Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Tuning the dimensionality in chiral and racemic organic/inorganic hybrid Tin halide Compounds

Louis Caussin, Abdelaziz Jouaiti, Daniel Chartrand, W. G. Skene, Sylvie Ferlay

Supplementary Information

	$((R)-EBA)_2-SnBr_6$	((<i>S</i>)- EBA) ₂ -SnBr ₆	(<i>rac-</i> EBA) ₂ -SnBr ₆	(<i>S</i>)- EBA -Snl ₃	(R)-EBA-Snl ₃	rac- EBA -Snl₃
d _{snx}	2.5794(6) 2.5795(6) 2.5815(6) 2.5924(7) 2.6119(6) 2.6244(6)	2.5808(12) 2.5802(11) 2.5836(12) 2.5926(12) 2.6099(11) 2.6222(11)	2.5908(6) 2.5999(6) 2.6006(7)	2.9434(10) 2.9576(10) 3.1024(10)	2.9439(6) 2.9607(7) 3.1042(7)	2.9804(10) 3.0414(6)
X-Sn-X	87.46(2) 88.21(2) 88.41(2) 89.24(2) 89.33(2) 90.30(2) 90.37(2) 90.43(2) 90.50(2) 90.97(2) 91.91(2) 92.96(2) 176.60(3) 177.42(2) 178.40(3)	87.45(4) 88.28(4) 88.58(4) 89.23(4) 89.42(4) 90.24(4) 90.27(4) 90.44(4) 90.56(4) 90.96(4) 91.78(4) 92.88(4) 176.84(5) 177.52(5) 178.41(5)	91.43(2) 88.57(2) 89.37(2) 89.75(2) 90.63(2) 90.25(2) 180.00(3)	88.67(3) 91.29(3) 94.28(3)	88.663(18) 91.321(18) 94.362(18)	86.58(2) 93.94(2) 94.11(3)
d _{N-X}	3.4128 (4) 3.4198 (4) 3.4413(4) 3.4718(4) 3.4986 (5) 3.5432 (5) 3.5591 (5) 3.6875(4) 3.7629(5)	3.4134(9) 3.4301(8) 3.4520(8) 3.5002(9) 3.5139(8) 3.5495(8) 3.5652(9) 3.6770(7) 3.7599 (9)	3.3985(6) 3.4243(6) 3.4324(6) 3.5646(5) 3.6519(6)	3.6340(11) 3.6893(11) 3.7721(10) 3.7827(10) 3.8000(10)	3.6259(7) 3.6923(7) 3.7712(7) 3.7825(8) 3.7894(7)	3.5180(11) 3.5775(9) 3.8142(9) 3.8420(11) 3.8965(9)
d _{c-x}	3.6231(6) 3.6663(5) 3.7233 (6)	3.6141(12) 3.6720(10) 3.7197 (10)	3.5845(6) 3.7151(6)	3.8783(13) 3.9476(11)	3.8599(9) 3.9526(8)	3.6158(14) 3.8647(14) 3.9282(17)

Table S1. Main distances (standard deviation in parentheses) measured for $((S)-EBA)_2-SnBr_6$, $((R)-EBA)_2-Sn Br_6$, $(rac-EBA)_2-Sn Br_6$, $(S)-EBA-SnI_3$, $(R)-EBA-SnI_3$ and $rac-EBA-SnI_3$.

Figure S1: Representation of the inorganic $(SnI_3)_n$ chains for (*S*) (a)- or (*R*)-**EBA**-SnI₃ (b) ; the chains are mirror images.

Figure S2: Representation of the structures and short contacts in (a) (*S*)- or (*R*)-**EBA**-SnI₃ and (b) (rac)-**EBA**-SnI₃.

Figure S3: Representation of the structures and short contacts in (a) ((S)- or (R)- **EBA**)₂-SnBr₆ and (b) ((rac)- **EBA**)₂-SnBr₆₃.

SHAPE program analysis¹

Deviation considering 6-coordinated Sn (CShM, Continuous Shape Measures)

	((<i>R</i>)- EBA) ₂ -SnBr ₆	((<i>S</i>)- EBA) ₂ -SnBr ₆	(<i>rac</i> - EBA) ₂ -SnBr ₆	(S)-EBA-Snl ₃	(R)-EBA-Snl ₃	<i>rac</i> - EBA -Snl₃
Deviation from Oh	19.056	19.046	19.324	17.124	17.127	Too much
CShivi						alsorder

XRPD measurements

Figure S4: (*S*)- or (*R*)-**EBA**-Snl₃ and (rac)-**EBA**-Snl₃, comparison of the simulated and experimental powder X-Ray diffraction studies (PXRD) diagrams.

а

¹ a) M. Llunell, D. Casanova, J. Girera, P. Alemany, S. Alvarez, SHAPE, version 2.1, Universitat de Barcelona, Barcelona, Spain ; b) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Shape maps and polyhedral interconversion paths in transition metal chemistry, *Coord. Chem. Rev.*, 2005, **249**, 1693-1708.

Figure S5: UV-vis spectra in a DMF solution of chiral antimony halide compounds (a) 0D ((S)- or (R)-EBA)₂-SnBr₆ and ((rac)-EBA)₂-SnBr₆ series and (b) 1D series. (b) (S)- or (R)-EBA-SnI₃ and (rac)-EBA-SnI₃.

Figure S6: Computed electronic band structures (left) and density of states (right) for (rac-EBA)2-SnBr6.

Figure S7: Computed electronic band structures (left) and density of states (right) for (*S*-**EBA**)2-SnBr6.

.

Figure S8: Computed electronic band structures (left) and density of states (right) for (*R*-**EBA**)2-SnBr6.

EBA)-Snl₃.

Figure S10: Computed electronic band structures (left) and density of states (right) for (Reba)-Snl₃.