                         | 11  |
| Second order perturbation energy $E_2$ (kcal/mol), off-diagonal Fock matrix elements $F(i,j)$ and acceptor – donor energy values | 12  |
| TD-DFT computed electronic transition energy, oscillator strength, and transition characters                                     | 12  |

| Identification code                          | 1                                                      |
|----------------------------------------------|--------------------------------------------------------|
| Empirical formula                            | $C_{54}H_{34}Cl_2N_{10}O_2S_2Zn$                       |
| Formula weight                               | 1055.30                                                |
| Temperature/K                                | 100                                                    |
| Crystal system                               | monoclinic                                             |
| Space group                                  | $P2_1/n$                                               |
| a (Å)                                        | 11.2270(4)                                             |
| b (Å)                                        | 31.2653(9)                                             |
| c (Å)                                        | 14.0665(5)                                             |
| α (°)                                        | 90                                                     |
| β (°)                                        | 111.5770(10)                                           |
| γ (°)                                        | 90                                                     |
| Volume (Å <sup>3</sup> )                     | 4591.6(3)                                              |
| Ζ                                            | 4                                                      |
| $\rho_{calc}g.cm^{-3}$                       | 1.527                                                  |
| μ, mm <sup>-1</sup>                          | 0.800                                                  |
| F(000)                                       | 2160.0                                                 |
| Crystal size (mm <sup>3</sup> )              | $0.26 \times 0.23 \times 0.22$                         |
| Radiation                                    | MoKa ( $\lambda = 0.71073$ )                           |
| 20 range for data collection (°)             | 4.114 to 56.582                                        |
| Index ranges                                 | $-14 \le h \le 14, -38 \le k \le 41, -18 \le l \le 18$ |
| <b>Reflections collected</b>                 | 78484                                                  |
| Independent reflections                      | 11378 [ $R_{int} = 0.0434, R_{sigma} = 0.0275$ ]       |
| Data/restraints/parameters                   | 11378/0/640                                            |
| Goodness-of-fit on F <sup>2</sup>            | 1.050                                                  |
| Final R indexes [I>=2σ (I)]                  | $R_1 = 0.0373, wR_2 = 0.0887$                          |
| Final R indexes [all data]                   | $R_1 = 0.0459, wR_2 = 0.0925$                          |
| Largest diff. peak/hole (e Å <sup>-3</sup> ) | 0.67/-0.46                                             |

 Table S1. Crystal data and structure refinement for 1 (CCDC 2356039).



Figure S1. <sup>1</sup>H NMR of LH in CDCl<sub>3</sub>.



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR of LH in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of complex 1.



Figure S4. <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) of complex 1.



Figure S5. HRMS analysis for LH: Anal. Calcd. for  $[M+H]^+$  peak, m/z = 496.0921. Found  $[M+H]^+$  peak, m/z = 496.1341.



Figure S6. HRMS analysis for 1: Anal. Calcd. for  $[M+H]^+$  peak, m/z = 1053.1048. Found  $[M+H]^+$  peak, m/z = 1053.1108.



Figure S7. Thermogravimetric analysis of 1.



**Figure S8.** Elemental analysis of **1.** Anal. Calcd. (%) for C<sub>54</sub>H<sub>34</sub>Cl<sub>2</sub>N<sub>10</sub>O<sub>2</sub>S<sub>2</sub>Zn: C, 61.46; H, 3.25; N, 13.27. Found: C, 61.72; H, 3.31; N, 12.89.



**Figure S9.** (a) Unit cell of complex 1 displaying CH--O, CH--S, and  $\pi$ -- $\pi$  interactions. (b) Crystal packing mode in 1 displaying CH-- $\pi$  and CH--Cl interactions.



Figure S10. (a) Experimental and Computed absorption spectra of  $[ML_2]$ , complex 1 (This work), and  $[ML'_2]$  complex [Ref. 52 in main manuscript] (Previous work) in CHCl<sub>3</sub> solution where M = Zn. (b) The molecular orbital representations of electronic transition that appear at the wavelength range from 590–650 nm (oscillator strength = 0.37-0.42) of TD-DFT computed absorption spectrum of complex 1 in CHCl<sub>3</sub> solvent. A contour value of 0.04 au is used to generate the plots.



**Figure S11.** (a) BP86 computed frontier molecular orbitals of the Zn-metal complex **1** and uncoordinated benzothiazole-substituted formazan ligand (LH) are plotted with an isosurface value of 0.04 au. (b) The molecular electrostatic potential surface (isovalue: 0.025, 0.05, 0.08) of complex 1, the positive and negative ESP regions are represented by blue and red colors, respectively.

Calculation of molecular orbital energy levels using electrochemical studies of complex

1:



**Figure S13**. CV of the complex **1** at a scan rate of 10 mV/s acquired using a Pt-wire counter electrode, glassy carbon working electrode, and Ag/AgCl (3.0 M KCl) reference electrode.

$$E_{HOMO} = -[E_{onset}(oxidation) + 4.8 - E_{FOC}]$$
 S2

$$E_{LUMO} = -[E_{onset}(reduction) + 4.8 - E_{FOC}]$$
 S3

 $E_{HOMO}$  and  $E_{LUMO}$  are the HOMO and LUMO energy levels,  $E_{onset}$ (oxidation) is the onset oxidation potential of complex 1, 4.8 is the reference energy level of ferrocene (FOC, 4.8 eV below the vacuum level), and  $E_{FOC}$  is the potential of FOC/FOC<sup>+</sup> vs. Ag/AgCl (0.33 eV, as measured by cyclic voltammetry).

