Supporting Information

Synthesis, structure, and alkynylation reactivity of

alkynyl-silicate, -germanate, and -stannate

Shuta Iwabuchi, Tatsuya Morofuji* and Naokazu Kano*

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

*tatsuya.morofuji@gakushuin.ac.jp

*naokazu.kano@gakushuin.ac.jp

1. General	S2
2. Synthesis of spirosilane 1a and spirogermane 1b	S3
3. Synthesis of fluorostannate 3	S4
4. Synthesis of alkynyl silicate 2a and germanate 2b	S5
5. Synthesis of alkynylstannate 2c	S7
6. Stability of alkynyl silicate, germanate, and stannate to acids	S8
7. Alkynylation of tropylium tetrafluoroborate	S9
7-1 Optimization of reaction conditions	S9
7-2 Alkynylation reactions with 2a-c	S10
8. Alkynylation of 2-benzyloxy-1-methylpyridinium trifluoromethanesulfonate	S11
8-1 Optimization of reaction conditions	S11
8-2 Alkynylation reactions of 7a-c	S11
9. Control experiments	S14
10. X-ray crystallographic analysis	S15
10-1 Data collection and structure determination	S15
11. NMR spectra	S18
12. References	S49

1. General

Phenylacetylene, tetraethylammonium bromide, tropylium tetrafluoroborate, 2-benzyloxy-1-m ethylpyridinium trifluoromethanesulfonate (7a), 1,1,2,2-tetrachloroethane, MS4A, 2,6-lutidine, ethanol, phenol, acetic acid, trifluoroacetic acid, were commercially available. 3,3,3',3'-Tetrakis(trifluoromethyl)-1,1'-spirobi[2,1-benzoxasilole] (1a),¹3,3,3',3'-tetrakis(trifluoromethyl)-1,1'- $(1b)^{2}$ tetrabutylammonium spirobi[2,1-benzoxagermole] bis[α,α-bis(trifluoromethyl)- $(3),^3$ benzenemethanolato(2-)- C^2 , O^{α}]fluorostannate 2-benzyloxy(4-chlorophenyl)-1trifluoromethanesulfonate $(7b)^4$ and 2-benzyloxy(4-methylphenyl)-1methylpyridinium methylpyridinium trifluoromethanesulfonate $(7c)^4$ were synthesized according to the reported literature. Super dehydrated THF (Wako. Co.), super dehydrated CH₂Cl₂ (Wako. Co.), and ClCH₂CH₂Cl (TCI) were used for solvents after drying with molecular sieves. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). Preparative gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-918 equipped with JAIGEL-1H and 2H using CHCl₃ as an eluent. All NMR spectra were measured on Resonance ECZ 400S (JEOL, 400 MHz for ¹H, 100 MHz for ¹³C) or AVANCE III HD Nano Bay (Bruker Co., 400 MHz for ¹H, 100 MHz for ¹³C) at 22 °C using CDCl₃ as a solvent unless otherwise noted. CDCl₃ (δ = 7.26), CD₃CN (δ = 1.94) or acetone- d_6 (δ = 2.05) served as an internal standard for ¹H NMR spectra, and CDCl₃ ($\delta = 77.16$) or acetone- d_6 ($\delta = 206.26$) was used as an internal standard for ¹³C NMR spectra. All HRMS were measured on Micro-TOF (Bruker, TOF, ESI). Elemental analysis was performed by the One-Stop Facilities Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, The University of Tokyo and A Rabbit Science Japan Co., Ltd.

2. Synthesis of spirosilane 1a and spirogermane 1b^{1,2}

In a 300 mL Schlenk flask, to a stirred solution of *n*-BuLi (1.58 M hexane solution, 4.2 equiv.) was added TMEDA (0.4 equiv.). This mixture was stirred at 25 °C for 1 h until it became cloudy and cooled to 0 °C. 1,1,1,3,3,3-Hexafluoro-2-phenylpropan-2-ol (2.0 equiv.), dissolved in THF, was then added dropwise to the mixture. After 1 h, the ice bath was removed and the mixture was stirred for an additional 18 h. This mixture was then added to SiCl₄ or GeCl₄ (1.0 equiv.) dissolved in THF at - 78 °C over 45 min. The reaction was stirred at -78 °C for 1 h, and stirred further at room temperature for 20 h. The reaction mixture was quenched with 7 mL of water, dissolved in ether (100 mL), and washed with 0.50 M HCl (4x100 mL) and water (100 mL). The organic phase was dried over MgSO₄, filtered, and evaporated under reduced pressure to give a yellow solid. The residue was sublimed using a sublimation purifier and the resulting solid was crystallized from hot hexane to yield **1a** or **1b** as a white solid. The NMR data are in good agreement with those reported in the literature.¹

