Probing the Protonation and Reduction of Heptavalent Neptunium with Computational Guidance

Grant C. Benthin^{a†}, Harindu Rajapaksha^{a†}, Emma L. Markun^a, Sara E. Mason^{*a,b}, Tori Z. Forbes^{*a}

^a Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA ^bCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA

[†]These authors contributed equally to this work and share first authorship

*Corresponding Authors: Tori Z. Forbes Email: <u>tori-forbes@uiowa.edu</u>, Sara E. Mason Email: <u>smason@bnl.gov</u>

Supporting Information

Table of Contents

1.	Computational calculations5
	1.1 DFT optimized coordinates and optimized bond lengths5
	Table S1: DFT optimized XYZ coordinates of [Np040H2]aq3
	Table S2: DFT optimized XYZ coordinates of [Np04(0H)(H20)](aq) 2
	Table S3: DFT optimized XYZ coordinates of [Np04(H20)2](aq)
	Table S4: DFT optimized XYZ coordinates of [Np03(0H)(H20)2](aq) 6
	Table S5: DFT optimized XYZ coordinates of trans[Np02(0H)2(H20)2](aq) +6
	Table S6: DFT optimized XYZ coordinates of cis[Np02(0H)2(H20)2](aq) +6
	Table S7: DFT optimized XYZ coordinates of [Np0(0H)3(H20)2](aq) 2 +
	Table S8: DFT optimized XYZ coordinates of [Np(0H)4(H2O)2](aq) 3 + 7
	Table S9: DFT optimized XYZ coordinates of [Np030H3](aq) 27
	Table S10: DFT optimized XYZ coordinates of cis[Np020H4](aq)
	Table S11: DFT optimized XYZ coordinates of trans[Np020H4](aq)
	Table S12: DFT optimized XYZ coordinates of [Np00H5](aq) 8
	Table S13: DFT optimized XYZ coordinates of [Np0H6](aq) +
	Table S14: DFT optimized XYZ coordinates of [Np03(0H)2(H20)](aq)
	Table S15: DFT optimized XYZ coordinates of cis[Np03(0H)3(H20)](aq) 9
	Table S16: DFT optimized XYZ coordinates of trans[Np03(0H)3(H20)](aq) 10
	Table S17 : DFT optimized XYZ coordinates of $[Np02(0H)4(H20)](aq) + \dots 10$

Table S18: DFT optimized XYZ coordinates of [Np02(0H)5(H20)](aq) 2 +	10
Table S19: DFT optimized XYZ coordinates of [Np040H2]aq4 -	11
Table S20: DFT optimized XYZ coordinates of [Np04(0H)(H20)](aq) 3 -	11
Table S21: DFT optimized XYZ coordinates of [Np04(H20)2](aq) 2	11
Table S22: DFT optimized XYZ coordinates of [Np03(0H)(H20)2](aq)	12
Table S23: DFT optimized XYZ coordinates of trans[Np02(0H)2(H20)2](aq)	12
Table S24: DFT optimized XYZ coordinates of cis[Np02(0H)2(H20)2](aq)	12
Table S25 : DFT optimized XYZ coordinates of $[NpO(OH)3(H2O)2](aq) + \dots$	13
Table S26: DFT optimized XYZ coordinates of [Np(0H)4(H20)2](aq) 2 +	13
Table S27: DFT optimized XYZ coordinates of [Np030H3](aq) 3 -	13
Table S28: DFT optimized XYZ coordinates of cis[Np020H4](aq) 2 -	14
Table S29: DFT optimized XYZ coordinates of trans[Np020H4](aq) 2	14
Table S30: DFT optimized XYZ coordinates of [Np00H5](aq)	14
Table S31: DFT optimized XYZ coordinates of [Np0H6](aq)	15
Table S32: DFT optimized XYZ coordinates of [Np03(0H)2(H20)](aq) 2	15
Table S33: DFT optimized XYZ coordinates of cis[Np03(0H)3(H20)](aq)	15
Table S34: DFT optimized XYZ coordinates of trans[Np03(0H)3(H20)](aq)	16
Table S35: DFT optimized XYZ coordinates of [Np02(0H)4(H20)](aq)	16
Table S36 : DFT optimized XYZ coordinates of $[NpO2(OH)5(H2O)](aq) + \dots$	16
Table S37: DFT optimized XYZ coordinates of H30(aq) +	17
Table S38: DFT optimized XYZ coordinates of H20(aq)	17
Table S39 : DFT optimized XYZ coordinates of $OH(aq)$	17
Table S40 : DFT optimized XYZ coordinates of $O2(aq)^2$	17
Table S41 : DFT optimized XYZ coordinates of $O2(aq) - *$	17
Table S42: DFT optimized XYZ coordinates of H02(aq)	17
Table S43: DFT optimized XYZ coordinates of NO3(aq)	17
Table S44: DFT optimized XYZ coordinates of NO3(aq) *	17
Table S45: DFT optimized XYZ coordinates of CO3(aq)2 -	17
Table S46: DFT optimized XYZ coordinates of CO3(aq) -*	18
Table S47: DFT optimized XYZ coordinates of [Co(NH3)6](aq)3 +	18
Table S48: DFT optimized XYZ coordinates of [Co(NH3)6Cl](aq)2 +	19
Table S49: DFT optimized XYZ coordinates of cis[Co(NH3)6Cl2](aq) +	19
Table S50: DFT optimized XYZ coordinates of trans[Co(NH3)6Cl2](aq) +	20
Figure S1: DFT optimized bond lengths. Here DoP stands for Degree of Protonation	21
1.2 Np(VII) Protonation reactions and their energetics	22

	Table S51: Protonation reactions of Np(VII) complexes	22
	Table S52: Protonation reactions of Np(VI) complexes	23
1.	3 Influence of protonation on reduction of Np(VII)	24
	Table S53 : Free energy changes associated with the reduction of Np(VII) to correspondir Np(VI) compounds with different reducing agents.	ng 24
	Table S54 : Spin densities and oxidation states of Np centers in Np(VI) and Np(VII) complexes.	24
1.4	Prediction of Raman spectra	26
	Figure S2 : Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 1 and 2. Here DoP stands for Degree of Protonation. The color of each line corresponds to the protonation path.	26
	Figure S3 : Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 3 and 4. Here DoP stands for Degree of Protonation. The color of each line corresponds to the protonation path.	26
	Figure S4 : Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 5 and 6. Here DoP stands for Degree of Protonation. The color of each line corresponds to the protonation path.	27
1.5	Benchmarking TD-DFT calculations	28
	Figure S5 : Simulated spectra of $[NpO4OH2]aq3 -$ with TD-DFT using different functionals.	28
1.6	Choice of the functional for DFT calculations	28
2.	Experimental evidence of Np(VII) protonation	30
2		
	.1 Titration studies of Np(VII) solutions	30
	.1 Titration studies of Np(VII) solutions Figure S6 : Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [<i>Np040H2</i>] <i>aq</i> 3 –	30 20 30
	 Titration studies of Np(VII) solutions Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [NpO4OH2]aq3 – Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 	30 20 30 31
	 Titration studies of Np(VII) solutions Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [NpO4OH2]aq3 – Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 Figure S8: Solution Raman spectra of pH 12.37 solution with fitting parameters in the spectral window of 900-650 cm 	30 20 30 31 32
	 Titration studies of Np(VII) solutions	30 520 30 31 32 33
	 Titration studies of Np(VII) solutions Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [Np040H2]aq3 – Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 Figure S8: Solution Raman spectra of pH 12.37 solution with fitting parameters in the spectral window of 900-650 cm. Figure S9: Solution Raman spectra of pH 12.24 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S10: Solution Raman spectra of pH 12.06 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. 	 30 20 30 31 32 33 34
	 Titration studies of Np(VII) solutions Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [Np040H2]aq3 – Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 Figure S8: Solution Raman spectra of pH 12.37 solution with fitting parameters in the spectral window of 900-650 cm. Figure S9: Solution Raman spectra of pH 12.24 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S10: Solution Raman spectra of pH 12.06 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S11: Solution Raman spectra of pH 11.86 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. 	 30 20 30 31 32 33 34 35
	 Titration studies of Np(VII) solutions Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 6 nm correspond to the typical absorption bands of [Np040H2]aq3 – Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 Figure S8: Solution Raman spectra of pH 12.37 solution with fitting parameters in the spectral window of 900-650 cm. Figure S9: Solution Raman spectra of pH 12.24 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S10: Solution Raman spectra of pH 12.06 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S11: Solution Raman spectra of pH 11.86 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. Figure S12: Solution Raman spectra of pH 11.65 solution with fitting parameters in the spectral window of 900-650 cm⁻¹. 	 30 20 30 31 32 33 34 35 36

