Supporting Information

Towards Building Blocks for Metallosupramolecular Structures: Nonsymmetrically-Functionalised Ferrocenyl Compounds

William D. J. Tremlett,^a James D. Crowley,^b L. James Wright^a and Christian G. Hartinger^{a,*}

^a School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand

^b Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand

Table of Contents

Experimental procedures ¹H and ¹³C{¹H} NMR spectra for compounds **5**, **6**, **8a**, **8b**, **9**, **10**, **11a** and **11b** ESI-mass spectra for compounds **11a**, **11b**, **12a** and **12b** DFT calculations for compounds **11a** and **11b**

Experimental

1,1'-Ferrocenedicarboxylic acid (Fc(COOH)₂)

n-BuLi (2.0 M, 50 mL, 0.1 mol) was added to a solution of TMEDA (15 mL, 0.1 mol) in *n*-hexane (40 mL) and stirred at rt for 10 min. A solution of ferrocene (7.75 g, 41.7 mmol) in *n*-hexane (300 mL) was added dropwise over a period of 30 min and the reaction mixture was stirred for a further 6 h. The mixture was cooled to -78 °C, dry ice (10 g) added and left to warm to rt. The precipitate was collected by filtration, washed with cool Et₂O (3 × 50 mL) and dissolved in water (50 mL). The solution was acidified to pH 1 using concentrated HCl, the resulting solid was filtered, washed with water and dried *in vacuo*. The crude product was recrystallized from hot AcOH to afford Fc(COOH)₂ (4.48 g, 39%) as dark red crystals. ¹H NMR (400 MHz, (CD₃)₂SO): δ 12.29 (s, 2H, 2 × COOH), 4.70 (s, 4H, 2 × H-2 and H-5), 4.46 (s, 4H, 2 × H-3 and H-4); ¹³C{¹H} NMR (100 MHz, (CD₃)₂SO): δ 171.6 (2 × C, 2 × C=O), 73.4 (2 × C, 2 × C-1), 72.8 (4 × CH, 2 × C-2 and C-5), 71.3 (4 × CH, 2 × C-3 and C-4); MS (ESI⁺): *m/z* 296.9821 [M + Na]⁺ (m_{calc} 296.9821). The spectroscopic data were in agreement with those reported in the literature.¹

1,1'-Bis(methoxycarbonyl)ferrocene (Fc(COOMe)2)

 $(COCl)_2$ (5.31 mL, 61.9 mmol) was added to a suspension of Fc(COOH)₂ (3.39 g, 12.4 mmol) in CH₂Cl₂ (150 mL), followed by 1–2 drops of DMF. The reaction mixture was stirred at rt for 3 h, and then concentrated *in vacuo* to afford Fc(COCl)₂ (3.85 g, quant.) as a red solid which was used without further purification. Freshly prepared Fc(COCl)₂ (3.85 g, 12.4 mmol) was dissolved in MeOH (150 mL) and stirred at rt for 1 h. The solution was concentrated *in vacuo* and the crude residue purified by flash chromatography (CH₂Cl₂) to afford Fc(COOMe)₂ (3.63

g, 97%) as an orange powder. $R_f 0.37$ (CH₂Cl₂ neat); ¹H NMR (400 MHz, CDCl₃): δ 4.83 (t, 4H, ³*J* = 1.9 Hz, 2 × H-2 and H-5), 4.41 (t, 4H, ³*J* = 1.9 Hz, 2 × H-3 and H-4), 3.82 (s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 171.0 (2 × C, 2 × COOCH₃), 73.0 (2 × C, 2 × C-1), 72.8 (4 × C, 2 × C-2 and C-5), 71.7 (4 × C, 2 × C-3 and C-4), 51.8 (2 × CH₃, 2 × COOCH₃); MS (ESI⁺): m/z = 325.0136 [M + Na]⁺ (m_{calc} = 325.0134). The spectroscopic data were in agreement with those reported in the literature.²

1-Carboxy-1'-(methoxycarbonyl)ferrocene (Fc(COOH)(COOMe))