Scheme S1

		3,3,3',3'-Tetrakis(trifluoromethyl)-1,1'-spirobi[2,1-benzoxasilole] ¹
	F ₃ C CF ₃	Reaction of SiCl ₄ (5.0 mL, 44.3 mmol) gave the title compound (7.0 g,
		32%, colorless solid). 1.58 M n-BuLi in hexane (118 mL, 186 mmol),
	Si	TMEDA (3.0 mL, 20.0 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2-
$F_{3}C$ CF_{3} 1a		ol (15.0 mL, 88.5 mmol) and THF (15 mL+18 mL) were used. ¹ H NMR (400 MHz, CDCl ₃): δ 7.83 (d, $J = 8.0$ Hz, 2H), 7.75-7.62 (m, 6H). ¹⁹ F NMR (376 MHz, CDCl ₃): δ , -75.8 (q, $J_{\text{F-F}} = 8.6$ Hz, 6F), - 76.2 (q, $J_{\text{F-F}} = 8.6$ Hz, 6F).
		3,3,3',3'-Tetrakis(trifluoromethyl)-1,1'-spirobi[2,1-benzoxasilole] ²
		Reaction of GeCl ₄ (6.4 mL, 56.4 mmol) gave the title compound (10.2 g,
	F ₃ C CF ₃	32%, colorless solid). 1.58 M n-BuLi in hexane (150 mL, 236 mmol),
	F ₃ C CF ₃	32%, colorless solid). 1.58 M <i>n</i> -BuLi in hexane (150 mL, 236 mmol), TMEDA (3.4 mL, 22.7 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2-
	Ge Ge	32%, colorless solid). 1.58 M <i>n</i> -BuLi in hexane (150 mL, 236 mmol), TMEDA (3.4 mL, 22.7 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2-ol (19.0 mL, 113.3 mmol) and THF (19 mL+45 mL) were used.
	$F_3C CF_3$ Ge $F_3C CF_2$	32%, colorless solid). 1.58 M <i>n</i> -BuLi in hexane (150 mL, 236 mmol), TMEDA (3.4 mL, 22.7 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2- ol (19.0 mL, 113.3 mmol) and THF (19 mL+45 mL) were used. ¹ H NMR (400 MHz, CDCl ₃): δ 7.79-7.67 (m, 6H), 7.93 (d, <i>J</i> = 7.6 Hz,
	$F_{3}C CF_{3}$ Ge $F_{3}C CF_{3}$ $F_{3}C CF_{3}$	32%, colorless solid). 1.58 M <i>n</i> -BuLi in hexane (150 mL, 236 mmol), TMEDA (3.4 mL, 22.7 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2- ol (19.0 mL, 113.3 mmol) and THF (19 mL+45 mL) were used. ¹ H NMR (400 MHz, CDCl ₃): δ 7.79-7.67 (m, 6H), 7.93 (d, <i>J</i> = 7.6 Hz, 2H). ¹⁹ F NMR (376 MHz, CDCl ₃): δ - 76.2 (q, <i>J</i> _{F-F} = 8.3 Hz, 6F), -75.4
	$F_{3}C CF_{3}$ Ge $F_{3}C CF_{3}$ Ib	32%, colorless solid). 1.58 M <i>n</i> -BuLi in hexane (150 mL, 236 mmol), TMEDA (3.4 mL, 22.7 mmol), 1,1,1,3,3,3-hexafluoro-2-phenylpropan-2- ol (19.0 mL, 113.3 mmol) and THF (19 mL+45 mL) were used. ¹ H NMR (400 MHz, CDCl ₃): δ 7.79-7.67 (m, 6H), 7.93 (d, J = 7.6 Hz, 2H). ¹⁹ F NMR (376 MHz, CDCl ₃): δ - 76.2 (q, $J_{\text{F-F}}$ = 8.3 Hz, 6F), -75.4 (q, $J_{\text{F-F}}$ = 8.2 Hz, 6F).