	Figure S14 : Solution Raman spectra of pH 9.73 solution with fitting parameters in the spectral window of 900-650 cm ⁻¹	38
	Figure S15 : Solution Raman spectra of pH 9.18 solution with fitting parameters in the spectral window of 900-650 cm ⁻¹	39
	Figure S16 : Solution Raman spectra of pH 6.50 solution with fitting parameters in the spectral window of 900-650 cm ⁻	40
	Figure S17: Optical spectroscopy of the solution formed by dissolving the precipitate from pH 6.50 solution in 1M LiOH. Here a), b), and c) are UV-Vis, Vis and NIR spectra respectively.	ו 41
2	.2 Protonation of Np(VII) Solids by Acid Vapor Diffusion	42
	Figure S18 : Overlay of solid-state Raman spectra collected on a single sample of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) in the spectral window 1400-400 cm-1. Spectra were collected periodically over the course of 21 hrs while the sample was continuously exposed to acidic vapor.	42
	Figure S19 : Solid-state Raman spectra with fitting parameters and statistics of neat $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4).	43
	Figure S20 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1 hour of exposure to acidic vapor	43
	Figure S21 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1.35 hour of exposure to acidic vapor	44
	Figure S22 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1.6 hour of exposure to acidic vapor	45
	Figure S23 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 2.0 hour of exposure to acidic vapor	46
	Figure S24 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 4 hours of exposure to acidic vapor	47
	Figure S25 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 8 hours of exposure to acidic vapor	48
	Figure S26 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 16 hours of exposure to acidic vapor	48
	Figure S27 : Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 21 hours of exposure to acidic vapor	49
3.	References	49

1. Computational calculations

1.1 DFT optimized coordinates and optimized bond lengths

	1		
Np	-5.54480	-0.88550	0.00070
O	-5.53080	1.01120	0.04600
Ο	-3.65210	-0.90000	-0.10570
Ο	-7.44140	-0.87330	-0.05610
Ο	-5.55720	-2.77750	0.11800
Ο	-5.50380	-0.83880	2.40210
Η	-5.47450	0.09180	2.64480
Ο	-5.57580	-0.94240	-2.40030
Н	-6.50500	-0.95730	-2.64950

Table S1: DFT optimized XYZ coordinates of $[NpO_4(OH)_2]^{3-}_{(aq)}$

Table S2: DFT optimized XYZ coordinates of $[NpO_4(OH)(H_2O)]^{2-}_{(aq)}$

Np	-5.58390	-0.91400	-0.12010
0	-5.59090	0.96260	0.01700
0	-3.71020	-0.90790	-0.12420
0	-7.45720	-0.92010	-0.13230
0	-5.57730	-2.78870	0.02820
0	-5.57750	-0.82620	2.55270
Н	-5.26900	0.04990	2.81440
Ο	-5.56810	-0.92150	-2.46450
Н	-6.47390	-0.92820	-2.78850
Η	-4.96430	-1.45050	2.95900

Table S3: DFT optimized XYZ coordinates of $[NpO_4(H_2O)_2]_{(aq)}$

Np	-5.61390	-0.86640	0.00870
Ō	-5.55340	0.98750	-0.01580
Ο	-3.76290	-0.92750	-0.10480
Ο	-7.46820	-0.80990	0.01090
Ο	-5.66770	-2.71620	0.14570
Ο	-5.53370	-0.75760	2.60640
Н	-5.06010	0.00240	2.96590
Ο	-5.70910	-0.97810	-2.58880
Н	-6.48200	-1.43180	-2.94650
Н	-5.14760	-1.53390	3.03010
Н	-4.94340	-1.39310	-3.00430

Np	-5.67260	-0.86760	0.01980
0	-5.52820	0.90510	-0.14530
0	-3.56570	-0.88720	-0.13810
0	-7.50370	-0.81160	0.14880
0	-5.59560	-2.64760	0.17530
0	-5.45350	-0.67300	2.52470
Н	-5.10530	0.13760	2.91660
0	-5.83230	-1.11310	-2.48670
Н	-5.48150	-1.90450	-2.91390
Н	-5.07760	-1.40570	3.02840
Н	-5.60540	-0.36900	-3.05820
Н	-3.20940	-1.78430	-0.08560

Table S4: DFT optimized XYZ coordinates of $[NpO_3(OH)(H_2O)_2]_{(aq)}$

Table S5: DFT optimized XYZ coordinates of $trans[NpO_2(OH)_2(H_2O)_2]^+_{(aq)}$

Np	-5.37350	-0.88880	-0.04330
0	-5.58000	0.84000	-0.07830
Ο	-3.31890	-0.68060	0.02720
Ο	-7.41930	-1.11040	0.05160
Ο	-5.19120	-2.61440	0.10430
Ο	-5.34650	-0.71170	2.37770
Η	-5.73580	0.03320	2.85460
Ο	-6.02640	-0.97470	-2.46430
Η	-6.79860	-1.50710	-2.69760
Η	-5.34620	-1.47190	2.97440
Η	-5.35860	-1.13310	-3.14580
Η	-2.77630	-1.48360	0.06970
Н	-7.97960	-0.31870	0.03020

Table S6: DFT optimized XYZ coordinates of $cis[NpO_2(OH)_2(H_2O)_2]^+_{(aq)}$

Np	-5.45620	-0.76140	0.05130
Ο	-5.66690	1.21900	-0.31940
Ο	-3.49280	-0.45570	-0.32610
0	-7.21950	-0.68660	0.18180
Ο	-5.05230	-2.47650	0.21300
0	-5.73170	-1.06590	2.54730
Н	-6.17600	-0.38200	3.06570
0	-5.74440	-1.17110	-2.32370
Η	-6.48490	-0.84780	-2.85260
Η	-4.98870	-1.38180	3.07840
Н	-5.32440	-1.89150	-2.81060
Н	-2.85910	-1.18640	-0.25280
Н	-4.80890	1.65230	-0.47700

Np	-5.34860	-0.99270	0.10740
Ο	-5.64970	0.96560	-0.05350
Ο	-3.54820	-0.63880	-0.49910
Ο	-7.04020	-1.28360	0.35410
Ο	-5.07170	-2.95530	-0.08400
Ο	-5.68040	-0.46660	2.49810
Η	-4.94440	-0.24790	3.08680
Ο	-5.83950	-1.04240	-2.21560
Η	-6.54210	-1.58670	-2.59970
Η	-6.36850	-0.89470	3.02580
Η	-5.16230	-0.90660	-2.89440
Η	-2.78310	-1.24880	-0.44020
Η	-4.93290	1.59530	-0.26380
Н	-5.71630	-3.64940	0.15120

Table S7: DFT optimized XYZ coordinates of $[NpO(OH)_3(H_2O)_2]^{2+}_{(aq)}$

Table S8: DFT optimized XYZ coordinates of $[Np(OH)_4(H_2O)_2]^{3+}_{(aq)}$

Ma	5 72210	1 17770	0 10100
мр	-3./3310	-1.1///0	0.10100
0	-5.99580	0.72990	0.15300
0	-3.83640	-0.90480	-0.00720
0	-7.60400	-1.33900	-0.28570
0	-5.44580	-3.03200	-0.26890
0	-5.20720	-0.40460	2.41150
Н	-5.29680	0.50910	2.72390
0	-5.62680	-0.92090	-2.13720
Н	-6.35140	-1.18480	-2.72690
Н	-4.55160	-0.85580	2.96780
Η	-4.80190	-0.89750	-2.64870
Н	-3.05020	-1.49330	0.07240
Н	-5.35910	1.46810	0.00370
Н	-5.98920	-3.83180	-0.07510
Н	-8.38860	-0.78760	-0.05910

Table S9: DFT optimized XYZ coordinates of $[NpO_3(OH)_3]^{2-}_{(aq)}$

Np	-5.56930	-0.80760	-0.01860
0	-5.60970	1.01360	0.04970
0	-3.67730	-0.88670	-0.17010
0	-7.77750	-0.74620	0.15020
0	-5.75330	-2.61860	-0.06900
0	-5.43510	-0.90660	2.26020
Η	-5.24630	-0.04430	2.64410
0	-5.77950	-0.69730	-2.28960
Η	-5.71320	-1.56770	-2.69540
Н	-8.05100	0.17660	0.20150

Np	-5.45420	-0.81760	-0.01990
0	-5.66200	0.98350	-0.17620
0	-3.67940	-1.19510	-0.14200
0	-7.54920	-0.88650	0.17070
0	-5.59610	-2.91710	0.19610
0	-5.18840	-0.55590	2.13700
Н	-5.69600	0.18040	2.49850
Ο	-5.56870	-0.97220	-2.19970
Н	-6.14430	-0.30980	-2.60030
Н	-8.01840	-0.04460	0.13050
Н	-6.53540	-3.13280	0.30170

Table S10: DFT optimized XYZ coordinates of $cis[NpO_2(OH)_4]_{(aq)}^{-1}$

Table S11: DFT optimized XYZ coordinates of $trans[NpO_2(OH)_4]_{(aq)}^{-1}$

Np	-5.63020	-0.95350	0.04150
0	-5.63080	0.81150	-0.15270
0	-3.46170	-0.97980	-0.09260
Ο	-7.79830	-0.90930	0.17460
0	-5.62550	-2.71910	0.23580
0	-5.49070	-0.74660	2.20190
Н	-5.54640	0.16140	2.52280
0	-5.76320	-1.22650	-2.11220
Н	-5.88280	-0.41060	-2.61280
Η	-8.19800	-0.03430	0.11020
Н	-3.05230	-1.85060	-0.03210

