A highly efficient *in situ* redox stabilization strategy for Am-Cm separation using AgBiO₃

Parveen K. Verma^a, Arunasis Bhattacharyya^{*,a}, Soumen Samanta^b, Prasanta K. Mohapatra^{*,a}

^a Radiochemistry Division, ^b Technical Physics Division

 ^{a.} Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India. *Corresponding Authors, E-mail: arun12@barc.gov.in(AB), mpatra@barc.gov.in(PKM)
^{b.} Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India

Contents

Introduction	3
AgBiO ₃ characterization	4
X-ray diffraction and XPS analysis	4
Am-Eu and Am-Cm separation	4
Figures and Tables	5
Eh-pH or Pourbaix diagram	6
References	17

List of Tables

Table S 1. Half cell reaction used to generate Pourbaix diagram of Am,Ag, S ₂ O ₈ ²⁻ , and BiO ₃ ⁻	
system	7
Table S 2. The thermodynamic equation used to plot Am ³⁺ speciation diagram	9
Table S 3. The % contribution of different forms of Ag and Bi in the AgBiO ₃	11
Table S 4. Comparison of recent methods with the proposed method in present studies	16

List of Figures

Figure S2. The sorption of Eu^{3+} (red bar) and Am^{3+} (green bar) onto NaBiO ₃ at pH~4 at different
time interval for (a) NaBiO ₃ and (b) H ⁺ -NaBiO ₃ , $[Am^{3+}] = [Eu^{3+}]: 1 \times 10^{-6}$ M, $[NaBiO_3]: 2.5$
mg/mL, pH : 4, Temperature: 25 °C, (The initial and final counts of pure radiotracer in sorption
studies were determined using NaI(Tl) detector.)
Figure S 3. The Pourbaix diagram of Am-Bi-Ag-S ₂ O ₈ system
Figure S4. Speciation diagram of Am ³⁺ in aqueous media
Figure S 5. Synthesis of AgBiO ₃ by ion-exchange reaction between NaBiO ₃ and AgNO ₃ in
aqueous medium, Temperature: 298K, Stirring: 60 minutes9
Figure S 6. The photograph of (a) pristine NaBiO ₃ , (b) H ⁺ activated NaBiO ₃ , and AgBiO3 at (c)
1:1 and (d) 3:1 mole ratio of AgNO3 and NaBiO310
Figure S 7. The SEM images of (a) NaBiO ₃ , (b) AgBiO ₃ , (c) XRD of Na ⁺ , H ⁺ , and Ag ⁺ form of
BiO ₃ ⁻ at 1:1 and 3:1 AgNO ₃ :NaBiO ₃ mole ratio
Figure S8. The initial Am ³⁺ spectrum (black) and rise in the Am ³⁺ peak at 503 nm with time (4 to
20 hr) after quantitative conversion of Am^{3+} to AmO_2^+ on equilibration with AgBiO ₃ , [Am ³⁺]:
1.2×10 ⁻⁴ M, [AgBiO ₃]: 2.5 mg/mL, pH: 4, Temperature: 25 °C12
Figure S9. The decrease in the solution concentration of BiO ₃ ⁻ (estimated using absorbance at 543
nm, (ɛ: 11.0 reported by Einkauf et al ²⁶) with time in the supernatant of AgBiO ₃ -Am ³⁺ , suspension
centrifuged at 10,000 RPM for 10 minutes; [Am3+]: 1.2×10-4 M, [AgBiO3]: 2.5 mg/mL, pH: 4,
Temperature: 25 °C. The error is shown at the confidence level of 95%13
Figure S10. The HpGe spectrum of Am-Eu mixture after contact with different amount of AgBiO ₃
(0.7, 1.4, 21 and 2.8 g/L) at different time intervals (a) 5 minutes, (b) 30 minutes and (c) 60
minutes, pH: 4, T : 25 °C. (The γ -spectroscopy was performed using HPGe detector.)14
Figure S11. The shift in the AmO_2^+ peak after addition of Na-acetate ion, pH: 4, $[Am^{3+}]$: $1.2 \times 10^-$
⁴ M, [Na-Acetate] = 0.1 M; Temperature: 25 °C15

