Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

Tailoring C–H amination activity via modification of the triazole-derived carbene ligand

Luke A. Hudson, Wowa Stroek, and Martin Albrecht*

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)

Email: martin.albrecht@unibe.ch

Table of Contents

1.	Synthesis of ligand precursors L2 and L3	S2
2.	Analytical Data for Complexes 2 and 3	511
3.	Catalytic DetailsS	516
4.	Crystallographic DetailsS	527
5.	ReferencesS	529

1. Synthesis of ligand precursors L2 and L3

Synthesis of 2-(1-(2,6-diisopropylphenyl)-1H-1,2,3-triazol-4-yl)phenol

2-((trimethylsilyl)ethynyl)phenol (2.34 g, 12.30 mmol, 1.0 eq.) and 2-azido-1,3diisopropylbenzene (2.50 g, 12.30 mmol, 1.0 eq.) were dissolved in THF (20 mL) and Bu₄NF 1M as a THF solution (13.53 mL, 13.53 mmol, 1.1 eq.) was added dropwise. After stirring for 2 h, CuSO₄(H₂O)₅ (614 mg, 2.46 mmol, 0.2 eq.) and sodium ascorbate (2.44 g, 12.30 mmol, 1.0 eq.) were added as a H₂O solution (20 mL). The resulting mixture was then stirred at 70 °C for 40 h. Then the reaction mixture was concentrated *in vacuo* to yield a brown solid which was washed with H₂O (50 mL) and pentane (50 mL). The brown solid was redissolved in CH₂Cl₂ and washed with an aqueous NH₄OH solution (10%, 5 x 25 mL), H₂O (25 mL) and brine (25 mL). The resulting organic residue was dried over MgSO₄, filtered, and concentrated under reduced pressure to yield a pale brown powder (2.54 g, 64%)

¹**H NMR** (300 MHz, CD_2Cl_2) δ 10.87 (s, 1H, OH), 8.03 (s, 1H, H_{trz}), 7.62 – 7.53 (m, 2 x H, H_{Ph}, H_{dipp}), 7.40 – 7.34 (m, 2 x H, H_{Ar}, H_{dipp}), 7.29 (t, J = 1.6 Hz, 1H, H_{Ar}), 7.11 – 7.05 (m, 1H, H_{Ar}), 6.96 (t, J = 1.2 Hz, 1H, H_{Ar}), 2.29 (heptet, J = 7.0 Hz, 2H, H_i), 1.17 (d, J = 6.9 Hz, 12H, H_iPrCH₃). ¹³C{¹H} **NMR** (75 MHz, CD_2Cl_2) δ 156.4 (C_{Ar}–OH), 147.8 (C_{Ar}–trz), 146.5 (2C, C_{dipp}–i^Pr), 133.2 (C_{dipp}–trz), 131.6 (C_{dipp}–H), 130.3, 126.6 (2 x C, C_{Ar}–H), 124.4 (2C, C_{dipp}–H), 122.6 (C_{trz}–H), 120.0 (C_{Ar}–H), 118.0 (C_{Ar}–H), 114.3 (C_{trz}), 28.9 (2C, C_iPr–(CH₃)₂, 24.5, 24.1 (2 x C, C_iPr–CH₃). **HR-MS** Calc. for C₂₀H₂₄ON₃ [M + H], 322.1914. Found 322.1922

Figure S1: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 2-(1-(2,6-diisopropylphenyl)-1H-1,2,3-triazol-4-yl)phenol.

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 75 MHz) of 2-(1-(2,6-diisopropylphenyl)-1H-1,2,3-triazol-4-yl)phenol.

Synthesis of L2

2-(1-(2,6-diisopropylphenyl)-1H-1,2,3-triazol-4-yl)phenol (1.00g, 1.24 mmol, 1.0 eq.), was dissolved in a CH_2Cl_2/Et_2O (30 mL, 1:5 v/v) mixture and MeOTf (0.68 mL, 2.48 mmol, 2.0 eq.) was added dropwise. The resulting mixture was stirred at room temperature for 6 h over which time a precipitate was observed to have formed. The precipitate was collected by filtration to give a pale pink powder (1.03 g, 68%).