Table S12: DFT optimized XYZ coordinates of $[NpO(OH)_5]_{(aq)}$

I UDIC		pullizea II	
Np	-5.50610	-0.81430	0.06160
Ο	-5.56640	0.96190	0.05650
Ο	-3.41070	-0.77160	0.06710
Ο	-7.58710	-0.82680	-0.04630
Ο	-5.44550	-2.81900	0.20530
Ο	-5.51550	-0.73260	2.14780
Η	-5.62860	0.10470	2.61740
Ο	-5.44830	-1.03710	-2.01500
Η	-6.19150	-0.73470	-2.55630
Η	-8.09130	-0.01510	0.10230
Η	-2.94550	-1.60280	-0.10550
Н	-5.48430	-3.33300	-0.61800

Np	-5.46440	-0.86990	-0.04740
O	-5.47310	1.13800	0.01790
Ο	-3.44970	-0.87560	-0.14620
Ο	-7.47390	-0.84960	-0.11720
Ο	-5.49130	-2.88470	0.06550
Ο	-5.34750	-0.89660	1.96500
Н	-5.49840	-0.09610	2.49800
Ο	-5.41030	-0.89690	-2.06250
Н	-6.20410	-1.07960	-2.59590
Н	-8.02540	-0.14770	0.27100
Н	-2.88970	-1.16610	0.59450
Н	-6.00060	-3.45910	-0.53290
Η	-4.81760	1.73850	-0.37620

Table S13: DFT optimized XYZ coordinates of $[Np(OH)_6]^+_{(aq)}$

Table S14: DFT optimized XYZ coordinates of $[NpO_3(OH)_2(H_2O)]_{(aq)}$

		1	
Np	-5.56120	-0.89710	-0.15960
O	-5.81350	0.88090	-0.34720
0	-3.70150	-0.75140	-0.27660
0	-7.69100	-1.06100	0.19630
Ο	-5.52120	-2.68020	0.10970
0	-5.32070	-0.55750	2.40520
Н	-4.79330	0.20080	2.68590
0	-5.83300	-1.22960	-2.35460
Н	-5.85320	-0.42670	-2.88500
Н	-8.11280	-0.19990	0.08670
Η	-4.97720	-1.31400	2.89680

Table S15: DFT optimized XYZ coordinates of $cis[NpO_3(OH)_3(H_2O)]_{(aq)}$

		1	
Np	-5.52410	-0.87970	-0.08990
Ō	-5.57930	0.91280	-0.19290
0	-3.75560	-1.20710	-0.11390
0	-7.56450	-0.83890	0.15000
0	-5.66500	-2.92660	0.09550
Ο	-5.29500	-0.69200	2.40990
Η	-5.68710	0.05780	2.87580
0	-5.66460	-1.01470	-2.23020
Η	-6.07940	-0.29260	-2.71640
Η	-8.05070	-0.02580	-0.04610
Η	-6.59440	-3.19890	0.17410
Н	-4.43440	-0.85180	2.81810

Np	-5.65610	-0.95090	-0.05100
0	-5.65720	0.79980	-0.20560
0	-3.54160	-0.98220	-0.04990
0	-7.76190	-0.90420	0.13110
0	-5.64510	-2.68800	0.22790
0	-5.53870	-0.67690	2.43660
Н	-5.22210	0.15180	2.81900
0	-5.73520	-1.18970	-2.16880
Н	-5.98550	-0.46940	-2.75910
Н	-8.21450	-0.07430	-0.07020
Н	-3.10180	-1.84240	-0.02500
Н	-5.18770	-1.38970	2.98590

Table S16: DFT optimized XYZ coordinates of $trans[NpO_3(OH)_3(H_2O)]_{(aq)}$

Table S17: DFT optimized XYZ coordinates of $[NpO_2(OH)_4(H_2O)]^+_{(aq)}$

Np	-5.61710	-1.01000	-0.04580
Ô	-5.52510	0.73580	-0.16600
Ο	-3.60060	-1.26830	-0.09500
Ο	-7.63820	-0.90440	0.17650
Ο	-5.80010	-2.95080	0.26050
Ο	-5.45400	-0.61590	2.35800
Н	-5.07620	0.20170	2.71020
Ο	-5.73530	-1.07620	-2.09740
Η	-5.84650	-0.37540	-2.75440
Η	-8.15760	-0.12870	-0.09240
Η	-2.96870	-0.70300	-0.56860
Η	-5.02460	-3.53670	0.17530
Н	-5.26200	-1.32200	2.99060

Table S18: DFT optimized XYZ coordinates of $[NpO_2(OH)_5(H_2O)]^{2+}_{(aq)}$

Np	-5.37980	-0.91620	-0.04990
Ο	-5.25720	1.04340	-0.04570
Ο	-3.49710	-1.16690	-0.60950
Ο	-7.31870	-0.74150	0.20980
Ο	-5.74610	-2.85370	-0.01270
Ο	-5.61820	-0.92060	2.35470
Η	-6.33790	-0.45450	2.80540
Ο	-5.71620	-0.85310	-2.02570
Η	-6.50570	-0.89350	-2.59320
Η	-7.78770	0.11820	0.23780
Η	-2.78780	-1.31560	0.05240
Η	-5.08220	-3.55370	-0.17870
Η	-4.72800	1.64480	-0.60680
Н	-4.82480	-0.85680	2.90990

Np	-5.64285	-0.75438	-0.00445
O	-5.71984	1.21617	-0.15277
Ο	-3.67926	-0.66146	0.10958
Ο	-7.60528	-0.84664	-0.11876
Ο	-5.56703	-2.72497	0.14315
Ο	-5.77880	-0.56630	2.47521
Η	-4.85273	-0.58263	2.73577
Ο	-5.51778	-0.95125	-2.48564
Н	-6.42189	-1.20021	-2.70208

Table S19: DFT optimized XYZ coordinates of $[NpO_4(OH)_2]^{4-}_{(aq)}$

Table S20: DFT optimized XYZ coordinates of $[NpO_4(OH)(H_2O)]^{3-}_{(aq)}$

-			
Np	-6.09583	-1.70040	-0.06916
0	-6.69611	-0.22262	1.10422
0	-4.41874	-1.76940	0.95175
0	-7.80930	-1.69789	-0.96036
0	-5.60279	-3.32128	-1.01679
0	-4.54852	0.40446	2.55130
Н	-5.44946	0.37403	2.12153
0	-5.13328	-0.24579	-1.66879
Н	-5.79059	-0.06271	-2.34691
Н	-4.22758	-0.40301	2.07487
п О Н Н	-5.13328 -5.79059 -4.22758	-0.24579 -0.06271 -0.40301	-1.66879 -2.34691 2.07487

Table S21: DFT optimized XYZ coordinates of $[NpO_4(H_2O)_2]^{2-}_{(aq)}$

		1	
Np	-4.77968	-1.71471	0.00211
Ο	-4.67059	0.22993	0.26359
Ο	-2.88636	-1.83808	0.20160
Ο	-6.72586	-1.56462	-0.24329
Ο	-4.90353	-3.60447	-0.22406
Ο	-5.50378	-0.83879	2.40203
Η	-5.22241	-0.11921	1.74987
Ο	-5.57582	-0.94237	-2.40019
Η	-6.32347	-1.11761	-1.73952
Η	-4.83779	-0.84439	3.09945
Η	-5.64796	-1.62299	-3.07931

Np	-6.00580	-0.85739	0.06063
0	-5.96241	0.96857	-0.02817
0	-3.79319	-0.79493	-0.55130
0	-7.88997	-0.90398	0.36287
0	-5.82596	-2.67736	0.15908
0	-5.32235	-0.70572	2.52776
Н	-4.91392	0.11793	2.82112
0	-5.50485	-0.87108	-2.60085
Η	-5.59706	-1.73587	-3.01773
Н	-4.78533	-1.41975	2.89234
Н	-4.61308	-0.86281	-2.17288
Н	-3.41686	-1.67853	-0.46694

Table S22: DFT optimized XYZ coordinates of $[NpO_3(OH)(H_2O)_2]_{(aq)}$

Table S23: DFT optimized XYZ coordinates of $trans[NpO_2(OH)_2(H_2O)_2]_{(aq)}$

Np	-5.37283	-0.81957	0.06034
Ο	-5.60890	0.93906	0.01483
Ο	-3.22699	-0.54086	0.15664
Ο	-7.52020	-1.11154	-0.01772
Ο	-5.14868	-2.57728	0.15055
Ο	-5.55488	-0.79779	2.55085
Η	-5.45441	0.00410	3.07816
Ο	-5.96295	-0.97682	-2.45097
Η	-6.86151	-1.33389	-2.45182
Η	-5.23232	-1.53277	3.08667
Η	-5.44239	-1.53400	-3.04347
Η	-2.71301	-1.35531	0.21371
Н	-8.04506	-0.30239	-0.04185