Introduction

There are reports on Am-Cm/Eu separations by oxidizing Am^{3+} to AmO_2^+ using $Na_2S_2O_8$ along with hypochlorite¹ and Ag⁺ salts.² Burns et al, reported SFs of 30 (±10)¹ and 60 (±20)³ and 20⁴ for AmO_2^+/Nd^{3+} , AmO_2^+/Eu^{3+} and AmO_2^+/Cm^{3+} using Na–Sn–hybrid, respectively, followed by Am^{3+} oxidation to AmO_2^+ at pH~2 (HNO_3). The average SF (Cm/Am) of 110±20 was reported by Kazi et al.,² for Am-Cm separation using the DGA resin followed by Am^{3+} oxidation to AmO_2^+ at pH~2 (HNO_3). Very high SF (>10⁴) for Am-Eu and Am-Cm separation was reported by oxidizing Am^{3+} to AmO_2^+ in the organic medium using HBiO₃ extracted with the DGA ligand by adduct formation.⁵⁻⁷ The same group has also reported a SF of >10⁵ for americium/lanthanides separation using a biphasic system.⁵ The oxidation achieved in these studies involved the organic phase which appeared less complex as compared to the aqueous phase which contained various complexing ions.

 Am^{3+} can be oxidized to AmO_2^{2+} using several regents under different chemical conditions.⁸⁻¹³ For example, using NaBiO₃ in nitric acid,⁹ O₃ in carbonate solution,¹⁴ Na₂S₂O₈ at 80°C in slightly acidic solutions,¹⁵, etc.⁸ Contrary to these, only a few methods are reported for the direct oxidation of Am^{3+} to AmO_2^+ and are predominantly formed in circumneutral and alkaline conditions.⁸ Few common oxidizing agents are ozone, peroxydisulfate^{1,4}, or hypochlorite¹⁶ for the direct oxidation of Am^{3+} to AmO_2^+ .⁸ The auto reduction of AmO_2^{2+} also leads to the *in-situ* formation of AmO_2^+ .^{17, 18}

The $Am^{3+} \rightarrow AmO_2^+$ oxidation by NaBiO₃ under heating conditions was suggested by Mincher et al.⁹ However, Burns et al,¹ have not succeeded in the preparation of AmO_2^+ by this method⁹ and used Na₂S₂O₈, instead for oxidation.¹ The same group also reported the formation of AmO_2^+ and AmO_2^{2+} from the Am^{3+} oxidation by sulfate radical oxidation in HNO₃ and HClO₄ medium, respectively.⁴ The addition of excess hypochlorite ions is a prerequisite to stabilize and maintain the AmO_2^+ state in both HNO₃ and HClO₄ medium and Am-Cm separation was shown.⁴ Later, Mincher et al.,¹⁹ optimized the procedure given by Burns et al.,⁴ and achieved quantitative oxidation of Am^{3+} to AmO_2^+ in 0.1 M HNO₃ with 1.0 M Na₂S₂O₈ at 80-100 °C. Although, the Na₂S₂O₈-based methods for the generation of AmO_2^+ are promising but require heating at elevated temperatures for 10-45 minutes.⁴ The added Na₂S₂O₈ also leads to the generation of secondary wastes along with an *in situ* generation of SO₄²⁻ ions along with S₂O₈²⁻, OCl⁻, as well as ClO_x⁻ (generated by decomposition of the Ca(OCl)₂)and CaSO₄ precipitation⁴ making the overall process complicated.