A solution of NaOH in MeOH (4.72 mL, 2.8 M) was added to a solution of Fc(COOMe)₂ (3.63 g, 12.0 mmol) in acetone (150 mL) at rt over 5 min. The reaction was stirred for 18 h and then concentrated *in vacuo*. The crude residue was dissolved in water (200 mL) and the resultant solution acidified to pH 1 at 0 °C with concentrated HCl. The resulting precipitate was collected, washed with water (3 × 50 mL) and dried *in vacuo* to afford Fc(COOH)(COOMe) (3.15 g, 91%) as a yellow powder. ¹H NMR (400 MHz, CDCl₃): δ 4.88 (t, 4H, ³*J* = 1.7 Hz, H-2, H-5, H-b and H-e), 4.48 (t, 4H, ³*J* = 1.4 Hz, H-3, H-4, H-c and H-d), 3.84 (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃): δ 175.9 (C, COOH), 170.9 (C, COOCH₃), 73.5 (2 × CH, C-2 and C-5), 73.3 (C, C-1), 73.1 (2 × CH, C-b and C-e), 72.3 (2 × CH, C-3 and C-4), 72.1 (2 × CH, C-c and C-d), 71.7 (C, C-a), 51.9 (CH₃, COOCH₃); MS (ESI⁺): *m/z* = 310.9975 [M + Na]⁺ (m_{calc} = 310.9977). The spectroscopic data were in agreement with those reported in the literature.³

tert-Butyl-(4-aminophenyl)carbamate (3)

A solution of Boc_2O (10.1 g, 46 mmol) in CH_2Cl_2 (100 mL) was added dropwise to a solution of *p*-phenylenediamine (10.0 g, 93 mmol) in CH_2Cl_2 (200 mL) at 0 °C. The resultant solution was warmed to rt, stirred for 18 h and concentrated *in vacuo*. The crude residue was purified

by flash chromatography (hexanes/EtOAc 2:1 \rightarrow 1:1) to afford **3** (9.6 g, 99%) as an off-white solid. R_f 0.36 (hexanes/EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, 2H, ³J = 8.2 Hz, H-2 and H-6), 6.65-6.61 (m, 2H, H-3 and H-5), 6.27 (br s, 1H, NHCO), 3.53 (br s, 2H, NH₂), 1.50 (s, 9H, CO₂C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ 153.5 (C, *C*O₂C(CH₃)₃), 142.5 (C, C-1), 129.9 (C, C-4), 121.1 (2 × CH, C-2 and C-6), 115.7 (2 × CH, C-3 and C-5), 80.1 (C, CO₂C(CH₃)₃), 28.5 (3 × CH₃, CO₂C(CH₃)₃); MS (ESI⁺): m/z = 231.1105 [M + Na]⁺ (m_{calc} = 231.1104). The spectroscopic data were in agreement with those reported in the literature.⁴

tert-Butyl-(4-propiolamido)phenylcarbamate (4)

A solution of DIC (3.62 mL, 23.1 mmol) in CH₂Cl₂ (150 mL) was added dropwise to a stirred suspension of propiolic acid (1.43 mL, 23.1 mmol) and **3** (4.01 g, 19.3 mmol) in CH₂Cl₂ (80 mL) and DMF (20 mL) at 0 °C over 30 min. The reaction mixture was allowed to warm to rt and stirred for 24 h. The resultant solution was washed with saturated aqueous NaHCO₃ (150 mL), water (150 mL) and brine (150 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash chromatography (hexanes/EtOAc 3:2) to afford **4** (4.50 g, 90%) as a pale yellow solid. *R*_f 0.47 (hexanes/EtOAc 3:2); ¹H NMR (400 MHz, CDCl₃): δ 7.54 (br s, 1H, NHCOCCH), 7.45-7.42 (m, 2H, H-2 and H-6), 7.33 (d, 2H, ³*J* = 8.9 Hz, H-3 and H-5), 6.49 (br s, 1H, NHCO₂C(CH₃)₃), 2.91 (s, 1H, H-3'), 1.51 (s, 9H, CO₂C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃): δ 152.9 (C, *CO*₂C(CH₃)₃), 149.6 (C, C-1'), 135.7 (C, C-1), 132.2 (C, C-4), 121.0 (2 × CH, C-2 and C-6), 119.3 (2 × CH, C-3 and C-5), 115.9 (CH, C-3'), 80.9 (C, CO₂C(CH₃)₃), 74.1 (C, C-2') , 28.5 (3 × CH₃, CO₂C(CH₃)₃); MS (ESI⁺): *m*/*z* = 283.1050 [M + Na]⁺ (m_{cale} = 283.1053). The spectroscopic data were in agreement with those reported in the literature.⁵