Table S24: DFT optimized XYZ coordinates of $cis[NpO_2(OH)_2(H_2O)_2]_{(aq)}$

Np	-5.63974	-0.90506	0.00179
0	-5.85367	1.18750	-0.06899
Ο	-3.56933	-0.59203	-0.12607
0	-7.46371	-0.96422	0.01624
0	-5.32105	-2.69877	0.12073
Ο	-5.51268	-0.78477	2.51913
Н	-5.48439	0.07044	2.96618
0	-5.69469	-0.98621	-2.51629
Н	-6.53869	-1.14290	-2.95796
Н	-4.90160	-1.36424	2.99087
Н	-5.03395	-1.50405	-2.99318
Н	-3.00407	-1.37269	-0.06882
Н	-4.98812	1.62159	-0.10850

Np	-5.49938	-1.07438	-0.11021
Ο	-5.75937	0.99191	-0.01904
Ο	-3.54157	-0.75917	-0.10554
Ο	-7.24870	-1.26772	-0.09692
Ο	-5.18404	-3.01835	0.55209
Ο	-5.55591	-0.73102	2.33372
Η	-5.50848	0.17191	2.67434
Ο	-5.81456	-0.79479	-2.56045
Η	-6.61880	-1.10845	-2.99385
Η	-5.02701	-1.28930	2.91823
Η	-5.09158	-0.89595	-3.19372
Η	-2.91201	-1.47815	0.07673
Η	-4.95948	1.53960	-0.02448
Η	-5.90712	-3.63861	0.72207

Table S25: DFT optimized XYZ coordinates of $[NpO(OH)_3(H_2O)_2]^+_{(aq)}$

Table S26: DFT optimized XYZ coordinates of $[Np(OH)_4(H_2O)_2]^{2+}_{(aq)}$

		1	
Np	-5.42519	-1.03048	0.09892
O	-5.72919	0.91759	0.03595
0	-3.54105	-0.72610	-0.44859
0	-7.38026	-1.31023	0.11920
0	-5.16874	-2.97964	-0.13989
0	-5.71987	-0.55610	2.50425
Н	-5.73792	0.33798	2.87137
0	-5.75537	-1.00986	-2.25855
Н	-6.51683	-1.43502	-2.67838
Н	-5.48017	-1.16796	3.21343
Н	-5.00815	-1.06215	-2.87181
Н	-2.82791	-1.39139	-0.42601
Н	-5.04244	1.59632	-0.10580
Н	-5.83863	-3.65848	0.06722
Η	-8.06608	-0.64733	0.32378

Table S27: DFT optimized XYZ coordinates of $[NpO_3(OH)_3]^{3-}_{(aq)}$

		1	
Np	-5.42404	-0.90455	0.01906
0	-5.53441	0.97164	0.00687
0	-3.45975	-0.90501	-0.08372
0	-7.73638	-0.89837	-0.03846
0	-5.52570	-2.77498	0.12142
0	-5.47088	-0.84349	2.38319
Η	-5.41698	0.07981	2.64882
0	-5.56309	-0.97813	-2.37410
Н	-6.50035	-0.86464	-2.56556
Н	-7.98056	0.03292	-0.05447

Np	-5.45248	-0.78850	-0.00432
Ο	-5.51054	1.08590	-0.05601
Ο	-3.58953	-0.97744	-0.09764
0	-7.63624	-0.83056	-0.01077
Ο	-5.57550	-2.97063	0.16829
0	-5.44184	-0.68711	2.26406
Н	-5.42414	0.21540	2.59663
Ο	-5.54060	-0.94578	-2.27184
Η	-6.37548	-0.60162	-2.60736
Н	-8.03593	0.04109	0.07932
Н	-6.50977	-3.20847	0.23600

Table S28: DFT optimized XYZ coordinates of $cis[NpO_2(OH)_4]^{2-}_{(aq)}$

Table S29: DFT optimized XYZ coordinates of $trans[NpO_2(OH)_4]^{2-}_{(aq)}$

Np	-5.64364	-0.80523	0.02585
Ο	-5.52899	1.00299	0.07556
0	-3.38573	-0.92869	-0.07318
0	-7.90151	-0.68177	0.12488
Ο	-5.75828	-2.61344	-0.02387
0	-5.54558	-0.89029	2.28815
Н	-5.46954	-0.01053	2.67170
Ο	-5.74168	-0.72015	-2.23645
Н	-5.81769	-1.59993	-2.62000
Н	-8.20371	0.23161	0.16003
Н	-3.08359	-1.84209	-0.10830

Table S30: DFT optimized XYZ coordinates of $[NpO(OH)_5]_{(aq)}$

		1	
Np	-5.54511	-0.83819	0.05437
0	-5.61892	0.96398	-0.08543
0	-3.37281	-0.74536	-0.02951
0	-7.70831	-0.91989	0.11889
0	-5.44857	-2.89956	0.24935
Ο	-5.45948	-0.72016	2.20918
Н	-5.50516	0.14443	2.63171
0	-5.60821	-1.12617	-2.08450
Н	-5.86121	-0.40015	-2.66477
Н	-8.17612	-0.07811	0.09012
Н	-2.94388	-1.60912	0.00240
Н	-5.57294	-3.39209	-0.57490

Np	-5.52193	-0.89686	-0.06107
0	-5.38026	1.15971	0.09578
0	-3.47333	-1.15519	-0.23286
0	-7.58616	-0.72044	-0.03591
0	-5.82367	-2.95035	-0.13830
0	-5.32920	-1.00612	2.00136
Н	-5.48321	-0.21817	2.54219
0	-5.53588	-0.75879	-2.12994
Н	-6.35968	-0.87589	-2.62357
Н	-7.99151	0.13791	0.15283
Н	-2.94261	-1.23825	0.57246
Н	-5.07673	-3.54967	0.00137
Н	-5.04196	1.72666	-0.61075

Table S31: DFT optimized XYZ coordinates of $[Np(OH)_6]_{(aq)}$

Table S32: DFT optimized XYZ coordinates of $[NpO_3(OH)_2(H_2O)]^{2-}_{(aq)}$

Np	-6.06362	-1.60759	-0.00860
0 [°]	-6.51901	-0.03718	0.85770
Ο	-4.33783	-1.70204	0.94897
Ο	-8.19659	-1.72008	-0.76237
Ο	-5.77247	-3.19127	-0.89920
Ο	-4.01972	0.56172	2.29620
Η	-4.90552	0.86360	2.05062
Ο	-5.33447	-0.44771	-1.82124
Η	-5.33798	0.50055	-1.65845
Η	-8.66577	-0.93001	-0.47264
Н	-4.02576	-0.32575	1.82660

Table S33: DFT optimized XYZ coordinates of $cis[NpO_3(OH)_3(H_2O)]_{(aq)}^{-1}$

Np	-5.53676	-0.90751	-0.10815
O	-5.51674	0.93909	-0.18717
Ο	-3.69922	-1.15144	-0.11002
Ο	-7.65685	-0.83557	0.23355
0	-5.70522	-3.03927	0.07757
Ο	-5.26538	-0.73393	2.47923
Н	-5.79614	-0.06085	2.92321
0	-5.78017	-1.07080	-2.30505
Н	-5.86532	-0.25055	-2.80004
Н	-8.08045	0.01542	0.07342
Н	-6.63968	-3.28850	0.10905
Η	-4.35232	-0.57375	2.74859

Np	-5.68284	-0.79017	-0.10822
0	-5.58125	1.00013	-0.06443
0	-3.47807	-0.90452	0.02587
0	-7.87807	-0.67888	0.13607
0	-5.78065	-2.58017	-0.06095
0	-5.59181	-0.78514	2.48781
Η	-5.23795	0.01864	2.88865
0	-5.74839	-0.76508	-2.31936
Η	-5.79554	-1.62913	-2.74108
Η	-8.22537	0.21981	0.13498
Η	-3.13379	-1.80389	-0.00470
Н	-5.11372	-1.51765	2.89611

Table S34: DFT optimized XYZ coordinates of $trans[NpO_3(OH)_3(H_2O)]_{(aq)}^{-1}$

Table S35: DFT optimized XYZ coordinates of $[NpO_2(OH)_4(H_2O)]_{(aq)}$

Np	-5.51424	-0.87441	-0.07983
0	-5.65262	0.90489	-0.06859
Ο	-3.40513	-0.68445	-0.01714
Ο	-7.59976	-1.09268	0.08019
Ο	-5.30084	-2.89129	0.04101
Ο	-5.47784	-0.64920	2.43430
Η	-5.15404	0.18312	2.80196
Ο	-5.57801	-0.96122	-2.19945
Н	-5.74405	-0.19826	-2.76334
Η	-8.21198	-0.36696	-0.09307
Н	-2.90537	-1.51135	-0.06516
Н	-6.04972	-3.45714	-0.20282
Н	-5.11247	-1.35496	2.98361

Table S36: DFT optimized XYZ coordinates of $[NpO_2(OH)_5(H_2O)]^+_{(aq)}$

Np	-5.57400	-0.92839	-0.03385
Ο	-5.54381	1.08577	-0.11024
Ο	-3.56729	-1.11119	-0.00336
Ο	-7.59025	-0.83742	0.09875
Ο	-5.77579	-2.91895	0.28784
Ο	-5.55212	-0.72717	2.39833
Η	-5.19235	0.05809	2.83415
Ο	-5.52908	-1.10079	-2.06619
Η	-5.99215	-0.69092	-2.80852
Η	-8.05746	0.00125	-0.05275
Η	-2.98660	-1.15873	-0.77976
Η	-5.04893	-3.54832	0.15073
Η	-4.81780	1.64538	-0.43042
Н	-5.35976	-1.48852	2.96323

