## **ELECTRONIC SUPPORTING INFORMATION**

## Bifunctional heterobimetallic 3d-4f [Co(II)-RE, RE = Dy, Eu, Y] ionic complexes: modulation of the magnetic-luminescent behaviour

Matteo Bombaci,<sup>a</sup> Francesca Lo Presti,<sup>a</sup> Anna L. Pellegrino,<sup>a</sup> Martina Lippi,<sup>b</sup> Patrizia Rossi,<sup>b</sup> Leonardo Tacconi<sup>c</sup>, Lorenzo Sorace,<sup>c,\*</sup> and Graziella Malandrino<sup>a,\*</sup>

a) Dipartimento Scienze Chimiche, Università degli Studi di Catania, and INSTM UdR Catania, Viale Andrea Doria 6, 95125 Catania, Italy

- b) Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, 50136 Firenze, Italy
  - c) Dipartimento di Chimica "U. Schiff", Università degli Studi di Firenze, and INSTM UdR Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy

## Table of contents

 Table S1. Selected bond lengths and angles in Eu-Co and Y-Co complexes.

**Fig. S1.** Stick view of the [Y(hfa)<sub>2</sub> tetraglyme]<sup>+</sup> cation in **Y-Co** complex.

**Fig. S2.** Stick view of the  $Co(hfa)_3^-$  anion in **Y-Co** complex.

**Fig. S3**. PXRD patterns of **Dy-Co** (black, experimental), **Eu-Co** (red, experimental) and **Y-Co** (blue, experimental).

Fig. S4. FT-IR spectra of the Dy-Co, Eu-Co and Y-Co complexes.

**Table S2** SHAPE parameters for the coordination sphere of Cobalt(II) in Y-Co and (NEt<sub>4</sub>)Co(hfa)<sub>3</sub> (ref. 1).

**Fig. S5.** Coordination environment of the Co(II) centre in the two complexes: **a**) Et<sub>4</sub>N[Co<sup>II</sup>(hfa)<sub>3</sub>]; **b**) **YCo.** 

Table S3 Co-O bond distances in the Co(II) coordination environment for the two complexes.

**Fig. S6.** Comparison of the relaxation rate observed for **Y-Co** under an external applied field of 1.2 KOe and for **Dy-Co**.

**Fig. S7.** Emission spectra, recorded at room temperature, with an excitation wavelength of 310 nm for the **Dy-Co** solution (CH<sub>2</sub>Cl<sub>2</sub>) and **Dy-Co** powder film obtained through drop-casting on quartz.

