Supporting Information

Cyclometalated iridium(III) tetrazine complexes for mitochondria-targeted two-photon photodynamic therapy

Zanru Tan,^{‡a} Mingwei Lin,^{‡a} Jiangping Liu,^{*b} Huihui Wu,^{*c} and Hui Chao^{*a,d}

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China. Email: ceschh@mail.sysu.edu.cn

^b The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, P. R. China. Email: liujping@xmu.edu.cn

^c Department of Dermatology, The East Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510700, P. R. China. Email: cometvivi@126.com

^d MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China

‡ These authors contributed equally to this work.

Table of Contents

Fig. S1 Synthetic route of the iridium(III) complexes.	2
Fig. S2 Emission spectra of the Ir(III) complexes under different oxygen conditions	3
Fig. S3 Two-photon absorption cross-sections	4
Fig. S4 Fluorescence enhancement of Ir-pbt-Tz.	5
Fig. S5 ESR spectra	6
Fig. S6 Plots of the absorance delay of DPBF	7
Fig. S7 Oil-water partition coefficient of designed complexes.	8
Fig. S8 Cellular Localization	9
Fig. S9 Ir-pbt-Tz concentration-dependent flow cytometry analysis of cells upon irradiat	tion
	10
Fig. S10 CLSM imaging of ROS generation in MCTs after two-photon PDT	11
Fig. S11 HR-ESI-MS spectrum of Ir-ppy-Tz	12
Fig. S12 ¹ H NMR spectrum of Ir-ppy-Tz	13
Fig. S13 ¹³ C NMR spectrum of Ir-ppy-Tz.	14
Fig. S14 HR-ESI-MS spectrum of Ir-pbt-Tz.	15
Fig. S15 ¹ H NMR spectrum of Ir-pbt-Tz.	16
Fig. S16 ¹³ C NMR spectrum of Ir-pbt-Tz.	17
Fig. S17 HR-ESI-MS spectrum of Ir-dfppy-Tz.	18
Fig. S18 ¹ H NMR spectrum of Ir-dfppy-Tz.	19
Fig. S19 ¹⁹ F NMR spectrum of Ir-dfppy-Tz.	20
Fig. S20 ¹³ C NMR spectrum of Ir-dfppy-Tz.	21
Table S1 photophysical properties of designed compounds	22
Table S2 single oxygen quantumn yileds of complexes.	23

Fig. S1 Synthetic route of the iridium(III) complexes. (a) 4-cyanobenzaldehyde, aniline, NH₄OAc, HOAc, 120 °C, 12 h; (b) MeCN, N₂H₄·H₂O, Zn(TOf)₂, dioxane, Ar, 85 °C, 24 h; (c) CHCl₃/MeOH(1:1, v/v), Ar, 85 °C, 6 h.

Fig. S2 The emission spectra ($\lambda_{ex} = 405 \text{ nm}$) of Ir-ppy-Tz (a), Ir-pbt-Tz (b), Ir-dfppy-Tz (c) in methanol solution (10 μ M) under different oxygen levels, and (d) the emission intensity ratio of the complexes under argon to that under air.

Fig. S3 (a) Two-photon absorption cross-sections of **Ir-ppy-Tz**, **Ir-pbt-Tz**, and **Ir-dfppy-Tz**, respectively, at 720 ~ 780 nm. (b) Validation of two-photon excitation by linear fitting of the logarithmic plots of the incident femtosecond laser power *versus* luminescence intensity of the compounds at 740 nm.

Fig. S4 The bioorthogonal reaction of Ir-pbt-Tz (10 μ M) and BCN (100-300 μ M) in methanol/water (1:1, v/v) at 298 K.

Fig. S5 ESR spectra of ${}^{1}O_{2}$ trapped by TEMP (left) / O_{2}^{cs} - trapped by DMPO (right) in the Ir(III) complex solution with or without light input.

Fig. S6 Plots of the cumulative decrease in optical density of DPBF (60 μ M) at 411 nm along irradiation time (λ_{irr} =405 nm) in the presence of the indicated complexes. [Ru(bpy)₃]²⁺ as the standard.

Fig. S7 Partition coefficient (log $P_{o/w}$) of the indicated complexes. All the experiments were performed as duplicates of triplicates (n = 3 independent experiments). The error bars represent the standard deviation (SD).

Fig. S8 CLSM imaging of A549 cells incubated with 1 μ M Ir(III) complexes for 4 h at 37 °C (**Ir-ppy-Tz**: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 580$ - 610 nm; **Ir-pbt-Tz**: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 540$ - 570 nm; **Ir-dfppy-Tz**: $\lambda_{ex} = 405$ nm, $\lambda_{em} = 510$ - 540 nm), followed by 100 nM of LysoTraker Deep Red ($\lambda_{ex} = 633$ nm, $\lambda_{em} = 650$ - 690 nm). Scale bar: 10 μ m.

Fig. S9 Ir-pbt-Tz (50 nM, 4 h, 37 °C) concentration-dependent flow cytometry analysis of cells upon irradiation (405 nm, 20 mW·cm⁻², 300 s). Cells were stained by Annexin V-FITC ($\lambda_{ex} = 488$ nm) and PI ($\lambda_{ex} = 543$ nm).

Fig. S10 CLSM imaging of ROS generation in MCTS incubated with the 1 μ M DCFH-DA after pre-incubation with **Ir-pbt-Tz** (50 nM, 4 h, 37 °C) after two-photon PDT. DCFH-DA: $\lambda ex = 488$ nm, $\lambda em = 510$ - 540 nm. Scale bar: 100 μ m.

Fig. S11 HR-ESI-MS spectrum of Ir-ppy-Tz.

Fig. S12 ¹H NMR spectrum of Ir-ppy-Tz.

Fig. S13 ¹³C NMR spectrum of Ir-ppy-Tz.

Fig. S14 HR-ESI-MS spectrum of Ir-pbt-Tz.

Fig. S15 ¹H NMR spectrum of Ir-pbt-Tz.

Fig. S16 ¹³C NMR spectrum of Ir-pbt-Tz.

Fig. S17 HR-ESI-MS spectrum of Ir-dfppy-Tz.

Fig. S18 ¹H NMR spectrum of Ir-dfppy-Tz.

Fig. S19 ¹⁹F NMR spectrum of Ir-dfppy-Tz.

Fig. S20 ¹³C NMR spectrum of Ir-dfppy-Tz.

Compd	$\lambda_{abs}/nm (\epsilon, \times 10^3 \mathrm{M}^{-1} \cdot \mathrm{cm}^{-1})$	$\lambda_{em/nm}$	$\Phi_u(air/Ar)$	τ/ns
Ir-ppy-Tz	257 (54), 286 (48.9), 380 (9.9)	600	0.0101/0.0273	613
Ir-pbt-Tz	258 (60.7), 290 (72), 401 (14)	559	0.0421/0.1684	475
Ir-dfppy-Tz	256 (76.7), 290 (71.8), 379 (10.2)	527	0.0519/0.2751	577

 Table S1 photophysical properties of designed compounds

Compd	$Ru(bpy)_3^{2+}$	[Ir(ppy) ₂ (bpy)] ⁺	[Ir(ppy) ₂ (dpip)] ⁺
Φ_Δ	0.81	0.35	0.40
Compd	Ir-ppy-Tz	Ir-pbt-Tz	Ir-dfppy-Tz
Φ_Δ	0.56	0.72	0.62

 Table S2 single oxygen quantumn yileds of complexes.