Spin and Dielectric Transitions Promoted by Dimerization of Anionic Radical Stack and Volume-conserving Motion of Cations in an Ion-pair Compound

Zi-Heng Feng,^a Qin-Yu Zhu,^a Yin Qian,^{*a} Xu-Sheng Gao,^{*a} Xiao-Ming Ren^{*a,b} ^aState Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China

^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China

Email: <u>yinqian@njtech.edu.cn</u> (Y.Q.) <u>gaoxs@njtech.edu.cn</u> (X.S.G.)

xmren@njtech.edu.cn (X.M.R.)

Contents

Experimental section

Reagents and materials

Preparation of compounds

Physical measurements

X-ray Crystallography

Table S1. Crystallographic data and refinement parameters of 1 at 298 and 368 K.

Table S2. Table S2 Selected bond lengths and angles in anion and cation of **1** at 298 and 368 K.

Table S3 H-bonding in LTP and HTP output by Platon program.

Fig. S1: TG plot of **1** in 298–1073 K, and **1** is thermally stable up to ca.541 K, showing extra thermostability.

Fig. S2: DSC plots of 1 in 280–423 K in two sequential heating-cooling cycles.

Fig. S3. Illustration of (a) planar [Ni(mnt)₂]⁻anion and (b) [DPIm]⁺ cation with two different configurations of alkyl chains.

Fig. S4. The packing structure along a-axis view of LTP (left) and HTP (right).

Fig. S5. At frequency of 1 MHz, the plots of permittivity in heating and cooling run, exhibit the reversible low- and high- dielectric states of **1**.

Fig. S6. Hirshfeld surface mapped with d_{norm} . Neighboring anions associated with close contacts are shown along with distances between the atoms involved for 1 in (a) LTP and (b) HTP.

Fig. S7. The Hirshfeld d_{norm} surfaces and the 2D fingerprint plots of close contacts the thiomorpholine cations in LTP of **1**.

Fig. S8. The Hirshfeld d_{norm} surfaces and the 2D fingerprint plots of the thiomorpholine cations in HTP of **1**.

References

Experimental section

Reagents and materials

All reagents and materials of analytical grade were obtained from commercial sources and used without additional purification. Disodium maleonitriledithiolate (Na₂mnt) was synthesized according to published procedures.¹

Synthesis of [DPIm][Ni(mnt)₂] (1)

A solution containing NiCl₂·6H₂O (0.237 g, 0.01 mol) and Na₂mnt (0.37 g, 0.02 mol) in H₂O was stirred for 2 hours, followed by the addition of [DPIm]Br (0.451 g, 0.02 mol). The resulting red microcrystals were filtered, washed with H₂O, and subsequently dried under vacuum. The red microcrystals were dissolved in methanol, and to this solution, a solution of I2 in methanol was added. After stirring for 2 hours, the resulting black microcrystals were harvested by filtration, washed with methanol, and dried under vacuum. Yield: ~62% (Found: C, 41.36; H, 3.55; N, 17.11%. Calc. for C₁₄H₁₁N₆NiS₄: C, 41.47; H, 3.48; N, 17.07%). Selected Infrared spectrum bands (cm⁻¹): 2207(vs) is attributed to the $v_{C=N}$ of the mnt^{2–} ligands; 2977(s) and 3111(w)corresponding to v_{C-H} in the imidazole rings and both methyl and methylene; 1564(s) is assigned to the skeleton vibration in imidazole rings; 1161(vs) and 1456(s) arise from the $v_{C=S} + v_{C=C}$ and v_{C-C} of the mnt^{2–} ligands.