**Supplementary Note S1.** Fitting procedure of experimental DC magnetometry data and g factors. **References** 

| M (Eu in Eu-Co and Y in Y-Co) |                       | Со          |                      |  |
|-------------------------------|-----------------------|-------------|----------------------|--|
|                               | Eu-Co / Y-Co          |             | Eu-Co / Y-Co         |  |
| M1-O1D                        | 2.392(2) / 2.345(2)   | Co1-O1A     | 2.058(2) / 2.058(2)  |  |
| M1-O2D                        | 2.378(2) / 2.333(2)   | Co1-O2A     | 2.059(2) / 2.058(2)  |  |
| M1-01E                        | 2.376(2) / 2.328(2)   | Co1-O1B     | 2.060(2) / 2.060(3)  |  |
| M1-O2E                        | 2.423(2) / 2.375(2)   | Co1-O2B     | 2.059(2) / 2.063(2)  |  |
| M1-O3                         | 2.524(2) / 2.492(3)   | Co1-O1C     | 2.074(2) / 2.070(2)  |  |
| M1-O4                         | 2.473(2) / 2.428(2)   | Co1-O2C     | 2.076(2) / 2.071(3)  |  |
| M1-O5                         | 2.487(2) / 2.450(2)   |             |                      |  |
| M1-O6                         | 2.438(2) / 2.390(2)   |             |                      |  |
| M1-07                         | 2.512(2) / 2.475(2)   |             |                      |  |
|                               | Eu-Co / Y-Co          |             | Eu-Co / Y-Co         |  |
| O1D-M1-O2D                    | 70.77(7) / 71.70(8)   | O1A-Co-O2A  | 88.71(8) / 88.6(1)   |  |
| O1D-M1-O1E                    | 140.47(7) / 139.59(8) | O1A-Co1-O1B | 88.68(8) / 88.6(1)   |  |
| O1D-M1-O2E                    | 134.92(7) / 134.69(8) | O1A-Co1-O2B | 176.64(8) / 176.5(1) |  |
| O1D-M1-O3                     | 75.368(7) / 75.66(8)  | O1A-Co1-O1C | 86.75(8) / 86.7(1)   |  |
| O1D-M1-O4                     | 71.89(7) / 72.12(8)   | O1A-Co1-O2C | 92.82(8) / 93.3(1)   |  |
| O1D-M1-O5                     | 67.69(7) / 67.68(8)   | O2A-Co1-O1B | 91.76(8) / 91.7(1)   |  |
| O1D-M1-O6                     | 86.45(7) / 86.26(8)   | O2A-Co1-O2B | 93.46(8) / 93.63(9)  |  |
| O1D-M1-O7                     | 135.85(7) / 136.72(8) | O2A-Co1-O1C | 173.02(8) / 172.8(1) |  |
| O2D-M1-O1E                    | 111.01(7) / 110.60(8) | O2A-Co1-O2C | 87.72(8) / 87.5(1)   |  |
| O2D-M1-O2E                    | 140.78(7) / 139.60(8) | O1B-Co1-O2B | 88.69(8) / 88.65(9)  |  |
| O2D-M1-O3                     | 72.55(7) / 71.75(8)   | O1B-Co1-O1C | 93.43(8) / 93.64(9)  |  |
| O2D-M1-O4                     | 129.68(7) / 130.31(8) | O1B-Co1-O2C | 178.40(8) / 178.0(1) |  |
| O2D-M1-O5                     | 125.85(6) / 126.35(8) | O2B-Co1-O1C | 91.33(8) / 91.36(9)  |  |
| O2D-M1-O6                     | 78.60(6) / 77.51(8)   | O2B-Co1-O2C | 89.84(8) / 89.55(9)  |  |
| O2D-M1-O7                     | 70.39(6) / 69.78(8)   | O1C-Co1-O2C | 87.22(8) / 87.28(9)  |  |
| O1E-M1-O2E                    | 69.60(7) / 70.62(8)   |             |                      |  |
| O1E-M1-O3                     | 68.08(7) / 67.74(8)   |             |                      |  |
| O1E-M1-O4                     | 79.43(6) / 78.24(8)   |             |                      |  |
| O1E-M1-O5                     | 123.14(7) / 123.05(8) |             |                      |  |

Table S1. Selected bond lengths (Å) and angles (°) in Eu-Co and Y-Co.

| O1E-M1-O6 | 133.08(7) / 134.13(8) |
|-----------|-----------------------|
| O1E-M1-O7 | 74.30(7) / 73.91(8)   |
| O2E-M1-O3 | 134.21(7) / 135.56(8) |
| O2E-M1-O4 | 89.49(6) / 90.02(8)   |
| O2E-M1-O5 | 67.23(6) / 67.01(8)   |
| O2E-M1-O6 | 75.26(6) / 75.39(8)   |
| O2E-M1-O7 | 72.46(6) / 72.26(8)   |
| O3-M1-O4  | 66.40(6) / 67.14(8)   |
| O3-M1-O5  | 125.90(6) / 126.82(8) |
| O3-M1-O6  | 149.72(6) / 147.90(8) |
| O3-M1-O7  | 111.17(6) / 109.41(8) |
| O4-M1-O5  | 65.18(6) / 65.75(8)   |
| O4-M1-O6  | 130.85(6) / 132.03(8) |
| O4-M1-O7  | 151.98(6) / 150.66(8) |
| O5-M1-O6  | 65.83(6) / 66.48(8)   |
| O5-M1-O7  | 122.89(6) / 123.74(8) |
| O6-M1-O7  | 66.01(6) / 66.91(8)   |



**Fig. S1**. Ball and stick view of the structure of  $[Y(hfa)_2 \cdot tetraglyme]^+$  cation in **Y-Co**; hydrogen and fluorine atoms have been omitted for sake of clarity.



**Fig.S2**. Ball and stick view of the structure of  $Co(hfa)_3^-$  anion of **Y-Co**, hydrogen atoms have been omitted for sake of clarity.



**Fig. S3**. PXRD patterns of **Dy-Co** (black, experimental), **Eu-Co** (red, experimental) and **Y-Co** (blue, experimental).