3. Synthesis of tetrabutylammonium bis $[\alpha,\alpha$ -bis(trifluoromethyl)benzenemethanolato(2-)- C^2 , O^{α} fluorostannate 3³

A round-bottom flask equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. tetramethylammonium bis[α , α -bis(trifluoromethyl)-benzenemethanolato(2-)-C²,O^{α}]chlorostannate (361 mg, 0.506 mmol, 1.0 equiv.) was dissolved in THF (30 mL) in the flask. To the solution was added 1.0 M of *n*-Bu₄NF in THF (0.9 mL, 1.8 equiv.) at room temperature. The mixture was heated at 40 °C for 13 h and was cooled to room temperature. CH₂Cl₂ and water was added to the mixture, and organic compounds were extracted with CH₂Cl₂ for three times. The organic layer was dried over Na₂SO₄. Evaporation of the solvents gave a crude material, which was washed with EtOH and dried under reduced pressure to give **3** (438 mg, 99%, colorless solid). The NMR data are in good agreement with those reported in the literature.³

4. Synthesis of alkynyl silicate 2a and germanate 2b

A round-bottom Schlenk flask (A) equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Phenylacetylene (2.0 equiv.) was dissolved in THF (2.5 mL/mmol) in the Schlenk flask (A). The solution was stirred and *n*-BuLi (1.8 equiv.) was added to it at -78 °C. The mixture was stirred at -78 °C for 1 h. In another flask (B), 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'-spirobi[2,1-benzoxasilole] (1a) (1.0 equiv.) or 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'-spirobi[2,1-benzoxagermole] (1b) was dissolved in THF (5 mL/mmol of 1a or 1b) and stirred the solution in the flask (B) was added dropwise into the Schlenk flask (A) at -78 °C. After stirring at -78 °C for 1 h, the mixture was stirred at room temperature for 20 h. The mixture was quenched with EtOH (10 mL), and the solvents were evaporated under reduced pressure to give a yellow oil. CH₂Cl₂ (15 mL/mmol of Et₄NBr) and Et₄NBr (2.1 equiv.) were added to the oil and the mixture was stirred for 30 min. After evaporation of the solvent, water and hexane was added to the solid. Suction filtration of the mixture gave a solid product. The solid was washed with CHCl₃ and EtOH. Recrystallization from a saturated THF solution and an excess of Et₂O at room temperature afforded the colorless solid of **2a** or **2b**.

Scheme S3

5. Synthesis of alkynylstannate 2c

A round-bottom Schlenk flask (A) equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Phenylacetylene (0.66 mL, 6.0 mmol, 2.0 equiv.) was dissolved in THF (15 mL) in the Schlenk flask (A). The solution was stirred and *n*-BuLi (3.5 mL, 5.4 mmol, 1.8 equiv.) was added to it at -78 °C. The mixture was stirred at -78 °C for 1 h. In another flask (B), tetrabuthylammonium bis[α,α bis(trifluoromethyl)benzenemethanolato(2-)- C^2 , O^α]fluorostannate (3) (2.6 g, 3.0 mmol, 1.0 equiv.) was dissolved in THF (10 mL/mmol of 3) and stirred the solution in the flask (B) was added dropwise into the Schlenk flask (A) at -78 °C. After stirring at -78 °C for 1 h, the mixture was stirred at room temperature for 20 h. The mixture was quenched with EtOH (10 mL). After evaporation of the solvent, water and hexane was added to the solid. Suction filtration of the mixture gave a solid product. The solid was washed with CHCl₃ and EtOH. The crude product was washed with CHCl₃ and EtOH. Recrystallization from a saturated THF solution and an excess of Et₂O at room temperature afforded the colorless solid of **2c** (0.87 g, 35% yield).

6. Stability of alkynyl silicate, germanate, and stannate to acids

A 30 mL round-bottom flask equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Alkynyl compounds **2a-c** (0.2 mmol), 1,1,2,2-tetrachloroethane (0.6 mmol) as internal standard and CD₃CN (6 mL) were added to the flask. To four NMR tubes, an aliquot (ca. 0.5 mL) for each of the solution in the flask was transferred. An excess amount of acid (0.1 mmol) was added to the NMR tube and NMR spectra were measured after 15 min, 1 h, 3 h, 6 h, and 24 h. The NMR yield was determined based on the proton NMR spectra with 1,1,2,2-tetrachloroethane as the internal standard.