¹H NMR (300 MHz, CD_2Cl_2) δ 8.36 (s, 1H, H_{trz}), 7.69 (t, J = 7.8 Hz, 1H, H_{dipp}), 7.53 (t, J = 7.8 Hz, 1H, H_{Ar}), 7.48 – 7.34 (m, 4H, 2 x H_{dipp} , 2 x H_{Ar}), 7.10 (t, J = 7.5 Hz, 1H, H_{Ar}), 4.42 (s, 3H, $H_{trz}CH_3$), 2.27 (heptet, J = 6.9 Hz, 2H, H_{iPr}), 1.23 (t, J = 6.2 Hz, 12H, $H_{iPr}CH_3$). ¹³C{¹H} NMR (75 MHz, CD_2Cl_2) δ 156.4 (C_{Ar} –OH), 145.8 (2C, C_{dipp} –iPr), 142.8 (C_{Ar} –trz), 134.9 (C_{Ar} –H), 133.5 (C_{dipp} –H), 131.7 (C_{trz} –H), 131.0 (C_{dipp} –trz), 130.8 (C_{Ar} –H), 125.3 (2C, C_{dipp} –H) ,120.8 (C_{Ar} –H), 118.2 (C_{Ar} –H), 108.3 (C_{trz}), 40.3 (C_{trz} –CH₃), 29.3 (2C, C_{iPr} –(CH₃)₂), 24.4, 23.9 (2 x C, $C_{iPr}CH_3$). ¹⁹F NMR (282 MHz, CD_2Cl_2) δ -79.03. HR-MS Calc. for $C_{21}H_{26}ON_3$ [M – OTf⁻], 336.2070. Found 336.2065. Elemental Analysis Calc. for $C_{25}H_{34}F_3N_3O_4S$ (485.52 g mol⁻¹): C 54.42, H 5.40, N 8.65. Found C 54.30, H 5.32, N 8.65.

Figure S3: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of L2.

Synthesis of 2-(1-((3s,5s,7s)-adamantan-1-yl)-1H-1,2,3-triazol-4-yl)phenol

2-((trimethylsilyl)ethynyl)phenol (1.61 g, 8.46 mmol, 1.0 eq.) and 1-azidoadamantane (1.50 g, 8.46 mmol, 1.0 eq.) were dissolved in THF (10 mL) and Bu₄NF 1M as a THF solution (9.31 mL, 9.31 mmol, 1.1 eq.) was added dropwise. After stirring for 2h, CuSO₄(H₂O)₅ (423 mg, 1.69 mmol, 0.2 eq.) and sodium ascorbate (1.68 g, 8.46 mmol, 1.0 eq.) were added as a H₂O solution (20 mL). The resulting mixture was stirred at 70°C for 40 h. The reaction mixture was then concentrated *in vacuo*, extracted with CH₂Cl₂ (3 x 30 mL) and then washed with NH₄OH solution (10%, 5 x 30 mL) and brine (30 mL). The resulting organic residue was dried over Na₂SO₄, filtered and concentrated under reduced pressure to yield a brown oil. The brown oil was then added dropwise to pentane to yield an off-white solid that was collected by filtration (**454mg, 18%**)

¹**H NMR** (300 MHz, CD_2Cl_2) δ 7.97 (s, 1H, H_{trz}), 7.48 (d, J = 7.7 Hz, 1H, H_{Ar}), 7.22 (t, J = 7.8 Hz, 1H, H_{Ar}), 7.11 – 6.75 (m, 2H, H_{Ar}), 2.47 – 2.13 (m, 9H, H_{Ad}), 2.00 – 1.72 (m, 6H, H_{Ad}).¹³**C**{¹**H**} **NMR** (75 MHz, CD_2Cl_2) δ 156.3 (C_{Ar} –OH), 147.0 (C_{Ar} –trz), 129.7 (C_{Ar} –H), 126.1 (C_{Ar} –H), 119.8 (C_{Ar} –H), 117.7 (C_{Ar} –H), 116.1 (C_{trz}), 114.8 (C_{trz} –Ar), 43.4 (C_{Ad}), 36.2 (C_{Ad}), 30.1 (C_{Ad}). **HR-MS** Calc. for $C_{18}H_{22}N_3O$ [M + H], 296.1757. Found 296.1764.