Sodium azide (3.11 g, 47.8 mmol) was added to a stirred solution of 2-(bromomethyl)pyridine hydrobromide (4.03 g, 15.9 mmol) in DMF (150 mL) and the reaction was stirred at 70 °C for 18 h. The reaction mixture was allowed to cool to rt, after which it was diluted with CH₂Cl₂ (150 mL) and washed with water (5 × 100 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford 2-(azidomethyl)pyridine (1.82 g, 85%) as a yellow oil which was used without further purification. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (d, 1H, ³J = 4.1 Hz, H-1), 7.71 (td, 1H, ³J = 11.5 Hz, ⁴J = 1.8 Hz, H-3), 7.34 (d, 1H, ³J = 7.8 Hz, H-4), 7.24 (ddd, 1H, ³J = 7.8 Hz, ³J = 5.0 Hz, ⁴J = 1.0 Hz, H-2), 4.49 (s, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃): δ 155.7 (C, C-5), 149.6 (CH, C-1), 137.0 (CH, C-3), 122.9 (CH, C-2), 122.0 (CH, C-4), 55.6 (CH₂, CH₂N₃); MS (ESI⁺): *m*/*z* = 157.0480 [M + Na]⁺ (m_{calc} = 157.0485). The spectroscopic data were in agreement with those reported in the literature.⁶

tert-Butyl-4-(2-bromoacetamido)phenylcarbamate (7)

A solution of DIC (0.7 mL, 4.49 mmol) in CH₂Cl₂ (60 mL) was added dropwise to a stirred suspension of bromoacetic acid (0.62 g, 4.49 mmol) and **3** (0.85 g, 4.08 mmol) in CH₂Cl₂ (40 mL) at 0 °C over 30 min. The reaction mixture was allowed to warm to rt, stirred for 18 h and concentrated *in vacuo*. The crude residue was purified by flash chromatography (EtOAc) to afford **7** (1.22 g, 91%) as a white powder. R_f 0.68 (hexanes/EtOAc 1:1); ¹H NMR (400 MHz, CD₃OD): δ 7.48-7.44 (m, 2H, H-2 and H-6), 7.36 (d, 2H, ³J = 9.0 Hz, H-3 and H-5), 3.95 (s, 2H, CH₂), 1.51 (s, 9H, CO₂C(CH₃)₃); ¹³C NMR (100 MHz, CD₃OD): δ 167.4 (C, COCH₂Br), 155.3 (C, CO₂C(CH₃)₃), 137.4 (C, C-1), 134.3 (C, C-4), 121.8 (2 × CH, C-2 and C-6), 120.2 (2 × CH, C-3 and C-5), 80.8 (C, CO₂C(CH₃)₃), 29.7 (CH₂, COCH₂Br), 28.7 (3 × CH₃, CO₂C(CH₃)₃); MS (ESI⁺): m/z = 351.0312 [M + Na]⁺ (m_{calc} = 351.0315). The spectroscopic data were in agreement with those reported in the literature.⁷

¹H and ¹³C{¹H} DEPTQ NMR spectra

Figure S1. ¹H NMR spectrum of *tert*-butyl-4-(*N*-1-(2-pyridinylmethyl)-1*H*-1,2,3-triazole-4-carboxamide)phenylcarbamate (**5**) measured in CDCl₃.

Figure S2. ¹³C{¹H} DEPTQ NMR spectrum of *tert*-butyl-4-(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)phenylcarbamate (**5**) measured in CDCl₃.

Figure S3. ¹H NMR spectrum of *N*-(4-aminophenyl)-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide (**6**) measured in CDCl₃.

Figure S4. ¹³C{¹H} DEPTQ NMR spectrum of *N*-(4-aminophenyl)-1-(2-pyridinylmethyl)-1*H*-1,2,3-triazole-4-carboxamide (**6**) measured in CDCl₃.

Figure S5. ¹H NMR spectrum of N-(4-aminophenyl)-3-methyl-1H-imidazole-1-acetamide (8a) measured in (CD₃)₂SO.

Figure S6. ¹³C{¹H} DEPTQ NMR spectrum of *N*-(4-aminophenyl)-3-methyl-1*H*-imidazole-1-acetamide (**8a**) measured in (CD₃)₂SO.

Figure S7. ¹H NMR spectrum of N-(4-aminophenyl)-3-methyl-1*H*-benzimidazole-1-acetamide (**8b**) measured in (CD₃)₂SO.

Figure S8. ${}^{13}C{}^{1}H$ DEPTQ NMR spectrum of *N*-(4-aminophenyl)-3-methyl-1*H*-benzimidazole-1-acetamide (**8b**) measured in (CD₃)₂SO.

Figure S9. ¹H NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-(methoxycarbonyl)ferrocene (**9**) measured in CDCl₃.

Figure S10. ${}^{13}C{}^{1}H$ DEPTQ NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-(methoxycarbonyl)ferrocene(9)measured in CDCl3.

Figure S11. ¹H NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-(carboxy)ferrocene (**10**) measured in (CD₃)₂SO.