$$E_{HOMO} = -[0.13 + 4.8 - 0.33]$$
$$= -4.6 \text{ eV}$$
$$E_{LUMO} = -[-0.35 + 4.8 - 0.33]$$
$$= -4.12 \text{ eV}$$

**Table S2.** Second-order perturbation energy  $E_2$  (eV), off-diagonal Fock matrix elements F(i,j) and acceptor – donor energy values  $(E_j - E_i)$  (a.u.) of selected donor-acceptor NBO-NBO\* interactions in metal-complex 1, as computed at BP86+D3/TZVPP+SDD method.  $E_2 > 1.0$  kcal/mol are tabulated here

| Donor NBO (i)    | Acceptor NBO(j) | E <sub>2</sub> (kcal/mol) | $E_i - E_i (au)$ | F(i,j)        |  |
|------------------|-----------------|---------------------------|------------------|---------------|--|
| Ligand-to-Metal  |                 |                           |                  |               |  |
| LP(1)N           | LP*(1)Zn        | 29.57 - 34.77             | 0.36 - 0.39      | 0.094 - 0.101 |  |
| Ligand-to-Ligand |                 |                           |                  |               |  |
| LP(2)S           | π*(N-C)         | 29.02                     | 0.17             | 0.062         |  |
| LP(2)S           | π*(C-C)         | 17.26                     | 0.20             | 0.053         |  |
| LP(3)Cl          | π*(C-C)         | 14.35                     | 0.25             | 0.054         |  |
| LP(1)N           | π*(N-N)         | 1.64                      | 0.24             | 0.018         |  |
| LP(1)N           | π*(C-C)         | 1.43                      | 0.33             | 0.019         |  |
| LP(1)N           | π*(O-C)         | 5.39                      | 0.30             | 0.036         |  |
| LP(1)N           | π*(N-C)         | 1.38                      | 0.24             | 0.016         |  |
| π(Ο-C)           | π*(C-C)         | 4.76                      | 0.33             | 0.035         |  |
| π(N-N)           | C(LP*)          | 41.10, 28.03              | 0.19, 0.22       | 0.079,0.069   |  |
| π(N-N)           | π*(N-N)         | 1.36, 19.95               | 0.23, 0.26       | 0.016, 0.064  |  |
| π(N-N)           | π*(C-C)         | 10.28                     | 0.33             | 0.052         |  |
| π(N-C)           | π*(N-N)         | 8.72                      | 0.22             | 0.039         |  |
| π(N-C)           | π*(C-C)         | 17.98                     | 0.28             | 0.063         |  |
| π(C-C)           | π*(O-C)         | 17.12,4.09                | 0.21             | 0.053         |  |
| π(C-C)           | π*(N-N)         | 16.49                     | 0.15             | 0.010         |  |
| π(C-C)           | π*(C-C)         | 11.51 - 19.07             | 0.24 - 0.21      | 0.047-0.056   |  |
| π(C-C)           | π*(N-C)         | 9.57                      | 0.19             | 0.038         |  |
| π(C-C)           | LP*C18          | 65.90                     | 0.09             | 0.069         |  |
|                  |                 |                           |                  |               |  |

**Table S3:** Calculated TD-DFT electronic transition wavelength (nm), oscillator strength ( $f_{osc}$ ), major compositions in terms MO contributions, and electronic transition character for complex 1 ( $Zn^{II}L_2$ )

| S. no.  | Wavelength (nm) | fosc  | Major composition                              | Transition Character            |
|---------|-----------------|-------|------------------------------------------------|---------------------------------|
|         |                 |       |                                                |                                 |
| Complex | x 1             | -     |                                                |                                 |
| 1       |                 |       |                                                |                                 |
| 1.      | 712             | 0.15  | $(HOMO-2) \rightarrow LUMO$                    | $n \rightarrow \pi^*$           |
|         | ,               | 0.110 | (1101110 2) / 201110                           |                                 |
| 2       | 673             | 0.10  | $(HOMO-2) \rightarrow LUMO$                    | $n \rightarrow \pi^*$           |
| 2.      | 075             | 0.10  |                                                | 1 7 10                          |
| 3       | 641             | 0.37  | $(HOMO_{-}1) + (HOMO_{-}3) \rightarrow I IIMO$ | $n + \pi (I) \rightarrow \pi^*$ |
| 5.      | 041             | 0.57  |                                                | $\Pi + \pi (L) \rightarrow \pi$ |
| 4       | 611             | 0.08  | $(HOMO 2) \rightarrow I I I MO+1$              | $n \rightarrow \pi^*$           |
| 4.      | 011             | 0.08  | $(HOMO-2) \rightarrow LOMO+1$                  | $\Pi \rightarrow \pi$           |

| 5. | 591 | 0.42 | $(\text{HOMO-1}) + (\text{HOMO-3}) \rightarrow \text{LUMO}$ | $\mathbf{n}+\pi\left(\mathbf{L}\right) \boldsymbol{\rightarrow} \pi^{*}$ |
|----|-----|------|-------------------------------------------------------------|--------------------------------------------------------------------------|
|    |     |      | (HOMO-1) + (HOMO-4) → LUMO+1                                | $\mathbf{n} \not \rightarrow \pi^*$                                      |
| 6. | 582 | 0.18 | (HOMO-3) → (LUMO+1)                                         | $n \rightarrow \pi^*$                                                    |
| 7. | 555 | 0.03 | (HOMO-7) $\rightarrow$ LUMO + (LUMO+1)                      | $S(LP) + \pi \rightarrow \pi^*$                                          |
| 8. | 530 | 0.02 | (HOMO-6) $\rightarrow$ LUMO + (LUMO+1)                      | $S(LP) + \pi \rightarrow \pi^*$                                          |
|    |     |      |                                                             |                                                                          |