Figure S5: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of 2-(1-((3s,5s,7s)-adamantan-1-yl)-1H-1,2,3-triazol-4-yl)phenol.

Figure S6: ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K, 75 MHz) of 2-(1-((3s,5s,7s)-adamantan-1-yl)-1H-1,2,3-triazol-4-yl)phenol.

Synthesis of L3

2-(1-((3s,5s,7s)-adamantan-1-yl)-1H-1,2,3-triazol-4-yl)phenol (350 mg, 1.18 mmol, 1.0 eq.) was dissolved in a CH_2Cl_2 :Et₂O (12 mL, 1:5 v/v) mixture and MeOTf (0.26 mL, 2.36mmol, 2.0 eq.) was added dropwise to give a dark brown solution which was stirred for 6 h at room temperature over which time a precipitate formed which was collected by filtration to yield an off-white powder (**407 mg, 75%**)

¹H NMR: (300 MHz, CD₂Cl₂) δ 9.35 (s, 1H, OH), 8.27 (s, 1H, H_{trz}), 7.48 (ddd, J = 8.9, 7.4, 1.7 Hz, 1H, H_{Ar}), 7.36–7.20 (m, 2H, H_{Ar}), 7.03 (ddd, J = 7.5, 7.4, 1.1 Hz, 1H, H_{Ar}), 4.21 (s, 3H, H_{trz}CH₃), 2.41–2.29 (m, 9H, H_{Ad}), 1.92–1.75 (m, 6H, H_{Ad}).¹³C{¹H} NMR: (75 MHz, CD₂Cl₂) δ 156.1 (C_{Ar}–OH), 142.0 (C_{Ar}–trz), 134.5 (C_{Ar}–H), 130.9 (C_{Ar}–H), 125.3 (C_{trz}–H), 120.8 (C_{Ar}–H), 118.2 (C_{Ar}–H), 109.1 (C_{trz}–Ar), 66.9 (C_{Ad}–trz), 42.5 (C_{Ad}CH), 39.5 (C_{trz}CH₃), 35.6 (C_{Ad}CH), 30.0 (C_{Ad}CH₂). ¹⁹F NMR: (282 MHz, CD₂Cl₂) δ -78.99. HR-MS: Calc. for C₁₉H₂₄ON₃ [M – OTf⁻], 310.1914. Found 310.1907. Elemental Analysis: Calc. for C₂₀H₂₄F₃N₃O₄S (459.48 g mol⁻¹): C 52.28, H 5.27, N 9.19. Found C 52.22, H 5.05 N 8.91.

Figure S7: ¹H NMR spectrum (CD₂Cl₂, 298 K, 300 MHz) of compound L3.

S9

Thermal Elemental Analysis Luke Hudson

Name:

Summarize Results						
Date :	7/7/2023	8:32:17				
Method Name :	CHN fluorina	ated Comp	ounds			
Method Filename :	CHN F 2023	07 06.mt	h			
	-					
Sample name	Anal. Date	Inj. Time	(mg)	% Nitrogen	% Carbon	% Hydroger
LAH 068 a	7/6/2023	13:02	1.326	8.96	52.00	5.10
LAH 068 b	7/6/2023	13:10	1.116	8.95	52.18	5.09
LAH 068 c	7/6/2023	13:18	0.552	8.82	52.49	4.97
3 Sample(s) in Group No : 8						
Component Name	Average	Std. Dev.	% Rel. S. D).	theor.	dev.
Nitrogen	8.91	0.078	0.877		9.19	-0.28
Carbon	52.22	0.248	0.475		52.28	-0.06
Hydrogen	5.05	0.072	1.432		5.27	-0.22
Sample name	Anal. Date	Inj. Time	(mg)	Nitrogen	Carbon	Hydrogen
LAH 066 a	7/6/2023	13:27	1.688	8.69	54.25	5.35
LAH 066 b	7/6/2023	13:35	1.274	8.62	54.43	5.25
LAH 066 c	7/6/2023	13:43	1.538	8.64	54.21	5.35
3 Sample(s) in Group No : 9						
Component Name	Average	Std. Dev.	% Rel. S. D).	theor.	dev.
Nitrogen	8.65	0.036	0.417		8.65	0.00
Carbon	54.3	0.117	0.216		54.42	-0.12
Hydrogen	5.32	0.058	1.086		5.40	-0.08

Figure S9: CHN combustion analysis report of ligand precursors L2 (LAH066) and L3 (LAH068).