Chemical and Physical Measurement

Elemental analyses for C, H and N were performed with an Elementar Vario EL III analytical instrument. Infrared spectra (IR) were recorded on a Nicolet iS5 spectrometer with KBr pellets in the spectral range of 400–4000 cm⁻¹. The powder X-ray diffraction (PXRD) patterns were collected using a SHIMADZU XRD-6100 diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å), operated at 40 kV and 40 mA. The 2 θ angle ranges from 5 to 50° with a step of 0.01° at ambient condition. Thermogravimetric analysis (TGA) was performed with an SDT Q600 thermogravimetric analyzer in 20-800 °C under nitrogen atmosphere, the polycrystalline sample was placed in a platinum-pan, the heating rate is 20 °C min⁻¹ and the nitrogen flow rate is 100 mL min⁻¹. Differential scanning calorimetry (DSC) was carried out for **1** on a Pyris 1 power-compensation differential scanning calorimeter with a warming rate of 10 K min⁻¹ during the heating process. Optical graphs were observed with a Leica DMRX polarizing optical microscope equipped with a LINKAM LTS350 cool and hot stage. Magnetic susceptibility data were measured for polycrystalline samples on a Quantum Design MPMS-5 superconducting quantum interference device magnetometer, such a measurement was performed over the temperature range of 1.8-400 K in both cooling and warming modes and in the applied magnetic field of 2000 Oe, and the diamagnetism arising from atomic cores has been removed. Temperature- and frequency-dependent dielectric permittivity and AC impedance measurements were carried out on a Concept 80 system (Novocontrol, Germany) in 273-373 K for 1, respectively. The powdered disc, with a thickness of ca. 1.585 mm as well as a diameter of 7.0 mm, was coated by gold films on the opposite surfaces and sandwiched by platinum electrodes and the AC frequencies span from 100 to 10⁷ Hz. The X-ray single crystal crystallography information files of 1 in LTP and HTP were used as the input file. In Crystal Explorer, the electrostatic potential surface map was calculated using the TONTO application with B3LYP/6-311G $(d,p) \pm 0.03$ a.u. For HTP, the crystal symmetry was reduced to P212121 to remove the symmetry-disordered cations.

X-ray Crystallography

Single crystal X-ray diffraction (SCXRD) data for 1 were collected at 173 K using Graphite monochromated Mo K α ($\lambda = 0.71073$ Å) on a Bruker D8 QUEST Apex III CCD area detector diffractometer. Data reduction and absorption correction were performed with the SAINT² and SADABS³ software packages, respectively. The structures were solved by a direct method using the SHELXL-2018 software package4. The non-hydrogen atoms were anisotropically refined using the full-matrix least-squares method on F². All hydrogen atoms were geometrically fixed and placed in the ideal position.

Chemical formula	C ₁₇ H ₁₇ N ₆ NiS ₄	C ₁₇ H ₁₇ N ₆ NiS ₄
Temperature / K	298	368
CCDC number	2076780	2076781
Formula weight	492.32	492.32
Crystal system	Monoclinic	Orthorhombic
Wavelength/Å	0.71073	0.71073
Space group	$P2_{1}/n$	Pnma
<i>a</i> / Å	7.1823(4)	20.09(7)
b / Å	20.787(14)	7.18(2)
<i>c</i> / Å	15.2194(10)	16.16(5)
lpha / °	90	90
β / °	96.373(3)	90
γ / °	90	90
V (Å ³) / Z	2258.2(2) / 4	2331(13)/4
ρ / g cm ⁻³	1.448	1.403
F(000)	1012	1012
θ Ranges	2.38–27.54	2.38–14.997
Index range	$-9 \le h \le 9,$	$0 \le h \le 14$,
	$-22 \le k \le 26,$	$0 \le k \le 5$,
	$-19 \le l \le 16$	$0 \le l \le 11$
Goodness-of-fit on F^2	0.915	1.086
${}^{a}R_{1}, {}^{b}wR_{2}\left[I{>}2\sigma(I)\right]$	0.0584, 0.1286	0.0889, 0.2217
R ₁ , wR ₂ [all data]	0.1709, 0.1754	0.1341, 0.2692

Table S1: Crystallographic data and refinement parameters of 1 at 298 and 368 K

 $\overline{{}^{a}R_{1} = \sum ||Fo| - |Fc| / \sum |Fo|; } {}^{b}wR_{2} = \{\sum [w(Fo^{2} - Fc^{2})^{2}] / \sum [w(Fo^{2})^{2}] \}^{1/2}$