0				
<u> </u>	-0.17411	-1.45771	0.22714	
Η	0.74696	-1.58807	-0.07859	
Н	-0.52041	-0.59421	-0.07786	
Н	-0.74876	-2.18866	-0.08011	
				_
Tabl	e S38: DFT o	ptimized X	YZ coordinat	es of $H_2O_{(aq)}$
0	-0.17854	-1.52568	0.00000	
Н	0.78474	-1.48419	0.00000	
Н	-0.46098	-0.60380	0.00000	
Tabl	e S39: DFT o	ptimized XY	YZ coordinat	es of $OH_{(aq)}$
0	-0.69144	-0.16869	0.00000	
Н	-1.01342	0.74054	0.00000	
Tabl	e S40: DFT o	ptimized XY	YZ coordinat	es of $O_{2(aq)}^{2-}$
0	-0.26678	-1.08410	0.00000	
0	1.33218	-1.19438	0.00000	
Tabl	e S41 : DFT o	optimized X	YZ coordinat	es of $0_{2(aq)}^{-*}$
0	-0 13941	-1 09289	0.00000	
õ	1 20481	-1 18559	0.00000	
0	-0.35439	-1.00051	-0.07295	
0	1.13213	-1.28232	0.09570	
Н	-0.69145	-1.64622	0.55633	
Tabl	• \$13 . DET c			
	C 343. DI I (ptimized X	YZ coordinat	es of $NO_{3(aq)}^{-}$
0	1.23976	optimized XY	YZ coordinat	es of $NO_{3(aq)}$
0 0	1.23976 -0.45584	0.18942 -1.16847	YZ coordinat 0.00003 0.00003	\underline{es} of $NO_{3(aq)}$
0 0 0	1.23976 -0.45584 -0.78390	0.18942 -1.16847 0.97906	YZ coordinat 0.00003 0.00003 0.00003	es of $NO_{3(aq)}$
0 0 0 N	1.23976 -0.45584 -0.78390 -0.00003	0.18942 -1.16847 0.97906 -0.00001	YZ coordinat 0.00003 0.00003 0.00003 0.00003	es of $NO_{3(aq)}$
0 0 0 N	1.23976 -0.45584 -0.78390 -0.00003	0.18942 -1.16847 0.97906 -0.00001	YZ coordinat 0.00003 0.00003 0.00003 0.00003	es of $NO_{3(aq)}$
O O O N Tabl	1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c	optimized X 0.18942 -1.16847 0.97906 -0.00001	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat	es of $NO_{3(aq)}$ es of $NO_{3(aq)}^{*}$
O O O N Tabl	1.23976 -0.45584 -0.78390 -0.00003 e S44 : DFT of 1.21520	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001	es of $NO_{3(aq)}$ es of $NO_{3(aq)}^*$
O O N Tabl O O	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001 0.00005	$\frac{\text{es of } NO_{3(aq)}}{\text{es of } NO_{3(aq)}}$
0 0 0 N Tabl 0 0 0	e S43 : DF1 (1.23976 -0.45584 -0.78390 -0.00003 e S44 : DFT (1.21520 -0.44333 -0.77152	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001 0.00005 0.00002	es of $NO_{3(aq)}$ es of $NO_{3(aq)}^*$
O O N Tabl O O O N	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333 -0.77152 -0.00035	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794 -0.00003	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001 0.00005 0.00002 0.00003	es of $NO_{3(aq)}$ es of $NO_{3(aq)}^{*}$
O O N Tabl O O O N	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333 -0.77152 -0.00035	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794 -0.00003	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001 0.00005 0.00002 0.00003	es of $NO_{3(aq)}$ es of $NO_{3(aq)}^{*}$
O O N Tabl O O N Tabl	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333 -0.77152 -0.00035 e S45: DFT c	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794 -0.00003 optimized X	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00005 0.00002 0.00003 YZ coordinat	es of $NO_{3(aq)}^{*}$ es of $NO_{3(aq)}^{*}$ es of $CO_{3(aq)}^{2-}$
O O N Tabl O O N Tabl C	e S43 : DF1 (1.23976 -0.45584 -0.78390 -0.00003 e S44 : DFT (1.21520 -0.44333 -0.77152 -0.00035 e S45 : DFT (-0.45247	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794 -0.00003 optimized X -0.48135	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00001 0.00005 0.00002 0.00003 YZ coordinat -2.21460	es of $NO_{3(aq)}^{*}$ es of $NO_{3(aq)}^{*}$ es of $CO_{3(aq)}^{2-}$
O O N Tabl O O N Tabl C O	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333 -0.77152 -0.00035 e S45: DFT c -0.45247 0.19389	optimized XY 0.18942 -1.16847 0.97906 -0.00001 optimized XY 0.18942 -1.14733 0.95794 -0.00003 optimized XY -0.48135 0.64234	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00002 0.00002 0.00003 YZ coordinat -2.21460 -2.21460	$\frac{\text{es of } NO_{3(aq)}}{\text{es of } NO_{3(aq)}}$ $\frac{\text{es of } NO_{3(aq)}}{\text{es of } CO_{3(aq)}^{2-}}$
0 0 0 N Tabl 0 0 N Tabl C 0 0	e S43: DF1 c 1.23976 -0.45584 -0.78390 -0.00003 e S44: DFT c 1.21520 -0.44333 -0.77152 -0.00035 e S45: DFT c -0.45247 0.19389 0.19370	optimized X 0.18942 -1.16847 0.97906 -0.00001 optimized X 0.18942 -1.14733 0.95794 -0.00003 optimized X -0.48135 0.64234 -1.60513	YZ coordinat 0.00003 0.00003 0.00003 0.00003 YZ coordinat 0.00005 0.00002 0.00002 0.00003 YZ coordinat -2.21460 -2.21460 -2.21460	es of $NO_{3(aq)}^{-}$ es of $NO_{3(aq)}^{*}$ es of $CO_{3(aq)}^{2-}$

Table S37: DFT optimized XYZ coordinates of $H_3O_{(aq)}^+$

O -1.74951 -0.48125 -2.21460

Table S46: DFT optimized XYZ coordinates of $CO_{3(aq)}^{-*}$

		1	
С	-0.45359	-0.48134	-2.21460
0	0.18472	0.61655	-2.21460
0	0.17803	-1.58310	-2.21460
0	-1.72355	-0.47751	-2.21460

Table S47: DFT optimized XYZ coordinates of $[Co(NH_3)_6]^{3+}_{(aq)}$

Со	-1.73560	0.93209	-0.00567
Ν	-1.75904	0.91786	2.02882
Н	-2.43523	0.26431	2.43142
Н	-0.86739	0.66246	2.45993
Ν	-1.71230	0.94640	-2.04017
Н	-2.60362	1.20322	-2.47114
Н	-1.03518	1.59896	-2.44281
Ν	-1.77303	-1.10208	-0.03237
Н	-2.44202	-1.49619	-0.69839
Η	-0.87913	-1.53076	-0.28460
Ν	-3.76966	0.98192	-0.01662
Н	-4.18393	1.23594	0.88355
Η	-4.16477	1.65461	-0.67829
Ν	-1.69797	2.96624	0.02092
Η	-1.03019	3.36029	0.68818
Η	-1.45068	3.39601	-0.87367
Ν	0.29844	0.88222	0.00538
Η	0.74162	1.77137	0.24855
Η	0.69344	0.20928	0.66687
Η	0.71280	0.62849	-0.89482
Η	-4.21285	0.09268	-0.25942
Η	-2.01850	-1.53201	0.86264
Η	-1.99573	1.82046	2.44803
Н	-2.59227	3.39514	0.27136
Н	-1.47707	0.04347	-2.45950

Co	-1.75576	0.98169	-0.00595
Ν	-1.77837	0.89899	2.00823
Η	-2.09406	-0.04414	2.24442
Η	-0.86702	0.99879	2.45391
Ν	-1.75744	0.90614	-2.02060
Η	-2.61195	1.23061	-2.47137
Η	-0.99858	1.38960	-2.49950
Ν	-3.77313	0.98979	-0.01186
Η	-4.21231	1.27032	0.86418
Η	-4.23035	1.54279	-0.73593
Ν	-1.64490	3.03698	-0.00596
Η	-1.24224	3.42111	0.84855
Η	-1.07213	3.40968	-0.76278
Ν	0.25137	0.80641	0.01458
Η	0.76685	1.44793	0.61640
Η	0.44591	-0.14319	0.33862
Н	0.69554	0.87100	-0.90043
Η	-4.04681	0.01628	-0.16368
Η	-2.39355	1.55444	2.48929
Η	-2.55034	3.49544	-0.10431
Η	-1.67386	-0.08582	-2.25451
Cl	-1.85370	-1.24505	-0.00726