The AmO₂⁺ generation by the NaBiO₃ mediated oxidation of Am³⁺ under heating conditions is cleaner⁹ but introduces Bi³⁺ ions into the solution due to the dissolution of NaBiO₃ followed by its rapid reduction in acidic solution at the temperature used to achieve the Am³⁺ \rightarrow AmO₂⁺ conversion. The other methods employ high carbonate concentration^{14, 20} and also lead to the formation of the AmO₂⁺-carbonate complex rather than the pure hydrated AmO₂⁺ ions.

Rice, et al.,²¹ have recently used NaBiO₃ as an oxidant and reported the formation of AmO_2^+ in HCl at pH 1. However, HCl is not only corrosive but its addition to NaBiO₃ leads to Cl₂ evolution²² along with the formation of BiOCl precipitates²² making the process complicated if applied for Am separation beside the loss of NaBiO₃.

AgBiO₃ characterization

X-ray diffraction and XPS analysis

The XRD data of the NaBiO₃ used in the present study matched well with the JCPDF file number PDF # 30-1161, suggesting the di-hydatre form of the NaBiO₃ i.e. (NaBiO₃.2H₂O) used in the present studies.²³ XRD of AgBiO₃ (dried at room temperature) prepared at different AgNO3: NaBIO3 mole ratio was recorded using XRD unit from Rikagu, Japan. The XRD shows similar pattern for1:1 to 1:3 mole ratio of NaBiO₃:AgNO₃, suggesting that even 1:1 mole ratio is enough for ion exchange of Na⁺ with Ag⁺ to form AgBiO₃. X-ray photoelectron spectroscopy (XPS) measurement of the AgBiO₃ was carried out using DESA-150 electron analyzer (Staib Instruments, Germany) and Mg-Ka (1253.6 eV) source. The binding-energy was calibrated using Au-4f_{7/2} line with energy 84.0 eV and C-1s line of energy 284.8 eV. The deconvolution of high-resolution peaks was carried out using XPSPEAK4.1 software.

Am-Eu and Am-Cm separation

The known volume of the Am+Eu mixture was taken at pH 4 and its initial activity was counted using HpGe detector. The mixture was equilibrated with different amount of AgBiO₃ for 5, 30 and

60 minutes. The resultant suspension was centrifuged at 7000g for 10 minutes and the small aliquot (~100 μ l) from supernatant was counted using HpGe detector. The similar procedure was used for Am-Cm separation. The initial sample and supernatant after AgBiO₃ treatment was analyzed using α -spectrometry.

Figures and Tables

Figure S1. The sorption of Eu^{3+} (blue bar) and Am^{3+} (red bar) onto NaBiO₃ at different pH, Time: 5 minutes, $[Am^{3+}] = [Eu^{3+}]$: 1×10^{-6} M, $[NaBiO_3]$: 2.5 mg/mL, Temperature: 25 °C, (The initial and final counts of radiotracer in sorption studies were determined using NaI(Tl) detector.)

Figure S2. The sorption of Eu^{3+} (red bar) and Am^{3+} (green bar) onto NaBiO₃ at pH~4 at different time interval for (a) NaBiO₃ and (b) H⁺-NaBiO₃, [Am³⁺] = [Eu³⁺]: 1×10⁻⁶ M, [NaBiO₃]: 2.5 mg/mL, pH : 4, Temperature: 25 °C, (The initial and final counts of pure radiotracer in sorption studies were determined using NaI(Tl) detector.).