Bond lengths /Å			
T = 298 K		T = 368 K	
Ni(1)-S(1)	2.1462(13)	Ni(1)-S(1)	2.135(13)
Ni(1)-S(2)	2.1455(13)	Ni(1)-S(2)	2.128(13)
Ni(1)-S(3)	2.1413(13)	Ni(1)-S(3)	2.121(13)
Ni(1)-S(4)	2.1421(12)	Ni(1)-S(4)	2.132(12)
S(1)-C(1)	1.714(5)	S(1)-C(1)	1.66(6)
S(2)-C(2)	1.705(5)	S(2)-C(2)	1.75(7)
S(3)-C(5)	1.700(4)	S(3)-C(5)	1.70(6)
S(4)-C(6)	1.703(4)	S(4)-C(6)	1.71(6)
N(2)-C(4)	1.141(6)	N(2)-C(4)	1.24(5)
C(2)-C(1)	1.370(6)	C(2)-C(1)	1.16(8)
C(2)-C(4)	1.431(7)	C(2)-C(4)	1.33(6)
C(7)-N(3)	1.144(6)	C(7)-N(3)	1.20(5)
C(7)-C(5)	1.428(6)	C(7)-C(5)	1.28(5)
N(4)-C(8)	1.141(6)	N(4)-C(8)	1.21(6)
C(5)-C(6)	1.363(6)	C(5)-C(6)	1.18(6)
C(1)-C(3)	1.429(6)	C(1)-C(3)	1.34(8)
C(8)-C(6)	1.436(6)	C(8)-C(6)	1.32(6)
C(3)-N(1)	1.142(6)	C(3)-N(1)	1.14(6)
N(5)-C(9)	1.322(6)	N(5)-C(9)	1.389(6)
N(5)-C(11)	1.343(6)	N(5)-C(15)	1.40(2)
N(5)-C(15)	1.473(7)	N(5)-C(11)	1.389(6)
N(6)-C(9)	1.288(6)	N(5)-C(10)	1.97(3)
N(6)-C(10)	1.354(6)	C(9)-N(6)	1.414(6)
N(6)-C(12)	1.474(7)	N(6)-C(10)	1.337(6)
C(11)-C(10)	1.329(7)	N(6)-C(12)	1.39(2)
C(12)-C(13)	1.366(8)	C(10)-C(11)	1.389(6)
C(14)-C(13)	1.504(8)	C(12)-C(13)	1.512(16)
C(17)-C(16)	1.406(8)	C(13)-C(14)	1.512(16)
C(15)-C(16)	1.397(13)	C(15)-C(16)	1.508(17)
		C(16)-C(17)	1.509(16)
Bond angles/°			
T = 298 K		T = 368 K	
S(4)-Ni(1)-S(3)	92.3 (5)	S(4)-Ni(1)-S(3)	91.8(5)
S(4)-Ni(1)-S(1)	176.8 (7)	S(4)-Ni(1)-S(1)	179.3(5)
S(3)-Ni(1)-S(1)	88.1 (5)	S(3)-Ni(1)-S(1)	87.5(5)
S(4)-Ni(1)-S(2)	178.2 (5)	S(4)-Ni(1)-S(2)	88.5(5)
S(3)-Ni(1)-S(2)	86.8 (7)	S(4)-Ni(1)-S(1)	179.3(5)
S(1)-Ni(1)-S(2)	92.7 (5)	S(1)-Ni(1)-S(2)	92.3(5)
C(5)-S(3)-Ni(1)	103.4 (16)	C(5)-S(3)-Ni(1)	100(3)
C(1)-S(1)-Ni(1)	103.0 (17)	C(6)-S(4)-Ni(1)	101(3)

Table S2 Selected bond lengths and angles in anion and cation of ${\bf 1}$ at 298 and 368 K