Table S1

	2a-c	acid (2.0 eq. CD ₃ CN, r.t. time	F ₃ C C F ₃ C 4a: M 4b: M 4c: M	;F ₃	+ H- <u>-</u> Ph	
				NMR yield (t	ime)	
	Entry	acid	4a	4b	4c	
	1	H ₂ O	0% (24 h)	0% (24 h)	0% (24 h)	
	2	EtOH	0% (24 h)	0% (24 h)	0% (24 h)	
	3	PhOH	0% (24 h)	0% (24 h)	0% (24 h)	
	4	СН₃СООН	0% (24 h)	0% (24 h)	100% (15 min)	
	5	TFA	54% (1 h) 100% (24h)	42% (6 h) 75% (24 h)	100% (15 min)	
t ₄	tetra	ethylammo	nium $C^2 \rightarrow C^2$	Ollhudror	bis[α,α-bis(trifluorometl

$F_{3}C CF_{3} \rightarrow NEt_{4}$ $F_{3}C CF_{3} \rightarrow NEt_{4}$ $F_{3}C CF_{3} \rightarrow H$ $F_{3}C CF_{3} - H$	tetraethylammonium benzenemethanolate(2-)- C^2 , O^α]hydroxy ¹ H NMR (400 MHz, acetonitrile- d_3): δ 8 7.54-7.49 (m, 4H), 3.13 (q, $J = 7.3$ Hz, 8H (376 MHz, acetonitrile- d_3): δ -76.1 (s, 12)	bis[α,α-bis(trifluoromethyl)- ysilicate ⁵ .13-8.11 (m, 2H), 7.64 (m, 2H), I), 1.22-1.17 (m, 12H). ¹⁹ F NMR 2F).
$F_{3}C CF_{3} \rightarrow H CF_{4}$	tetraethylammonium benzenemethanolate(2-)- C^2 , O^α]hydroxy ¹ H NMR (400 MHz, acetonitrile- d_3): δ 8 2H), 7.60-7.58 (m, 4H), 3.14 (q, $J = 7.2$ H NMR (376 MHz, acetonitrile- d_3): δ -76.1	bis[α,α-bis(trifluoromethyl)- ygermanate .18-8.15 (m, 2H), 7.77-7.75 (m, Hz, 8H), 1.21-1.16 (m, 12H). ¹⁹ F 1 (s, 12F).

tetraethylammonium	bis[α,α-bis(trifluoromethyl)-
benzenemethanolate(2-)- C^2 , O^α]hydrox	xystannate
¹ H NMR (400 MHz, acetonitrile- d_3): δ	8.06-7.95 (m, 2H), 7.85-7.80 (m,
2H), 7.61-7.55 (m, 4H), 3.15-3.10 (m, 8J	H), 1.19-1.15 (m, 12H). ¹⁹ F NMR
(376 MHz, acetonitrile- d_3): δ -76.1 (s, 1	2F).

7. Alkynylation of tropylium tetrafluoroborate

7-1 Optimization of reaction conditions

General procedure

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After cooling the tube to room temperature, it was purged with argon gas. Alkynyl compound **2a** (0.1 mmol, 1.0 equiv.) and THF (5 mL) were added to the tube. Then, base (0.2 mmol, 0.2 equiv.), additive and tropylium tetrafluoroborate (0.15 mmol, 1.5 equiv.) were added to the tube, and the mixture was stirred at room temperature for 21 h. Evaporation of the solvents under reduced pressure gave crude products, which were purified by flash chromatography (hexane) and/or GPC to give 7-(2-phenylethynyl)-1,3,5-cycloheptatriene (**6**) as yellow oil.