Table S48: DFT optimized XYZ coordinates of $[Co(NH_3)_6Cl]^{2+}_{(aq)}$

Table S49: DFT optimized XYZ coordinates of $cis[Co(NH_3)_6Cl_2]^+_{(aq)}$

Со	-1.75918	0.98428	-0.02596
Ν	-1.76373	0.85647	-2.05880
Η	-2.57197	1.25713	-2.52789
Η	-0.94159	1.22552	-2.52967
Ν	-3.75374	0.93620	0.06887
Η	-3.98907	1.15924	1.03545
Η	-4.31867	1.51785	-0.54439
Ν	-1.71956	3.02096	-0.04511
Η	-1.71209	3.25153	0.94990
Η	-0.89709	3.44622	-0.46527
Ν	0.23221	0.85909	0.06505
Η	0.47781	1.07313	1.03110
Η	0.45308	-0.12519	-0.08271
Н	0.81813	1.41816	-0.54951
Η	-4.01292	-0.03869	-0.07882
Η	-2.52749	3.47800	-0.46010
Η	-1.78344	-0.15232	-2.21760
Cl	-1.80259	-1.26157	-0.02994
Cl	-1.75371	1.15108	2.21420

Co	-1.74633	0.91906	-0.00851
Ν	-1.73801	0.94223	1.98484
Η	-2.25226	0.14144	2.34668
Η	-0.80627	0.88762	2.38766
Ν	-1.75465	0.89589	-2.00186
Η	-2.68640	0.95047	-2.40469
Η	-1.24042	1.69669	-2.36371
Ν	-3.73533	1.05204	-0.00202
Η	-4.13686	1.08920	0.93114
Η	-4.03087	1.90468	-0.47350
Ν	0.24267	0.78608	-0.01501
Η	0.65000	1.60188	0.43795
Η	0.53821	-0.06658	0.45643
Η	0.64420	0.74898	-0.94817
Η	-4.14266	0.23623	-0.45493
Η	-2.14563	1.81012	2.32719
Η	-1.34701	0.02800	-2.34421
Cl	-1.89625	-1.32632	0.01804
Cl	-1.59641	3.16444	-0.03507

Table S50: DFT optimized XYZ coordinates of $trans[Co(NH_3)_6Cl_2]^+_{(aq)}$

Figure S1: DFT optimized bond lengths. Here DoP stands for Degree of Protonation

1.2 Np(VII) Protonation reactions and their energetics.

Δ	Reaction	ΔG
DoP		(kJ/mol)
0→1	$[NpO_{4}(OH)_{2}]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{4}(OH)(H_{2}O)]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-326.23
0→1	$[NpO_{4}(OH)_{2}]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{3}(OH)_{3}]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-291.20
1→2	$[NpO_{4}(OH)(H_{2}O)]_{(aq)}^{2-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{4}(H_{2}O)_{2}]_{(aq)}^{-} + H_{2}O_{(aq)}$	-260.60
1→2	$[NpO_{4}(OH)(H_{2}O)]_{(aq)}^{2-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{-} + H_{2}O_{(aq)}$	-267.18
1→2	$[NpO_{3}(OH)_{3}]^{2-}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow cis[NpO_{2}(OH)_{4}]^{-}_{(aq)} + H_{2}O^{+}_{(aq)}$	-182.54
1→2	$[NpO_{3}(OH)_{3}]_{(aq)}^{2-} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{2}(OH)_{4}]_{(aq)}^{-} + H_{2}O_{(aq)}^{-}$	-252.16
2→3	$[NpO_{4}(H_{2}O)_{2}]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)} + H_{2}O_{(aq)}$	-211.69
2 → 3	$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow cis[NpO_{3}(OH)_{3}(H_{2}O)]_{(aq)} + H_{2}O_{(aq)}$	-120.87
2 → 3	$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{3}(OH)_{3}(H_{2}O)]_{(aq)} + H_{2}O_{(aq)}$	-178.56
2 → 3	$cis[NpO_2(OH)_4]_{(aq)}^{-} + H_3O_{(aq)}^{+} \rightarrow [NpO(OH)_5]_{(aq)} + H_2O_{(aq)}$	-127.16
2 → 3	$trans[NpO_{2}(OH)_{4}]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{5}]_{(aq)} + H_{2}O_{(aq)}$	-59.15
3→4	$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow cis[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)}^{+} + H_{2}O_{(aq)}$	-47.43
3→4	$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)}^{+} + H_{2}O_{(aq)}$	-89.63
3→4	$cis[NpO_{2}(OH)_{3}(H_{2}O)]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{4}(H_{2}O)]_{(aq)}^{+} + H_{2}O_{(aq)}$	-45.87
3→4	$trans[NpO_{2}(OH)_{3}(H_{2}O)]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{4}(H_{2}O)]_{(aq)}^{+} + H_{2}O_{(aq)}$	10.97
3→4	$[NpO(OH)_{5}]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [Np(OH)_{6}]_{(aq)}^{+} + H_{2}O_{(aq)}$	2.67
4→5	$cis[NpO_{2}(0H)_{2}(H_{2}O)_{2}]^{+}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow [NpO(0H)_{3}(H_{2}O)_{2}]^{2+}_{(aq)} + H_{2}O_{(aq)}$	52.28
4→5	$trans[NpO_{2}(OH)_{2}(H_{2}O)_{2}]^{+}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow [NpO(OH)_{3}(H_{2}O)_{2}]^{2+}_{(aq)} + H_{2}O_{(aq)}$	109.82
4→5	$[NpO_{2}(OH)_{4}(H_{2}O)]_{(aq)}^{+} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{5}(H_{2}O)]_{(aq)}^{2+} + H_{2}O_{(aq)}$	109.83
4 → 5	$[Np(OH)_{6}]_{(aq)}^{+} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{5}(H_{2}O)]_{(aq)}^{2+} + H_{2}O_{(aq)}$	16.60
5 → 6	$[Np0(0H)_{3}(H_{2}0)_{2}]^{2+}_{(aq)} + H_{3}0^{+}_{(aq)} \rightarrow [Np(0H)_{4}(H_{2}0)_{2}]^{3+}_{(aq)} + H_{2}0^{+}_{(aq)}$	337.20
5 → 6	$[NpO(OH)_{5}(H_{2}O)]_{(aq)}^{2+} + H_{3}O_{(aq)}^{+} \rightarrow [Np(OH)_{4}(H_{2}O)_{2}]_{(aq)}^{3+} + H_{2}O_{(aq)}$	851.57

Table S51: Protonation reactions of Np(VII) complexes

Δ	Reaction	ΔG
DoP		(kJ/mol)
0→1	$[NpO_{4}(OH)_{2}]_{(aq)}^{4-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{4}(OH)(H_{2}O)]_{(aq)}^{3-} + H_{2}O_{(aq)}$	-427.37
0 → 1	$[NpO_{4}(OH)_{2}]_{(aq)}^{4-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{3}(OH)_{3}]_{(aq)}^{3-} + H_{2}O_{(aq)}$	-366.78
1→2	$[NpO_{4}(OH)(H_{2}O)]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{4}(H_{2}O)_{2}]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-310.95
1→2	$[NpO_{4}(OH)(H_{2}O)]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-375.76
1→2	$[NpO_{3}(OH)_{3}]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow cis[NpO_{2}(OH)_{4}]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-306.38
1→2	$[NpO_{3}(OH)_{3}]_{(aq)}^{3-} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{2}(OH)_{4}]_{(aq)}^{2-} + H_{2}O_{(aq)}$	-383.24
2→3	$[NpO_{4}(H_{2}O)_{2}]^{2-}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow [NpO_{3}(OH)(H_{2}O)_{2}]^{-}_{(aq)} + H_{2}O^{+}_{(aq)}$	-286.71
2 → 3	$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{2-} + H_{3}O_{(aq)}^{+} \rightarrow cis[NpO_{3}(OH)_{3}(H_{2}O)]_{(aq)}^{-} + H_{2}O_{(aq)}$	-228.59
2→3	$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{2-} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{3}(OH)_{3}(H_{2}O)]_{(aq)}^{-} + H_{2}O_{(aq)}$	-300.16
2→3	$cis[NpO_2(OH)_4]^{2-}_{(aq)} + H_3O^+_{(aq)} \rightarrow [NpO(OH)_5]^{(aq)} + H_2O^+_{(aq)}$	-121.35
2→3	$trans[NpO_{2}(OH)_{4}]^{2-}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow [NpO(OH)_{5}]^{-}_{(aq)} + H_{2}O^{+}_{(aq)}$	-44.48
3→4	$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow cis[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)} + H_{2}O_{(aq)}$	-207.00
3→4	$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow trans[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)} + H_{2}O_{(aq)}$	-268.26
3→4	$cis[NpO_2(OH)_3(H_2O)]_{(aq)}^{-} + H_3O_{(aq)}^{+} \rightarrow [NpO(OH)_4(H_2O)]_{(aq)} + H_2O_{(aq)}$	-188.61
3→4	$trans[NpO_{2}(OH)_{3}(H_{2}O)]_{(aq)}^{-} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{4}(H_{2}O)]_{(aq)} + H_{2}O_{(aq)}$	-117.04
3→4	$[NpO(OH)_5]_{(aq)}^{-} + H_3O_{(aq)}^{+} \rightarrow [Np(OH)_6]_{(aq)} + H_2O_{(aq)}$	-265.18
4→5	$cis[NpO_2(0H)_2(H_2O)_2]_{(aq)} + H_3O_{(aq)}^+ \rightarrow [NpO(0H)_3(H_2O)_2]_{(aq)}^+ + H_2O_{(aq)}$	-94.05
4→5	$trans[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{3}(H_{2}O)_{2}]_{(aq)}^{+} + H_{2}O_{(aq)}$	-52.93
4→5	$[NpO_{2}(OH)_{4}(H_{2}O)]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{5}(H_{2}O)]_{(aq)}^{+} + H_{2}O_{(aq)}$	-52.93
4 → 5	$[Np(OH)_{6}]_{(aq)} + H_{3}O_{(aq)}^{+} \rightarrow [NpO(OH)_{5}(H_{2}O)]_{(aq)}^{+} + H_{2}O_{(aq)}$	-92.39
5 → 6	$[Np0(0H)_{3}(H_{2}O)_{2}]^{+}_{(aq)} + H_{3}O^{+}_{(aq)} \rightarrow [Np(0H)_{4}(H_{2}O)_{2}]^{2+}_{(aq)} + H_{2}O^{+}_{(aq)}$	12.74
5 → 6	$[NpO(OH)_{5}(H_{2}O)]_{(aq)}^{+} + H_{3}O_{(aq)}^{+} \rightarrow [Np(OH)_{4}(H_{2}O)_{2}]_{(aq)}^{2+} + H_{2}O_{(aq)}^{-}$	541.57