Eh-pH or Pourbaix diagram

The Pourbaix diagram gives the thermodynamic stability field for different oxidation states of Am in the presence of BiO₃- \rightarrow Bi³⁺ couple under different pH conditions (the hydrolysis of Am³⁺ not included and plotted separately for better representation). The equation used for the Pourbaix diagram is given in Table S1. Although, the higher oxidation stats of the Am occurs above the stability line of water oxidation (H₂O \rightarrow O₂) but thermodynamic conditions for Am³⁺ \rightarrow AmO₂⁺ or Am³⁺ \rightarrow AmO₂²⁺ can be inferred from these diagrams. The Am³⁺ is the only stable species in the absence of any complexing agents, rest all the higher oxidation states of Am prefer to reduce to Am³⁺ by oxidizing water to oxygen. The Eh-pH diagram suggest the AmO₂⁺ formation is difficult below pH 1.5 using BiO3 \rightarrow Bi³⁺ couple and prefer to go to the AmO₂²⁺ state. The marked stability field for AmO₂⁺ is narrow and even beyond pH 6 (Fig. S3). The equation used for the speciation plot is given in Table S2, the BiO₃⁻ \rightarrow Bi³⁺ couple crosses the Am³⁺ \rightarrow AmO₂⁺ lines suggesting its poor oxidation ability beyond that point and hence one has to limit the pH range between pH 1.5 to 6 to achieve Am³⁺ \rightarrow AmO₂⁺ conversion using BiO₃⁻ \rightarrow Bi³⁺ couple. However, the higher pH (>5) causes formation of the Am-hydroxo species and lower pH (<3) further narrow the stability field and also increase the tendency of disproportionation of AmO₂⁺ formed by Am³⁺ oxidation. This made us to choose pH ~4 as a safe range for getting stable AmO_2^+ . The Ag^{2+} and S_2O_8 have very high potential and can oxidize Am^{3+} to AmO_2^{2+} under in entire pH range (assuming no other side reaction).

Table S 1. Half cell reaction used to generate Pourbaix diagram of Am,Ag, $S_2O_8^{2-}$, and BiO₃-system.

Couple	Equations	Standard reduction potential,
		$E^{0}(V)(I=0))$
$AmO_2^+ \rightarrow Am^{3+}$	$AmO_2^+ + 4H^+ + 2e^- \rightarrow Am^{3+} + 2H_2O$	1.75 ²⁴
$AmO_2^{2+} \rightarrow Am^{3+}$	$AmO_2^{2+} + 4H^+ + 3e^- \rightarrow Am^{3+} + 2H_2O$	1.70 ²⁴
$AmO_2^{2+} \rightarrow AmO_2^{+}$	$AmO_2^{2+} + e^- \rightarrow AmO_2^+$	1.60 ²⁴
BiO ₃ -→Bi ³⁺	$\operatorname{BiO}_3^- + 6\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{Bi}^{3+} + 3\mathrm{H}_2\mathrm{O}$	2.03 ²⁵
$Ag^{2+} \rightarrow Ag^{+}$	$Ag^{2+} + e^- \rightarrow Ag^+$	1.98 ³
$S_2O_8^2 \rightarrow SO_4^2$	$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	2.018

Figure S 3. The Pourbaix diagram of Am-Bi-Ag-S $_2O_8$ system

Figure S4. Speciation diagram of Am³⁺ in aqueous media

Thermodynamic equations	logβ
$Am^{3++}H_2O \rightarrow AmOH^{2+} + H^+$	-7.2
$Am^{3+} H_2O \rightarrow Am(OH)_2^+ + 2 H^+$	-15.1
$Am^{3+} H_2O \rightarrow Am(OH)_3 + 3 H^+$	-26.2
$H_2O \rightarrow H^+ + OH^-$	-14.0

Table S 2. The thermodynamic equation used to plot Am^{3+} speciation diagram

Figure S 5. Synthesis of AgBiO₃ by ion-exchange reaction between NaBiO₃ and AgNO₃ in aqueous medium, Temperature: 298K, Stirring: 60 minutes

Figure S 6. The photograph of (a) pristine NaBiO₃, (b) H⁺ activated NaBiO₃, and AgBiO3 at (c) 1:1 and (d) 3:1 mole ratio of AgNO₃ and NaBiO₃.

Figure S 7. The SEM images of (a) NaBiO₃, (b) AgBiO₃, (c) XRD of Na⁺, H⁺, and Ag⁺ form of BiO₃⁻ at 1:1 and 3:1 AgNO₃:NaBiO₃ mole ratio.