Table S2

2a	+	5 BF4 base THF, r. 18-21	t. h		—	<i></i>
	entry	base	additive	time	yield (%)	
	1	none	-	18	34	
	2	2,6-lutidine (2.0 eq.)	-	20	65	
	3	2,6-lutidine (2.0 eq.)	MS 4A	21	87	
	4	2,6-lutidine (1.0 eq.)	MS 4A	21	78	
	5 2	2,6-Di- <i>tert</i> -butylpyridine	-	20	60	
	6	K ₂ CO ₃	-	21	50	
	7	DBU	-	21	0	
	8	DIPEA	-	20	61	
	9	Na ^t OBu	-	20	0	

7-2 Alkynylation reactions with 2a-c

A 30 mL Schlenk tube equipped with a magnetic stirring bar, MS4A (0.2 g) and a septum, was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas, Alkynyl compounds **2a-c** (0.1 mmol, 1.0 equiv.) and THF (5 mL) were added to the tube. Then, 2,6lutidine (0.2 mmol, 2.0 equiv.) and tropylium tetrafluoroborate (0.15 mmol, 1.5 equiv.) were added to the solution and the mixture was stirred at room temperature for 21 h. Evaporation of the solvents gave crude products, which were purified by flash chromatography (hexane) and/or GPC to give the 7-(2phenylethynyl)-1,3,5-cycloheptatriene (**6**) as yellow oil.

8. Alkynylation of 2-benzyloxy-1-methylpyridinium trifluoromethanesulfonate 8-1 Optimization of reaction conditions

General procedure

A 40 mL pressure tube equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Alkynylsilicate **2a** (0.1 mmol, 1.0 equiv.) and 1,2-dichloroethane (5 mL) were added to the tube. Then, base (0.2 mmol, 2.0 equiv.) and 2-benzyloxy-1-methylpyridinium trifluoromethanesulfonate **7a** (0.2 mmol, 2.0 equiv.) were added to the solution, and the mixture was stirred at 83 °C for 17 to 21 h. After cooling to room temperature, evaporation of the solvents under reduced pressure gave a crude product, which was purified by flash chromatography (hexane) and/or GPC to give 1,3-diphenylprop-1-yne as colorless oil.

Table S3

2a	+	F ₃ CS	BO_3 F Bas	se (2.0 eq	.)			\searrow
				✓ ^{CI} , 83	°C	\checkmark	-	
		Ň	7a 1	7-21 h			8a	
		entry	Base	additive	time	yield (%)		
		1	MgO	-	18	31		
		2	2,6-lutidine (2.0 eq.)	-	17	60		
		3	2,6-lutidine (2.0 eq.)	MS 4A	21	65		
		4	2,6-lutidine (1.0 eq.)	MS 4A	20	46		
		5	2,6-Di-tert-butylpyridine	-	21	51		
		6	K ₂ CO ₃	-	19	31		
		7	DBU	-	20	0		
		8	DIPEA	-	18	39		
		9	NaO ^t Bu	-	18	0		
		10	none	_	21	19		

8-2 Alkynylation reactions of 7a-c

General procedure

A 40 mL Pressure tube equipped with a magnetic stirring bar, MS4A (0.2 g) and a septum, was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Alkynyl compounds **2a-c** (0.1 mmol, 1.0 equiv.) and 1,2-dichloroethane (5 mL) were added to the flask. Then, 2,6-lutidine (0.2 mmol, 2.0 equiv.) and compound **7a-c** (0.2 mmol, 2.0 equiv.) were added and the mixture was stirred at 83 °C for 17 to 21 h. After cooling the flask to room temperature, evaporation of the solvents under reduced pressure gave crude products, which were purified by flash chromatography (hexane) and /or GPC to give the desired products.

Reaction of 2a with 7a

Reaction of **2a** (74.7 mg, 0.10 mmol, 1.0 equiv.) for 20 h, gave Alkynyl **8a** (12.5 mg, 65%, colorless oil). MS4A (0.2 g), **7a** (64.9 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.7 mg, 0.20 mmol, 2.0 equiv.) were used.

Reaction of 2b with 7a

Reaction of **2b** (78.9 mg, 0.10 mmol, 1.0 equiv.) for 17 h, gave Alkynyl **8a** (12.9 mg, 67%, colorless oil). MS4A (0.2 g), **7a** (65.1 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.9 mg, 0.20 mmol, 2.0 equiv.) were used.

Reaction of 2c with 7a

Reaction of **2c** (83.4 mg, 0.10 mmol, 1.0 equiv.) for 19 h, gave Alkynyl **8a** (11.0 mg, 57%, colorless oil). MS4A (0.2 g), **7a** (65.0 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.8 mg, 0.20 mmol, 2.0 equiv.) were used.