_

C(6)-S(4)-Ni(1)	103.3 (16)	C(2)-S(2)-Ni(1)	96(3)
C(2)-S(2)-Ni(1)	103.2 (17)	C(1)-S(1)-Ni(1)	103(3)
C(1)-C(2)-C(4)	121.4(4)	C(6)-C(5)-C(7)	122(8)
C(1)-C(2)-S(2)	120.7(4)	C(6)-C(5)-S(3)	125(8)
C(4)-C(2)-S(2)	117.9(4)	C(7)-C(5)-S(3)	113(6)
N(3)-C(7)-C(5)	179.0(5)	C(5)-C(6)-S(4)	121(8)
C(6)-C(5)-C(7)	121.2(4)	C(5)-C(6)-C(8)	122(8)
C(6)-C(5)-S(3)	120.5(4)	S(4)-C(6)-C(8)	116(5)
C(7)-C(5)-S(3)	118.2(3)	N(4)-C(8)-C(6)	179(6)
C(2)-C(1)-C(3)	121.2(4)	N(3)-C(7)-C(5)	179(6)
C(2)-C(1)-S(1)	120.3(4)	C(1)-C(2)-C(4)	128(9)
C(3)-C(1)-S(1)	118.5(4)	C(1)-C(2)-S(2)	130(9)
N(2)-C(4)-C(2)	178.9(5)	C(4)-C(2)-S(2)	103(6)
N(4)-C(8)-C(6)	178.3(5)	N(2)-C(4)-C(2)	166(6)
C(5)-C(6)-C(8)	120.1(4)	C(2)-C(1)-C(3)	124(8)
C(5)-C(6)-S(4)	120.5(3)	C(2)-C(1)-S(1)	119(9)
C(8)-C(6)-S(4)	119.5(3)	C(3)-C(1)-S(1)	117(6)
N(1)-C(3)-C(1)	179.3(6)	N(1)-C(3)-C(1)	175(8)
C(9)-N(5)-C(10)	109.7(7)	C(9)-N(5)-C(11)	108.0
C(9)-N(5)-C(12)	124.1(8)	C(9)-N(5)-C(15)	126.1(11)
C(10)-N(5)-C(12)	126.2(8)	C(11)-N(5)-C(15)	125.8(10)
C(9)-N(6)-C(11)	107.9(5)	N(5)-C(9)-N(6)	106.1
C(9)-N(5)-C(15)	125.2(6)	C(10)-N(6)-C(9)	109.5
C(11)-N(5)-C(15)	126.9(6)	C(10)-N(6)-C(12)	128.2(10)
C(10)-C(11)-N(6)	106.5(8)	C(12)-N(6)-C(9)	122.2(11)
N(6)-C(9)-N(5)	107.3(7)	N(6)-C(10)-C(11)	108.4
C(11)-C(10)-N(6)	107.2(8)	C(10)-C(11)-N(5)	108.0
C(13)-C(12)-N(6)	117.0(6)	N(6)-C(12)-C(13)	120(3)
C(14)-C(13)-C(12)	117.4(7)	C(14)-C(13)-C(12)	108(2)
C(16)-C(15)-N(5)	114.8(5)	N(5)-C(15)-C(16)	118(4)
C(15)-C(16)-C(17)	116.6(7)	C(15)-C(16)-C(17)	108(2)

Table S3 H-bonding in LTP and HTP output by Platon program

LTP		HTP
Donor-HAcceptor	C9–H9N2	C11-H11N3
D-H distance	0.93 Å	0.93 Å
HA distance	2.61(4) Å	2.53(5) Å

Fig. S1. TG plot of 1 in 298–1073 K, and 1 is thermally stable up to ca.541 K, showing extra thermostability.

Fig. S2. DSC plots of 1 in 280-423 K in two sequential heating-cooling cycles.

Fig. S3. Illustration of (a) planar $[Ni(mnt)_2]^-$ anion and (b) $[DPIm]^+$ cation with different two configurations of alkyl chains.

Fig. S4. The packing structure along a-axis view of LTP (left) and HTP (right).

Fig. S5. (a) Plots of dielectric permittivity at frequency of 1 MHz in heating and cooling run, which exhibit the reversible low- and high-dielectric states of 1. (b) Frequency dependent dielectric permittivity of 1 at the selected temperatures.

Fig. S6. Hirshfeld surface mapped with d_{norm} . Neighboring anions associated with close contacts are shown along with distances between the atoms involved for 1 in (a) LTP and (b) HTP.

Fig. S7. The Hirshfeld d_{norm} surfaces and the 2D fingerprint plots of close contacts the thiomorpholine cations in LTP of 1.

Fig. S8. The Hirshfeld d_{norm} surfaces and the 2D fingerprint plots of the thiomorpholine cations in HTP of **1**.

References

- 1. A. Davidson, H. R. Holm, Inorg. Synth. 1967, 10, 8-26.
- Bruker. APEX 2, SAINT, XPREP; Bruker AXS Inc.: Madison, Wisconsin, USA, 2007.
- 3. Bruker. SADABS; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.
- 4. G. M. Sheldrick, SHELXS-2014, Program for the Solution and Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014.