2. Analytical Data for Complexes 2 and 3

Figure S10: ¹H NMR spectrum (C₆D₆, 298 K, 300 MHz) of complex 2.

Figure S11: ¹H NMR spectrum (THF-*d*₈, 298K, 300 MHz) of complex 3.

Thermal Elemental Analysis

Name:

Summarize Results Date : Method Name : Method Filename :

13.10.2023 09:38:15 CHN_fluorinated_Compounds CHN_F 2023_10_12.mth

Luke Hudson

Sample name	Anal. Date	Inj. Time	(mg)	Nitrogen	Carbon	Hydrogen
LAH141_14	12.10.2023	11:40	1.346	11.18	69.80	6.72
LAH141_10	12.10.2023	11:49	1.356	11.22	70.11	6.85
LAH141_07	12.10.2023	11:57	1.424	11.24	70.00	6.85
3 Sample(s) in Group No : 4						
Component Name	Average	Std. Dev.	% Rel. S. D).	theor.	dev.
Nitrogen	11.21	0.031	0.272		11.60	-0.39
Carbon	69.97	0.157	0.225		69.61	0.36
Hydrogen	6.81	0.075	1.103		6.68	0.13

Figure S12: Elemental analysis of complex 2.

Thermal Elemental Analysis

Name:

Luke Hudson

Summarize Results Date : Method Name : Method Filename :

13.10.2023 09:38:15 CHN_fluorinated_Compounds CHN_F 2023_10_12.mth

Sample name	Anal. Date	Inj. Time	(mg)	% Nitrogen	% Carbon	% Hydrogen
LAH142_12	12.10.2023	11:31	1.808	12.53	67.59	6.77
1 Sample(s) in Group No : 3						
Component Name	Average	Std. Dev.	% Rel. S. D).	theor.	dev.
Nitrogen	12.53				12.44	0.09
Carbon	67.59				67.85	-0.26
Hydrogen	6.77				6.59	0.18

Figure S13: Elemental analysis report of Complex 3.

Magnetic susceptibility measurements for complexes 2 and 3

Magnetic data in solution was measured using Evans Method.^{S1} A known amount of analyte was fully dissolved in a known amount of C_6D_6 with 20% non-deuterated toluene as internal standard and transferrd into an NMR tube. A capillary was filled with the same solution without analyte and inserted into the NMR tube with the analyte solution. A ¹H NMR spectrum was recorded at a known temperature and Δv was determined from the chemical shifts of the internal standard (Hz). The molar susceptibility (χ_m) was calculated according to equation S1, in which v_0 is the frequency of the NMR spectrometer (Hz) and *c* as the concentration of the analyte (M). The diamagnetic molar susceptibility (χ_m^{Dia}) was calculated according to equation S2, in which MW is the molecular weight. The paramagnetic molar susceptibility (χ_m^{Para}) was calculated according to equation S3. Finally, the effective magnetic moment (μ_{eff}) was calculated according to equation S4, in which *T* is the temperature in K during the measurement.

$$\chi_m = \frac{3000 \cdot \Delta v}{4\pi \cdot v_0 \cdot c} \qquad (Equation SI)$$

$$\chi_m^{Dia} = -\frac{MW}{2 \cdot 10^6} \qquad (Equation S2)$$

$$\chi_m^{Para} = \chi_m - \chi_m^{Dia} \qquad (Equation S3)$$

$$\mu_{eff} = 2.82787 \sqrt{\chi_m^{Para} \cdot T} \quad (Equation S4)$$

standard at 299 K, zoomed in on the CH_3 signal of the toluene (internal standard)

internal standard at 299 K, zoomed in on the CH_3 signal of the toluene (internal standard).

3. Catalytic Details

Figure S18: Stacked ¹H NMR spectra of a typical catalytic run with substrate **4** in toluene- d_8 (total volume = 0.55 mL). Catalytic conditions: 1 mol% catalyst loading ([**3**] = 4.48 mM) and [sub]₀ = 447.2 mM. Hydrogen atoms highlighted in blue refer to the signals for the substrate and product. The signal marked by (*) refers to the internal standard 1,3,5-trimethoxybenzene.