¹H NMR (400 MHz, CDCl₃): δ 7.48-7.42 (m, 4H), 7.37-7.27 (m, 6H), 3.84 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 136.9, 131.8, 128.7, 128.4, 128.1, 128.0, 126.8, 123.8, 87.7, 82.8, 25.9.

	Reaction of 2a with 7b Reaction of 2a (74.5 mg, 0.10 mmol, 1.0 equiv.) for 17 h, gave Alkynyl 8b (15.4 mg, 68%, colorless oil). MS4A (0.2 g), 7b (77.0 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (22.0 mg, 0.2 mmol, 2.0 equiv.) were used.
CI CI	Reaction of 2b with 7b Reaction of 2b (79.1 mg, 0.10 mmol, 1.0 equiv.) for 18 h, gave Alkynyl 8b (17.5 mg, 77%, colorless oil). MS4A (0.2 g), 7b (76.9 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (22.1 mg, 0.20 mmol, 2.0 equiv.) were used.
86	Reaction of 2c with 7b Reaction of 2c (83.4 mg, 0.10 mmol, 1.0 equiv.) for 20 h, gave Alkynyl 8b (13.4 mg, 59%, colorless oil). MS4A (0.2 g), 7b (77.1 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.9 mg, 0.20 mmol, 2.0 equiv.) were used.
	¹ H NMR (400 MHz, CDCl ₃): δ 7.45-7.44 (m, 2H), 7.37-7.31 (m, 7H), 3.81 (s, 2H). ¹³ C NMR (100 MHz, CDCl ₃): δ 135.4, 132.6, 131.8, 129.4, 128.8, 128.4, 128.1, 123.5, 87.0, 83.1, 25.3.
	Reaction of 2a with 7c Reaction of 2a (74.8 mg, 0.10 mmol, 1.0 equiv.) for 21 h, gave Alkynyl 8c (16.1 mg, 78%, yellow oil). MS4A (0.2 g), 7c (72.7 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.9 mg, 0.20 mmol, 2.0 equiv.) were used.
Me	Reaction of 2b with 7c Reaction of 2b (79.1 mg, 0.10 mmol, 1.0 equiv.) for 20 h, gave Alkynyl 8c gave the title compound (17.7 mg, 86%, yellow oil). MS4A (0.2 g), 7c (73.1 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (21.7 mg, 0.20 mmol, 2.0 equiv.) were used.
8c	Reaction of 2c with 7c Reaction of 2c (83.6 mg, 0.10 mmol, 1.0 equiv.) for 21 h, gave Alkynyl 8c (13.8 mg, 67%, yellow oil). MS4A (0.2 g), 7c (72.9 mg, 0.20 mmol, 2.0 equiv.) and 2,6-lutidine (22.3 mg, 0.20 mmol, 2.0 equiv.) were used.
	¹ H NMR (400 MHz, CDCl ₃): δ 7.90-7.45 (m, 2H), 7.34-7.28 (m, 5H), 7.17 (d, 2H, <i>J</i> = 7.6 Hz), 3.81 (s, 2H), 2.36 (s, 3H). ¹³ C NMR (100 MHz, CDCl ₃): δ 136.3, 133.8, 131.8, 129.4, 128.3, 128.0, 127.9, 123.9, 88.0, 82.6, 25.5, 21.2.

9. Control experiments

General procedure (entries 1, 3, 4 and 5)

A 40 mL pressure tube equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After cooling the tube to room temperature, it was purged with argon gas. Alkynyl compounds (0.1 mmol, 1.0 eq.) and 1,2-dichloroethane (5 mL) were added to the tube. Then, 2,6-lutidine (0.2 mmol, 2.0 eq.) and 2-benzyloxy-1-methylpyridinium trifluoromethanesulfonate (0.2 mmol, 2.0 eq.) were added to it and the mixture was stirred at 83 °C for 18 to 22 h. After cooling the flask to room temperature, evaporation of the solvents gave crude products, which were purified by flash chromatography (hexane) and/or GPC to give **8a**.