Table S52: Protonation reactions of Np(VI) complexes

1.3 Influence of protonation on reduction of Np(VII)

Np(VII)	Reaction ΔG (kJ/mol)						
reduction half		Reducing agent					
reaction	$O_{2(aq)}^{2-}$	$HO_{2(aq)}^{-}$	$O_{2(aq)}^{-*}$	$CO_{3(aq)}^{2}$	$Cl_{(aq)}^{-}$	$NO_{3(aq)}$	
Ι	-311.44	-124.84	-218.86	384.33	381.76	377.75	
II	-384.72	-198.12	-292.13	311.05	308.49	304.47	
III	-412.58	-225.98	-320.00	283.19	280.62	276.61	
IV	-435.06	-248.47	-342.48	260.70	258.14	254.12	
V	-493.29	-306.69	-400.71	202.48	199.91	195.90	
VI	-536.42	-349.82	-451.08	159.35	156.78	152.77	
VII	-543.66	-357.06	-451.08	152.11	149.54	145.53	
VIII	-510.14	-323.54	-417.55	185.63	183.07	179.05	
IX	-600.35	-413.75	-507.76	95.42	92.86	88.84	
Х	-615.08	-428.48	-522.50	80.69	78.12	74.11	
XI	-529.00	-342.40	-436.42	166.77	164.20	160.19	
XII	-743.08	-556.49	-650.50	-47.32	-49.88	-53.90	
XIII	-669.71	-483.11	-577.13	26.06	23.49	19.48	
XIV	-688.76	-502.16	-596.18	7.00	4.44	0.43	

Table S53: Free energy changes associated with the reduction of Np(VII) to corresponding Np(VI) compounds with different reducing agents.

Table S54: Spin densities and oxidation states of N	Np centers in Np(VI) and Np(VII) complete	exes.
---	---	-------

Compound	Np Oxidation state	Np Spin Density
$[NpO_4(OH)_2]^{3-}_{(aq)}$	VII	0.000
$[NpO_4(OH)(H_2O)]_{(aq)}^{2}$	VII	0.000
$[NpO_{3}(OH)_{3}]^{2-}_{(aq)}$	VII	0.000
$[NpO_4(H_2O)_2]_{(aq)}^{-}$	VII	0.000
$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{-}$	VII	0.000
$cis[NpO_2(OH)_4]_{(aq)}$	VII	0.000
$trans[NpO_2(OH)_4]_{(aq)}$	VII	0.000
$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)}$	VII	0.000
$cis[NpO_2(OH)_3(H_2O)]_{(aq)}$	VII	0.000
$trans[NpO_2(OH)_3(H_2O)]_{(aq)}$	VII	0.000
$[NpO(OH)_{5}]_{(aq)} + H_{3}O_{(aq)}^{+}$	VII	0.000
$cis[NpO_{2}(OH)_{2}(H_{2}O)_{2}]^{+}_{(aq)}$	VII	0.000
$trans[NpO_{2}(OH)_{2}(H_{2}O)_{2}]^{+}_{(aq)}$	VII	0.000
$[NpO_{2}(OH)_{4}(H_{2}O)]^{+}_{(aq)}$	VII	0.000
$[Np(OH)_6]^+_{(aq)}$	VII	0.000
$[Np0(OH)_{3}(H_{2}O)_{2}]^{2+}_{(aq)}$	VII	0.000
$[NpO(OH)_5(H_2O)]^{2+}_{(aq)}$	VII	0.000

$[Np(OH)_4(H_2O)_2]^{3+}_{(aq)}$	VII	0.000
$[NpO_4(OH)_2]^{4-}_{(aq)}$	VI	1.145
$[NpO_4(OH)(H_2O)]^{3-}_{(aq)}$	VI	1.189
$[NpO_{3}(OH)_{3}]^{3-}_{(aq)}$	VI	1.132
$[NpO_4(H_2O)_2]_{(aq)}^{2-}$	VI	1.215
$[NpO_{3}(OH)_{2}(H_{2}O)]_{(aq)}^{2}$	VI	1.167
$cis[NpO_2(OH)_4]^{2-}_{(aq)}$	VI	1.121
$trans[NpO_2(OH)_4]_{(aq)}^{2}$	VI	1.198
$[NpO_{3}(OH)(H_{2}O)_{2}]_{(aq)}^{-}$	VI	1.154
$cis[NpO_{2}(OH)_{3}(H_{2}O)]_{(aq)}$	VI	1.178
$trans[NpO_2(OH)_3(H_2O)]_{(aq)}$	VI	1.139
$[NpO(OH)_5]_{(aq)}$	VI	1.178
$cis[NpO_{2}(OH)_{2}(H_{2}O)_{2}]_{(aq)}$	VI	1.139
$trans[NpO_2(OH)_2(H_2O)_2]_{(aq)}$	VI	1.125
$[NpO_2(OH)_4(H_2O)]_{(aq)}$	VI	1.192
$[Np(OH)_6]_{(aq)}$	VI	1.147
$[NpO(OH)_3(H_2O)_2]^+_{(aq)}$	VI	1.203
$[NpO(OH)_{5}(H_{2}O)]^{+}_{(aq)}$	VI	1.134
$[Np(OH)_4(H_2O)_2]^+_{(aq)}$	VI	1.148

1.4 Prediction of Raman spectra

Figure S2: Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 1 and 2. Here DoP stands for Degree of Protonation. The color of each line

corresponds to the protonation path.

Figure S3: Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 3 and 4. Here DoP stands for Degree of Protonation. The color of each line corresponds to the protonation path.

Figure S4: Predicted Raman spectra of Np(VII) and corresponding Np(VI) compounds in protonation path 5 and 6. Here DoP stands for Degree of Protonation. The color of each line corresponds to the protonation path.

1.5 Benchmarking TD-DFT calculations

Figure S5: Simulated spectra of $[NpO_4(OH)_2]^{3-}_{(aq)}$ with TD-DFT using different functionals.

1.6 Choice of the functional for DFT calculations

In this study, the B3LYP functional was employed for the computational analysis of actinide systems, with a specific focus on Np(V-VII) compounds. The choice of B3LYP is grounded in its extensive and successful application within the computational chemistry community, particularly for actinide elements. B3LYP has demonstrated consistent accuracy in predicting geometries, electronic structures, bonding characteristics, vibrational spectroscopy, and excited state properties, making it a reliable choice for our investigations.

Previous work within our research group has shown that the B3LYP functional provides excellent agreement with experimental data, particularly when predicting the geometry and Raman features of neptunium compounds across various oxidation states (V-VII). For instance, our studies have confirmed that B3LYP closely matches experimental values, as evidenced by the accurate reproduction of vibrational frequencies and bond distances in these complex systems.¹⁻⁵

The broader applicability of B3LYP within actinide chemistry is also supported by its widespread use in the field. Kovács *et al.* have conducted a comprehensive review of computational methods in actinide chemistry, highlighting that B3LYP is particularly effective for calculating An=O bond distances, vibrational features, dissociation energies, ionization energies, and electronic spectra.⁶ Furthermore, numerous studies have successfully utilized B3LYP in

analyzing reaction mechanisms^{7, 8} and vibrational spectroscopy^{9, 10} of actinide complexes, further validating its robustness.