Element	Peak position (eV)	% Contribution (%std	Nature of species
		Dev)	
Ag_3d	368.0	81.7 (0.75%)	$\Delta \alpha^{2+}$
	374.0	89.2(0.39%)	ng
	368.9	18.3 (0.41%)	Δq^+
	375.4	10.8 (0.43%)	
Bi_4f	159.0	63.7 (0.29%)	Bi ³⁺
	164.3	63.0 (0.43%)	
	159.9	36.3 (0.26%)	Bi ⁵⁺
	165.2	37.0 (0.61%)	

Table S 3. The % contribution of different forms of Ag and Bi in the $AgBiO_3$

Figure S8. The initial Am^{3+} spectrum (black) and rise in the Am^{3+} peak at 503 nm with time (4 to 20 hr) after quantitative conversion of Am^{3+} to AmO_2^+ on equilibration with AgBiO₃, [Am³⁺]: 1.2×10⁻⁴ M, [AgBiO₃]: 2.5 mg/mL, pH: 4, Temperature: 25 °C.

Figure S9. The decrease in the solution concentration of BiO_3^- (estimated using absorbance at 543 nm, (ϵ : 11.0 reported by Einkauf et al²⁶) with time in the supernatant of AgBiO₃-Am³⁺, suspension centrifuged at 10,000 RPM for 10 minutes; [Am³⁺]: 1.2×10⁻⁴ M, [AgBiO₃]: 2.5 mg/mL, pH: 4, Temperature: 25 °C. The error is shown at the confidence level of 95%.

Figure S10. The HpGe spectrum of Am-Eu mixture after contact with different amount of AgBiO₃ (0.7, 1.4, 21 and 2.8 g/L) at different time intervals (a) 5 minutes, (b) 30 minutes and (c) 60 minutes, pH: 4, T : 25 °C. (The γ -spectroscopy was performed using HPGe detector.)

Figure S11. The shift in the AmO_2^+ peak after addition of Na-acetate ion, pH: 4, [Am³⁺]: 1.2×10^{-4} M, [Na-Acetate] = 0.1 M; Temperature: 25 °C.

Reagents	Shortcomings	Ref.*
NaBiO ₃ : 15-20 g/L	Higher NaBiO ₃ dissolution:	9
pH: 1, Temp: 80 °C	Bi ³⁺ in solution	
Time:>30 minutes	High temperature	
$Na_2S_2O_8 + Ca(OCl)_2$	Interfering ions: $S_2O_8^-$, SO_4^{2-} ,	19
pH: 1-2, Temp: 80-100 °C	ClO _x , OCl ⁻	
Time: 10–45 min	In situ gypsum formation	
	High temperature	
NaBiO3 : 15-20 g/L	Corrosive acid	21
pH: 1 (HCl) ,Temp: 25 °C	Cl ₂ effervescences	
Time: 24 hours	Insitu BiOCl generation	
AgBiO ₃ : 2-3 g/L	Room temperature,	p.w.
pH: 4, Temp: 25 °C	No interfering ions	
Time: 5-10 minutes	pH ~4: poor disproportionation	

Table S 4. Comparison of recent methods with the proposed method in present studies