Procedure for entry 2

A 30 mL flask equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After cooling the flask to room temperature, it was purged with argon gas. Phenylacetylene (11 μ L, 0.1 mmol, 1.0 equiv.) was dissolved in THF (5 mL). The solution was stirred and *n*-BuLi (0.13 mL, 0.2 mmol, 2.0 equiv.) was added at -78 °C. The mixture was stirred at -78 °C for 1 h, and warmed up to room temperature. 2-Benzyloxy-1-methylpyridinium trifluoromethanesulfonate (69.9 mg, 0.2 mmol, 2.0 equiv.) was added to it, and the mixture was stirred at room temperature for 20 h. After evaporation of the solvents under reduced pressure gave crude products, which were subjected to NMR measurements.

Table S4

R— —— Ph					
F₃C			` ````````````````````````````````````		
		solvent, tem	p.	Ľ,	Ph
\sim	7-	17-22 h			0
	/a				8a
entry	R Ph	solvent	temp.	time	yield
1	H Ph	CI CI	83 °C	20 h	no reaction
2	Li Ph	THF	r.t.	22 h	complex mixture
3	Me₃Si ── Ph	CI	83 °C	19 h	no reaction
4	KF ₃ B Ph	CI	83 °C	20 h	complex mixture
5	2a		83 °C	17 h	60%

10. X-ray crystallographic analysis

10-1 Data collection and structure determination

Colorless single crystals of **2a-c** were grown from a saturated THF/Et₂O solution at room temperature. The intensity data were collected at 100 K on a Rigaku XtaLAB mini II diffractometer employing graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å) for **2b** and **2c**. and on a Saxi-CrysAlisPro-abstract goniometer imported SAXI images for **2a**. Structures were solved by direct methods (SHELXT)⁶ and refined by full-matrix least-squares procedures on F^2 for all reflections (SHELXL). Hydrogen atoms were located by assuming ideal geometry and were included in the structure calculations without further refinement of the parameters. The crystallographic data for the structures reported in this paper have been deposited with The Cambridge Crystallographic Data Centre as supplement publication.

	bond lengths (Å)			
	2a (E = Si)	$\mathbf{2b} (\mathrm{E} = \mathrm{Ge})$	2c (E = Sn)	
E1C1	1.863(2)	1.917(2)	2.100(2)	
E1C4	1.897(2)	1.949(2)	2.113(2)	
E1-C5	1.892(2)	1.917(2)	2.117(2)	
E1O1	1.820(1)	1.971(1)	2.101(1)	
E1–O2	1.807(1)	1.807(1) 1.955(1)		
C1–C2	1.206(3)	1.208(3)	1.208(3)	
		bond angles (°)		
O1–E1–O2	175.96(6)	175.01(6)	169.66(5)	
E1C1C2	177.2(2)	177.1(2)	176.4(2)	
C1C2C3	179.7(2)	179.4(2)	179.3(2)	

Table S5. Selected bond lengths [Å] and angles [°] of the X-ray crystal structure of 2a-c

	2a	2b	2c
Formula	$C_{34}H_{33}F_{12}NO_2Si$	$C_{34}H_{33}F_{12}NO_2Ge$	$C_{34}H_{33}F_{12}NO_2Sn$
Formula weight	743.70	788.20	834.30
color	colorless	colorless	colorless
Crystal size/nm	0.10×0.05×0.05	0.07×0.07×0.03	0.12×0.08×0.08
Temperature/K	100	100	100
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/n$
a/Å	11.0531(2)	11.1071(5)	11.2117(4)
b/Å	16.2521(3)	16.2492(9)	16.2237(7)
$c/{ m \AA}$	18.3816(3)	18.3357(8)	18.2776(8)
<i>a</i> /deg	90	90	90
<i>b</i> /deg	95.844(2)	95.828(4)	96.334(4)
γ/deg	90	90	90
$V/\text{\AA}^3$	3284.84(10)	3292.1(3)	3304.3(2)
Ζ	4	4	4
$D_{ m calcd}/ m g\ m cm^{-3}$	1.504	1.590	1.677
No. of unique data	7533	9898	9946
No. of parameters	455	495	456
No. of restraints	0	0	0
R_1	0.0558	0.0436	0.0317
wR_2	0.0998	0.0819	0.0645
GOF	1.283	1.020	1.015

Table S6. Crystallographic data and details of refinement for 2a-c

11. NMR spectra

Figure S1. ¹H NMR (400 MHz) spectrum of 1a in CDCl₃

Figure S2. ¹⁹F NMR (376 MHz) spectrum of 1a in CDCl₃

Figure S3. ¹H NMR (400 MHz) spectrum of 1b in CDCl₃

Figure S4. ¹⁹F NMR (376 MHz) spectrum of 1b in CDCl₃

I

Figure S5. ¹H NMR (376 MHz) spectrum of **1c** in acetone- d_6 .