4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9

Figure S19: Zoom of the stacked plots (*cf* Fig. S18), highlighting the signals relevant to determine the yield of the reaction (* marks internal standard).

Complex 2 Kinetic Data

Figure S20: Formation of C–H aminated product over time with complex **2** at varying catalyst concentrations ([cat] = 2.24 - 8.94 mM with $[sub]_0 = 447$ mM). Product quantity was determined via ¹H NMR spectroscopy with reference to 1,3,5-trimethoxybenzene as an internal standard. Kinetic order with respect to catalyst was determined by calculating the maximum reaction rate from the reaction profile and plotting this against [catalyst], see Fig S21.

Figure S21: Formation of the C–H aminated product over time corresponding to the fastest reaction rate in the linear regime for complex **2** with varying catalyst concentrations ([cat] = 2.24 - 8.94 mM) with [sub]₀ = 447 mM.

Figure S22: Formation of C–H aminated product over time with complex **2** at varying initial substrate concentrations ($[sub]_0 = 224 - 894$ mM with [cat] = 4.47 mM). Product quantity was determined via ¹H NMR spectroscopy with reference to 1,3,5-trimethoxybenzene as an internal standard. Kinetic order with respect to substrate was determined by calculating the maximum reaction rate from the reaction profile and plotting this against [catalyst], see Fig. S23.

Figure S23: Formation of the C–H aminated product over time corresponding to the fastest reaction rate in the linear regime for complex **2** with varying initial substrate concentrations ($[sub]_0 = 224 - 894 \text{ mM}$) with [cat] = 4.47 mM.

Variable Time Normalisation Analysis

As an alternative method for elucidating reaction orders, variable time normalisation analysis (VTNA)^{S2} was performed on the kinetic data for complex **2** (Fig. S24–S28). The data was cut after the first data point with yield >75% to remove data points beyond the linear regime, in which decreasing substrate concentrations lead to a decrease in reaction rate.

reaction order in catalyst

Figure S24: Selected area of the time conversion plot with product (M) and [Cat.] normalised against time, assuming 0.5 order.

Figure S25: Linear regression of the points from Fig. S24 shows a strong correlation ($R^2 = 0.9546$)

Figure S26: Linear regression of the same data for complex **2** assuming a first-order kinetic relationship, the regression is poor ($R^2 = 0.7676$).

VTNA Method, Complex 2, Substrate Order.

Figure S27: Selected area of the time conversion plot with complex **2** with product (M) and [Sub] normalised against time assuming 1st order in substrate.

Figure S28: Linear regression of the points from Fig. S27 shows a strong correlation ($R^2 = 0.954$)

Complex 3 Kinetic Data

Variable concentrations of complex 3, fixed substrate concentration

Figure S29: Formation of the C–H aminated product over time corresponding to the fastest reaction rate in the linear regime for complex **3** with varying catalyst concentrations ([cat] = 2.24 - 8.94 mM) with [sub]₀ = 447 mM.

Fixed concentration of complex 3, variable substrate concentrations

Figure S30: Formation of the C–H aminated product over time corresponding to the fastest reaction rate in the linear regime for complex **3** with varying initial substrate concentrations ($[sub]_0 = 224 - 894 \text{ mM}$) with [cat] = 4.47 mM.

4. Crystallographic Details

Crystal structure determination. A suitable crystal of **2** or **3** was immersed in parabar oil and mounted at ambient conditions, and then transferred into the stream of nitrogen (173 K). All measurements were made on a *RIGAKU XtaLAB Synergy R*, HyPix-Arc 100 area-detector diffractometer³ using mirror optics monochromated Mo *K*a radiation ($\lambda = 0.71073$ Å). The unit cell constants and an orientation matrix for data collection were obtained from a least-squares refinement of the setting angles of reflections in the range 2.127° < θ < 33.161° (**2**) and 2.324° < θ < 33.701° (**3**), respectively.