References

- 1. J. D. Burns, M. Borkowski, A. Clearfield and D. T. Reed, 2012, **100**, 901-906.
- 2. Z. Kazi, N. Guérin, M. Christl, M. Totland, A. Gagné and S. Burrell, *J. Radioanal. Nucl. Chem.*, 2019, **321**, 227-233.
- 3. P. Zsabka, A. Wilden, K. Van Hecke, G. Modolo, M. Verwerft and T. Cardinaels, *J. Nucl. Mater.*, 2023, **581**.
- 4. J. D. Burns, T. C. Shehee, A. Clearfield and D. T. Hobbs, *Anal. Chem.*, 2012, **84**, 6930-6932.
- 5. X. Dong, H. Hao, J. Chen, Z. Wang and C. Xu, *Chemical Science*, 2024, **15**, 2118-2122.
- 6. Z. Wang, J. B. Lu, X. Dong, Q. Yan, X. Feng, H. S. Hu, S. Wang, J. Chen, J. Li and C. Xu, *J. Am. Chem. Soc.*, 2022, **144**, 6383-6389.
- 7. Z. Wang, X. Dong, Q. Yan, J. Chen and C. Xu, *Anal. Chem.*, 2022, **94**, 7743-7746.
- 8. W. H. Runde and B. J. Mincher, *Chem. Rev.*, 2011, **111**, 5723-5741.
- 9. B. J. Mincher, L. R. Martin and N. C. Schmitt, *Inorg. Chem.*, 2008, **47**, 6984-6989.
- 10. T. S. Grimes, B. J. Mincher and N. C. Schmitt, *Reduction Rates for Higher Americium Oxidation States in Nitric Acid*, Idaho National Lab.(INL), Idaho Falls, ID (United States), 2015.
- 11. L. B. Asprey, S. E. Stephanou and R. A. Penneman, *J. Am. Chem. Soc.*, 1951, **73**, 5715-5717.
- 12. K. McCann, D. M. Brigham, S. Morrison and J. C. Braley, *Inorg. Chem.*, 2016, **55**, 11971-11978.
- 13. B. J. Mincher, L. R. Martin and N. C. Schmitt, 2007.
- 14. J. S. Coleman, T. K. Keenan, L. H. Jones, W. T. Carnall and R. A. Penneman, *Inorg. Chem.*, 1963, **2**, 58-61.
- 15. L. B. Asprey, S. E. Stephanou and R. A. Penneman, J. Am. Chem. Soc., 1950, 72, 1425-1426.
- 16. L. B. Werner and I. Perlman, J. Am. Chem. Soc., 1951, **73**, 495-496.
- 17. G. P. Horne, T. S. Grimes, W. F. Bauer, C. J. Dares, S. M. Pimblott, S. P. Mezyk and B. J. Mincher, *Inorg. Chem.*, 2019, **58**, 8551-8559.
- 18. T. S. Grimes, G. P. Horne, C. J. Dares, S. M. Pimblott, S. P. Mezyk and B. J. Mincher, *Inorg. Chem.*, 2017, **56**, 8295-8301.
- 19. B. J. Mincher, N. C. Schmitt, B. K. Schuetz, T. C. Shehee and D. T. Hobbs, *RSC Adv.*, 2015, **5**, 27205-27210.
- 20. J. P. Nigon, R. A. Penneman, E. Staritzky, T. K. Keenan and L. B. Asprey, *The Journal of Physical Chemistry*, 1954, **58**, 403-404.
- 21. N. T. Rice, E. Dalodière, S. L. Adelman, Z. R. Jones, S. A. Kozimor, V. Mocko, H. D. Root and B. W. Stein, *Inorg. Chem.*, 2022, **61**, 12948-12953.
- 22. W. Dou, X. Hu, L. Kong, X. Peng and X. Wang, *Desalination*, 2020, **491**.
- 23. Y. Feng, X. Huang, Q. Zhan and D. Jiang, *Journal of Materials Science: Materials in Electronics*, 2019, **30**, 10543-10549.
- S. Ahrland, J. O. Liljenzin and J. Rydberg, in *Comprehensive Inorganic Chemistry*, eds. J. C. Bailar, H. J. Emeleus, R. Nyholm and A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, DOI: https://doi.org/10.1016/B978-1-4832-8313-5.50033-4, pp. 465-635.
- 25. M. H. Ford-Smith and J. J. Habeeb, *J. Chem. Soc., Dalton Trans.,* 1973, DOI: 10.1039/DT9730000461, 461-464.
- 26. J. D. Einkauf and J. D. Burns, ACS Applied Energy Materials, 2020, **3**, 1593-1601.