In the context of TDDFT calculations, which are essential for exploring excited-state properties, Tecmer *et al.* have evaluated the performance of various functionals and concluded that B3LYP is suitable for (semi)quantitative or qualitative analyses.¹¹ While CAM-B3LYP has been shown to yield optimal results for predicting the UV-Vis spectra of $UO2^{2+}$,¹¹ our benchmarking study revealed that B3LYP provided the best agreement with experimental observations when simulating the spectra of [NpO4(OH)2]³⁻. Specifically, B3LYP most accurately reproduced the wavelength corresponding to peak maxima, the separation between spectral features, and the overall shape of the spectrum (Figures S5 and S6). This outcome strongly supports our selection of B3LYP for TDDFT calculations in this study. The reliability of B3LYP in predicting electric and magnetic properties of actinide systems is further verified by previous research by Su *et al.*,¹² Gendron *et al.*,¹³ Heaven *et al.*,¹⁴ and Hu *et al.*,¹⁵ who have demonstrated its effectiveness across a range of actinide compounds. These findings collectively affirm the robustness and versatility of B3LYP as a functional in the computational study of actinide chemistry.

2. Experimental evidence of Np(VII) protonation

2.1 Titration studies of Np(VII) solutions

Figure S6: Stacked UV-Vis spectra at each pH value of the titrations. Here 410 nm and 620 nm correspond to the typical absorption bands of $[NpO_4(OH)_2]^{3-}_{(aq)}$.

Figure S7: Solution Raman spectra of pH 12.83 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S8: Solution Raman spectra of pH 12.37 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S9: Solution Raman spectra of pH 12.24 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S10: Solution Raman spectra of pH 12.06 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S11: Solution Raman spectra of pH 11.86 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S12: Solution Raman spectra of pH 11.65 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S13: Solution Raman spectra of pH 11.05 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S14: Solution Raman spectra of pH 9.73 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S15: Solution Raman spectra of pH 9.18 solution with fitting parameters in the spectral window of 900-650 cm^{-1} .

Figure S16: Solution Raman spectra of pH 6.50 solution with fitting parameters in the spectral window of 900-650 cm⁻¹.

Figure S17: Optical spectroscopy of the solution formed by dissolving the precipitate from pH 6.50 solution in 1M LiOH. Here a), b), and c) are UV-Vis, Vis and NIR spectra respectively.

2.2 Protonation of Np(VII) Solids by Acid Vapor Diffusion

Figure S18: Overlay of solid-state Raman spectra collected on a single sample of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) in the spectral window 1400-400 cm-1. Spectra were collected periodically over the course of 21 hrs while the sample was continuously exposed to acidic vapor.

Figure S19: Solid-state Raman spectra with fitting parameters and statistics of neat

Figure S20: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1 hour of exposure to acidic vapor.

Figure S21: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1.35 hour of exposure to acidic vapor.

Figure S22: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 1.6 hour of exposure to acidic vapor.

Figure S23: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 2.0 hour of exposure to acidic vapor.

Figure S24: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 4 hours of exposure to acidic vapor.

Figure S25: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 8 hours of exposure to acidic vapor.

Figure S26: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 16 hours of exposure to acidic vapor.

Figure S27: Solid-state Raman spectra with fitting parameters and statistics of $[(Co(NH_3)_6)(NpO_4(OH)_2)] \cdot (H_2O)_n$ (n = 2-4) after 21 hours of exposure to acidic vapor.

3. References

(1) Rajapaksha, H.; Benthin, G. C.; Markun, E. L.; Mason, S. E.; Forbes, T. Z. Synthesis, characterization, and density functional theory investigation of $(CH_6N_3)_2[NpO_2Cl_3]$ and $Rb[NpO_2Cl_2(H_2O)]$ chain structures. *Dalton Transactions* **2024**, 10.1039/D3DT03630H. DOI: 10.1039/D3DT03630H.

(2) Augustine, L. J.; Pyrch, M. M. F.; Kravchuk, D. V.; Williams, J. M.; Mason, S. E.; Forbes, T. Z. Density Functional Theory Guided Investigation of Ligand-Induced Neptunyl-Neptunyl Interactions. *European Journal of Inorganic Chemistry* **2023**, *26* (14). DOI: <u>https://doi.org/10.1002/ejic.202200693</u> (accessed 2023/05/27).

(3) Kravchuk, D. V.; Augustine, L. J.; Rajapaksha, H.; Benthin, G. C.; Batista, E. R.; Yang, P.; Forbes, T. Z. Insights into the Mechanism of Neptunium Oxidation to the Heptavalent State. *Chemistry* **2024**, *30* (23), e202304049. DOI: 10.1002/chem.202304049 From NLM PubMednot-MEDLINE.

(4) Bjorklund, J. L.; Pyrch, M. M.; Basile, M. C.; Mason, S. E.; Forbes, T. Z. Actinyl-cation interactions: experimental and theoretical assessment of $[Np(VI)O_2Cl_4]^{2-}$ and $[U(VI)O_2Cl_4]^{2-}$ systems. *Dalton Transactions* **2019**, *48* (24), 8861-8871, 10.1039/C9DT01753D. DOI: 10.1039/C9DT01753D.

(5) Pyrch, M. M.; Bjorklund, J. L.; Williams, J. M.; Parr Iv, D. L.; Mason, S. E.; Leddy, J.; Forbes, T. Z. Impacts of hydrogen bonding interactions with Np(V/VI)O₂Cl₄ complexes: vibrational spectroscopy, redox behavior, and computational analysis. *Dalton Transactions* **2020**, *49* (20), 6854-6866, 10.1039/D0DT00848F. DOI: 10.1039/D0DT00848F. (6) Kovács, A.; Konings, R. J. M.; Gibson, J. K.; Infante, I.; Gagliardi, L. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides. *Chemical Reviews* **2015**, *115* (4), 1725-1759. DOI: 10.1021/cr500426s.

(7) de Jong, W. A.; Aprà, E.; Windus, T. L.; Nichols, J. A.; Harrison, R. J.; Gutowski, K. E.; Dixon, D. A. Complexation of the Carbonate, Nitrate, and Acetate Anions with the Uranyl Dication: Density Functional Studies with Relativistic Effective Core Potentials. *The Journal of Physical Chemistry A* **2005**, *109* (50), 11568-11577. DOI: 10.1021/jp0541462.

(8) Li, X.-B.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Ning, S.-Y.; Wei, Y.-Z.; Chai, Z.-F.; Shi, W.-Q. Theoretical Study on the Reduction Mechanism of Np(VI) by Hydrazine Derivatives. *The Journal of Physical Chemistry A* 2020, *124* (19), 3720-3729. DOI: 10.1021/acs.jpca.0c01504.
(9) Hickam, S.; Ray, D.; Szymanowski, J. E. S.; Li, R.-Y.; Dembowski, M.; Smith, P.; Gagliardi, L.; Burns, P. C. Neptunyl Peroxide Chemistry: Synthesis and Spectroscopic Characterization of a Neptunyl Triperoxide Compound, Ca₂[NpO₂(O₂)₃]·9H₂O. *Inorganic Chemistry* 2019, *58* (18), 12264-12271. DOI: 10.1021/acs.inorgchem.9b01712.

(10) Yin, Y.-P.; Dong, C.-Z.; Ding, X.-B. Structural and spectral characteristics of neptunyl nitrates $NpO_2(NO_3)_n^q$ (n=1–3, q=+1, 0, -1) and the hydrated complexes $NpO_2(NO_3)_2(H_2O)_m$ (m=1–4). *Chemical Physics Letters* **2015**, *635*, 134-138. DOI: https://doi.org/10.1016/j.cplett.2015.06.048.

(11) Tecmer, P.; Gomes, A. S. P.; Ekström, U.; Visscher, L. Electronic spectroscopy of UO_2^{2+} , NUO⁺ and NUN: an evaluation of time-dependent density functional theory for actinides. *Physical Chemistry Chemical Physics* **2011**, *13* (13), 6249-6259, 10.1039/C0CP02534H. DOI: 10.1039/C0CP02534H.

(12) Su, J.; Batista, E. R.; Boland, K. S.; Bone, S. E.; Bradley, J. A.; Cary, S. K.; Clark, D. L.; Conradson, S. D.; Ditter, A. S.; Kaltsoyannis, N.; et al. Energy-Degeneracy-Driven Covalency in Actinide Bonding. *Journal of the American Chemical Society* **2018**, *140* (51), 17977-17984. DOI: 10.1021/jacs.8b09436.

(13) Gendron, F.; Páez-Hernández, D.; Notter, F.-P.; Pritchard, B.; Bolvin, H.; Autschbach, J. Magnetic Properties and Electronic Structure of Neptunyl(VI) Complexes: Wavefunctions, Orbitals, and Crystal-Field Models. *Chemistry – A European Journal* **2014**, *20* (26), 7994-8011. DOI: <u>https://doi.org/10.1002/chem.201305039</u>.

(14) Heaven, M. C.; Barker, B. J.; Antonov, I. O. Spectroscopy and Structure of the Simplest Actinide Bonds. *The Journal of Physical Chemistry A* **2014**, *118* (46), 10867-10881. DOI: 10.1021/jp507283n.

(15) Hu, H.-S.; Wei, F.; Wang, X.; Andrews, L.; Li, J. Actinide–Silicon Multiradical Bonding: Infrared Spectra and Electronic Structures of the Si(μ -X)AnF₃ (An = Th, U; X = H, F) Molecules. *Journal of the American Chemical Society* **2014**, *136* (4), 1427-1437. DOI: 10.1021/ja409527u.