Data reduction was performed using the *CrysAlisPro*³ program. The intensities were corrected for Lorentz and polarization effects, and a numerical absorption correction based on gaussian integration over a multifaceted crystal model with additional empirical absorption correction using spherical harmonics using SCALE3 ABSPACK in *CrysAlisPro*³ was applied. Data collection and refinement parameters are given in Table S1.

The structures were solved by intrinsic phasing using *SHELXT*⁴, which revealed the positions of all non-hydrogen atoms of the title compound. All non-hydrogen atoms were refined anisotropically. H-atoms were assigned in geometrically calculated positions and refined using a riding model where each H-atom was assigned a fixed isotropic displacement parameter with a value equal to 1.2Ueq of its parent atom (1.5Ueq for methyl groups).

Refinement of the structure was carried out on F^2 using full-matrix least-squares procedures, which minimized the function $\Sigma w(F_0^2 - F_c^2)^2$. The weighting scheme was based on counting statistics and included a factor to downweight the intense reflections. All calculations were performed using the *SHELXL-2014/7*⁵ program in OLEX2.⁶

In the structure of **2**, twinning was detected where the second component corresponds to a rotation of -179.9825 deg around 1.0000 0.0002 0.0002 (reciprocal space), or 0.9977 0.0002 0.0672 (direct space), with a volume fractional contribution of 0.3354(5). The refinement was performed against the reflection file containing merged reflections of both components on a hkl 5 format.

	2	3		
CCDC Number	2361237	2361238		
Empirical formula	$C_{42}H_{48}FeN_6O_2$	$C_{38}H_{44}FeN_6O_2$		
Formula weight	724.71	672.64		
Temperature (K)	173.01(10)	173.00(10)		
Crystal system	monoclinic	monoclinic		
Space group	P2 ₁ /n	P21/c		
a (Å)	10.1907(2)	12.26012(12)		
b (Å)	24.2458(4)	34.8934(3)		
c (Å)	15.4249(3)	8.50505(8)		
α (°)	90	90		
β (°)	95.8494(19)	100.1610(8)		
γ (°)	90	90		
Volume (ų)	3791.39(13)	3581.37(6)		
Z	4	4		
P _{calc} (g/cm ³)	1.270	1.248		
μ (mm ⁻¹)	0.442	0.462		
F (000)	1536.0	1424.0		
Crystal size (mm ³)	0.156 × 0.096 × 0.087	0.157 × 0.151 × 0.116		
Radiation	Μο Κα (λ = 0.71073)	Μο Κα (λ = 0.71073)		
2θ for data collection	4.282 to 61.054	4.67 to 49.24		
Index ranges	$-14 \le h \le 14, -34 \le k \le 34, -21$ $\le \le 21$	-14 ≤ h ≤ 14, -40 ≤ k ≤ 40, -9 ≤ l ≤ 9		
Reflections collected	21589	152558		
Independent reflections	21589 [R _{int} = ?, R _{sigma} = 0.0405]	6014 [R _{int} = 0.0240, R _{sigma} = 0.0068]		
Data/restraints/parameters	21589/0/471	6014/0/426		
Goodness-of-fit on F ²	1.028	1.035		
Final R indexes [I ≥2σ(I)]	R ₁ = 0.0415, wR ₂ = 0.0936	R ₁ = 0.0254, wR ₂ = 0.0655		
Final R indexes [all data]	R ₁ = 0.0655, wR ₂ = 0.0991	R ₁ = 0.0263, wR ₂ = 0.0660		
Largest diff. peak/hole (e Å ³)	0.34/-0.30	0.24/-0.27		

Table S1. Crystallographic details for complexes 2 and 3

5. References

- S1 D. F. Evans, J. Chem. Soc., 1959, 2003–2005.
- S2 J. Burés, Angew. Chem. Int. Ed., 2016, 55, 16084–16087.
- S3 Oxford Diffraction (2018). CrysAlisPro (Version 1.171.40.37a). Oxford Diffraction Ltd., Yarnton, Oxfordshire, UK.
- S4 G. M. Sheldrick, *Acta Cryst C*, 2015, **A71**, 3–8.
- S5 G. M. Sheldrick, *Acta Cryst C*, 2015, **C71**, 3–8.
- S6 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, *J Appl Cryst*, 2009, **42**, 339–341.