Figure S12. ¹³C{¹H} DEPTQ NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-(carboxy)ferrocene (10) measured in (CD₃)₂SO.

Figure S13. ¹H NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-[[(N-3-methyl-1H-imidazolium-1-acetamide)-4-aminophenyl]carbonyl]ferrocene hexafluorophosphate (**11a**) measured in (CD₃)₂SO.

Figure S14. ¹³C{¹H} DEPTQ NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-[[(N-3-methyl-1H-imidazolium-1-acetamide)-4-aminophenyl]carbonyl]ferrocene hexafluorophosphate (**11a**) measured in (CD₃)₂SO.

Figure S15. ¹H NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-[[(N-3-methyl-1H-benzimidazolium-1-acetamide) -4-aminophenyl]carbonyl]ferrocene hexafluorophosphate (**11b**) measured in (CD₃)₂SO.

Figure S16. ¹³C{¹H} DEPTQ NMR spectrum of 1-[[(N-1-(2-pyridinylmethyl)-1H-1,2,3-triazole-4-carboxamide)-4-aminophenyl]carbonyl]-1'-[[(N-3-methyl-1H-benzimidazolium-1-acetamide)-4-aminophenyl]carbonyl]ferrocene hexafluorophosphate (**11b**) measured in (CD₃)₂SO.

Figure S17. Stacked ¹H NMR spectra of 11a (top) and crude 12a (bottom) measured in CD₃CN.

Figure S18. Stacked ¹H NMR spectra of 11b (top) and crude 12b (bottom) measured in CD₃CN.

ESI-mass spectra

Figure S19. ESI-MS of **11a** highlighting the observed isotope pattern compared to calculated for the main peaks.

Figure S20. ESI-MS of **11b** highlighting the observed isotope pattern compared to calculated for the main peaks.

Figure S21. ESI-MS of a crude sample of 12a highlighting the observed isotope pattern compared to calculated for the main peaks.

Figure S22. ESI-MS of a crude sample of 12b highlighting the observed isotope pattern compared to calculated for the main peaks.

DFT calculations

Configuration ^a	ΔE (kJ mol ⁻¹)
11a _{anti,syn}	-
11a _{anti,anti}	+10.73
11a _{syn,anti}	+26.41
11a _{syn,syn}	+35.45
11b _{anti,syn}	-
11b _{syn,syn}	+27.33

Table S1. Energy differences (ΔE) between various configurations of amide bonds in **11a** and **11b** relative to the lowest energy structures (**11a**_{anti,syn} and **11b**_{anti,syn}).

Configurations not listed failed when running DFT calculations and were assumed to be unstable. Configurations of amide groups read from the ferrocene moiety to pyrti/NHC rings as shown in Figure S22.

Figure S23. Possible amide conformations of 11a and 11b calculated by DFT.

References

- 1. W. D. J. Tremlett, T. Söhnel, J. D. Crowley, L. J. Wright and C. G. Hartinger, *Inorg. Chem.*, 2023, **62**, 3616-3628.
- A. Ferranco, K. Sun, T. Udaipaul and H.-B. Kraatz, *Eur. J. Inorg. Chem.*, 2018, 2018, 3213-3223.
- 3. N.-T. Lin, S.-Y. Lin, S.-L. Lee, C.-h. Chen, C.-H. Hsu, L. P. Hwang, Z.-Y. Xie, C.-H. Chen, S.-L. Huang and T.-Y. Luh, *Angew. Chem. Int. Ed.*, 2007, **46**, 4481-4485.
- Y.-y. Chu-Farseeva, N. Mustafa, A. Poulsen, E. C. Tan, J. J. Y. Yen, W. J. Chng and B. W. Dymock, *Eur. J. Med. Chem.*, 2018, **158**, 593-619.
- E. Strocchi, F. Fornari, M. Minguzzi, L. Gramantieri, M. Milazzo, V. Rebuttini, S. Breviglieri, C. M. Camaggi, E. Locatelli, L. Bolondi and M. Comes-Franchini, *Eur. J. Med. Chem.*, 2012, 48, 391-401.
- G. C. Brandão, F. C. Rocha Missias, L. M. Arantes, L. F. Soares, K. K. Roy, R. J. Doerksen, A. Braga de Oliveira and G. R. Pereira, *Eur. J. Med. Chem.*, 2018, 145, 191-205.
- K. Pombo-García, K. Zarschler, J. A. Barreto, J. Hesse, L. Spiccia, B. Graham and H. Stephan, *RSC Adv.*, 2013, 3, 22443-22454.