Fig.S4. FT-IR spectra of the Y-Co, Dy-Co and Eu-Co complexes.

|                                                         | HP-6                          | PPY-6                                    | OC-6                         | TPR-6                                | JPPY-6                                              |
|---------------------------------------------------------|-------------------------------|------------------------------------------|------------------------------|--------------------------------------|-----------------------------------------------------|
|                                                         | Hexagon<br>(D <sub>6h</sub> ) | Pentagonal<br>pyramid<br>C <sub>5v</sub> | Octahedron<br>O <sub>h</sub> | Trigonal<br>prism<br>D <sub>3h</sub> | Johnson pentagonal<br>pyramid J2<br>C <sub>5v</sub> |
|                                                         |                               |                                          |                              |                                      |                                                     |
| Et <sub>4</sub> N[Co <sup>II</sup> (hfa) <sub>3</sub> ] | 32.862                        | 27.854                                   | 0.181                        | 14.538                               | 31.583                                              |
| Y-Co                                                    | 32.878                        | 27.371                                   | 0.169                        | 14.129                               | 31.090                                              |

**Table S2** SHAPE parameters for the coordination sphere of Cobalt(II) in Y-Co and (NEt<sub>4</sub>)Co(hfa)<sub>3</sub> (ref. 1).



Fig. S5. Coordination environment of the Co(II) centre in the two complexes: a)  $Et_4N[Co^{II}(hfa)_3]$ ; b) Y-Co.

| Bond distances (Å)                                      |          |          |          |  |  |  |  |
|---------------------------------------------------------|----------|----------|----------|--|--|--|--|
| Et <sub>4</sub> N[Co <sup>II</sup> (hfa) <sub>3</sub> ] |          | YCo      |          |  |  |  |  |
| Co1 – O1                                                | 2.077(2) | Co1 – O1 | 2.058(2) |  |  |  |  |
| Co1 – O2                                                | 2.078(2) | Co1 – O2 | 2.058(2) |  |  |  |  |
| Co1 – O3                                                | 2.053(1) | Co1 – O3 | 2.060(2) |  |  |  |  |
| Co1 – O4                                                | 2.084(2) | Co1 – O4 | 2.063(2) |  |  |  |  |
| Co1 – O5                                                | 2.077(2) | Co1 – O5 | 2.071(2) |  |  |  |  |
| Co1 – O6                                                | 2.047(1) | Co1 – O6 | 2.070(2) |  |  |  |  |

Table S3 Co-O bond distances in the Co(II) coordination environment for the two complexes.



**Fig. S6.** Comparison of the relaxation rate observed for **Y-Co** under an external applied field of 1.2 kOe and for **Dy-Co** in an applied field of 2.1 kOe.

Supplementary Note S1. Fitting procedure of experimental DC magnetometry data and g factors.

The fitting procedure was conducted with a custom-written MATLAB script based on the toolkit EASYSPIN and the *fminuit* minimization routine. The goodness of fit between the experimental data and the simulated ones was evaluated as the coefficient of determination  $R^2$  (worst value =  $-\infty$ , best value = +1) (ref. 2).

$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (Y_{i} - \bar{Y})^{2}}{\sum_{i=1}^{m} (Y_{i} - X_{i})^{2}}$$

In this equation  $Y_i$ ,  $\overline{Y}$  and  $X_i$  represent the experimental data set, the averaged value of the experimental data set and the simulated dataset.

Since *fminuit* is a minimization routine (i.e., it minimizes a scalar value by adjusting free parameters), the code was designed to minimize the quantity  $1 - R^2$  (worst value =  $+\infty$ , best value = 0). The expression for it is given by:

$$1 - R^{2} = \frac{\sum_{i=1}^{m} (Y_{i} - \overline{Y})^{2}}{\sum_{i=1}^{m} (Y_{i} - X_{i})^{2}}$$

In this specific case, the goodness of fit was evaluated as  $1 - R^2 = 0.0407$ , corresponding to  $R^2 = 0.9593$ .



**Fig. S7.** Emission spectra, recorded at room temperature, with an excitation wavelength of 310 nm for the Dy-Co solution (CH<sub>2</sub>Cl<sub>2</sub>) and Dy-Co powder film obtained through drop-casting on quartz.

## References

- A. V. Palii, D. V. Korchagin, E. A. Yureva, A. V. Akimov, E. Ya. Misochko, G. V. Shilov, A. D. Talantsev, R. B. Morgunov, S. M. Aldoshin and B. S. Tsukerblat, *Inorg. Chem.*, 2016, 55, 9696–9706.
- 2. D. Chicco D, M. J. Warrens, G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. *PeerJ Computer Science*, 2021, 7:e623.