Figure S6. ¹⁹F NMR (376 MHz) spectrum of 1c in acetone- d_6 .

Figure S7. ¹H NMR (400 MHz) spectrum of 2a in acetone- d_6 .

Figure S8. ¹³C NMR (100 MHz) spectrum of 2a in acetone- d_6 .

Figure S9. ¹⁹F NMR (376 MHz) spectrum of 2a in acetone- d_6 .

Figure S10. ²⁹Si NMR (80 MHz) spectrum of 2a in acetone- d_6 .

Figure S11. ¹H NMR (400 MHz) spectrum of 2b in acetone- d_6 .

Figure S12. ¹³C NMR (100 MHz) spectrum of 2b in acetone- d_6 .

Figure S13. ¹⁹F NMR (376 MHz) spectrum of 2b in acetone- d_6 .

Figure S14. ¹H NMR (400 MHz) spectrum of 2c in acetone-d₆.

Figure S15. ¹³C NMR (400 MHz) spectrum of 2c in acetone- d_6 .

Figure S16. ¹⁹F NMR (376 MHz) spectrum of 2c in acetone- d_6 .

Figure S17. ¹¹⁹Sn NMR (149 MHz) spectrum of 2c in acetone- d_6 .

Figure S18. ¹H NMR (400 MHz) spectrum of reaction of 4a with TFA in CD₃CN.

Figure S19. ¹⁹F NMR (376 MHz) spectrum of reaction of 4a with TFA in CD₃CN.

Figure S20. ¹H NMR (400 MHz) spectrum of reaction of 4b with TFA in CD₃CN.

Figure S21. ¹⁹F NMR (376 MHz) spectrum of reaction of 4b with TFA in CD₃CN.

Figure S22.¹ HNMR (400 MHz) spectrum reaction of 4c with TFA in CD₃CN.

Figure S23. ¹⁹F NMR (376 MHz) spectrum of reaction of 4c with TFA in CD₃CN.

Figure S24. ¹H NMR (400 MHz) spectrum of 6 in CDCl₃

Figure S25. ¹³C NMR (100 MHz) spectrum of 6 in CDCl₃

Figure S26. ¹H NMR (400 MHz) spectrum of 8a in CDCl₃

Figure S27. ¹³C NMR (100 MHz) spectrum of 8a in CDCl₃

Figure S28. ¹H NMR (400 MHz) spectrum of 8b in CDCl₃

Figure S29. ¹³C NMR (100 MHz) spectrum of 8b in CDCl₃.

Figure S30. ¹H NMR (400 MHz) spectrum of 8c in CDCl₃

Figure S31. 13 C NMR (100 MHz) spectrum of 8c in CDCl₃

12. References

1 H. Lenormand, J.-P. Goddard and L. Fensterbank, Org. Lett., 2013, 15, 748-751.

2 S. E. Denmark, R. T. Jacobs, G. Dai-Ho and S. Wilson, Organometallics, 1990, 9, 3015-3019.

3 K.-y. Akiba, Y. Ito, F. Kondo, N. Ohashi, A. Sakaguchi, S. Kojima and Y. Yamamoto, *Chem. Lett.*, 1992, **21**, 1563–1566.

4 F. W. Yuwen, T. Xiang, L. Jingtian, and J. Yang, Org. Lett., 2022, 24, 7309-7314.

5 (a) W. H. Stevenson III, S. Wilson, J. C. Martin and W. B. Farnham, *J. Am. Chem. Soc.*, 1985, **107**, 6340–6352; (b) T. Morofuji, Y. Matsui, M. Ohno, G. Ikarashi and N. Kano, *Chem. Eur. J.*, 2021, **27**,

6713-6718;

6 G. M. Acta Crystallogr., Sect. C: Struct. Chem., 2015, C71, 3.