Supporting Information

Efficient net transfer-dehydrogenation of glycerol: NNN pincer-Mn and manganese chloride as a catalyst unlocks the effortless production of lactic acid and isopropanol

Akshara Bisarya,^a Sunil Dhole^b and Akshai Kumar^{a,c,d}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India ^bChemDist Group of Companies, Plot No 144A, Sector 7, PCNTDA Bhosari Pune-411026, Maharashtra India.

°Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

^d Jyoti and Bhpat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Email: akshaikumar@iitg.ac.in

Table of Contents		Page
1.	XRD Analysis	S2-S4
2.	Magnetic Moment Studies	S5
3.	HRMS Simulation	S5-S15
4.	GC Analysis	S15-S17
5.	Kinetic Studies	S18
6.	NMR Spectra	S19-44

1. X-ray Analysis

Table S1. Crystal data and refinement parameter of 6a and 6b

Complex	ба	6b	
Empirical formula	$C_{16}H_{25}Cl_4MnN_3$	$C_{13}H_{19}Cl_2MnN_3$	
Formula weight	456.13	343.15	
Temperature/K	296(2)	295.00	
Crystal system	monoclinic	monoclinic	
Space group	$P2_{1}/c$	P2 ₁ /n	
a/Å	9.8115(11)	11.2911(13)	
b/Å	14.4759(15)	12.0182(14)	
c/Å	16.0170(18)	12.2882(15)	
a/°	90	90	
β/°	102.785(3)	104.003(3)	
γ/°	90	90	
Volume/Å ³	2218.5(4)	1617.9(3)	
Ζ	4	4	
$\rho_{calc}g/cm^3$	1.366	1.409	
μ/mm^{-1}	1.080	1.136	
F(000)	940.0	708.0	
Crystal size/mm ³	0.36 imes 0.28 imes 0.23	0.33 imes 0.28 imes 0.21	
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	4.256 to 52.788	4.398 to 54.248	
Index ranges	$-12 \le h \le 12, -18 \le k \le 18, -20 \le 1 \le 20$	$-14 \le h \le 14, -15 \le k \le 15, -15 \le l \le 15$	
Reflections collected	38668	40218	
Independent reflections	$\begin{array}{l} 4520 \; [R_{int}=0.0343, \; R_{sigma}=\\ 0.0211] \end{array}$	3560 [R _{int} = 0.0396, R _{sigma} = 0.0201]	
Data/restraints/parameters	4520/154/264	3560/24/188	
Goodness-of-fit on F ²	1.073	1.114	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0442, wR_2 = 0.0880$	$R_1 = 0.0409, wR_2 = 0.0824$	
Final R indexes [all data]	$R_1 = 0.0589, wR_2 = 0.0978$	$R_1 = 0.0580, wR_2 = 0.0925$	
Largest diff. peak/hole / e Å ⁻ $_3$	0.41/-0.34	0.28/-0.34	

Complex	6a	Complex	6b
Mn–N (Å) (Pyridine)	2.185(2)	Mn–N (Å) (Pyridine)	2.191(2)
Mn–N (imine) (Å)	2.391(2), 2.396(2)	Mn–N (imine) (Å)	2.332(3), 2.368(2)
Mn–Cl (Å)	2.3337(9),	Mn–Cl (Å)	2.3394(8),
	2.3595(8)		2.3464(9)
(Imine)N-Mn-	142.16(8)	(Imine)N-Mn-	141.94(8)
N(Imine) (°)		N(Imine) (°)	
(Imine)N-Mn-	71.48(8), 71.23(7)	(Imine)N-Mn-	71.42(9),
N(pyridine) (°)		N(pyridine) (°)	71.05(8)

Table S2. Selected bond lengths and bond angles around metal (Mn) centre

Table S3. Crystal data and refinement parameter of 6c and 6d

Complex	6с	6d	
Empirical formula	$C_{19}H_{26}Cl_2MnN_3$	$C_{19}H_{15}Cl_2MnN_3$	
Formula weight	422.27	411.18	
Temperature/K	298.00	296.15	
Crystal system	monoclinic	monoclinic	
Space group	$P2_{1}/c$	C2/c	
a/Å	7.7457(18)	7.6526(10)	
b/Å	15.224(4)	17.402(2)	
c/Å	17.898(4)	13.8792(17)	
α/°	90	90	
β/°	100.367(6)	98.775(4)	
γ/°	90	90	
Volume/Å ³	2076.1(8)	1826.7(4)	
Ζ	4	4	
$\rho_{calc}g/cm^3$	1.351	1.495	
μ/mm^{-1}	0.900	1.021	
F(000)	880.0	836.0	
Crystal size/mm ³	$0.32 \times 0.24 \times 0.21$	$0.36 \times 0.28 \times 0.24$	
Radiation	MoKα ($\lambda = 0.71073$)	MoKα ($\lambda = 0.71073$)	
2Θ range for data collection/°	5.346 to 51.274	5.544 to 50.812	
Index ranges	$-9 \le h \le 9, -18 \le k \le 18, -21$	$-9 \le h \le 9, -20 \le k \le 20, -16$	
Index ranges	$\leq l \leq 21$	$\leq l \leq 16$	
Reflections collected	48767	21648	
Independent reflections	3913 [$R_{int} = 0.0300, R_{sigma} = 0.01371$	1691 [$R_{int} = 0.0381$, $R_{sigma} = 0.02121$	
Data/restraints/parameters	3913/15/281	1691/0/115	
$Goodness-of-fit on F^2$	1 061	1 109	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0359 \text{ w}R_2 = 0.0846$	$R_1 = 0.0353 \text{ wR}_2 = 0.0670$	
Final R indexes [all data]	$R_1 = 0.0464$, $wR_2 = 0.0048$	$R_1 = 0.0453$, $wR_2 = 0.0718$	
Largest diff. peak/hole / e Å ⁻	0.29/-0.26	0.35/-0.35	

Complex	6c	Complex	6d
Mn–N (Å) (Pyridine)	2.1991(18)	Mn–N (Å) (Pyridine)	2.194(3)
Mn–N (imine) (Å)	2.3618(18),	Mn–N (imine) (Å)	2.359(2), 2.359(2)
	2.412(2)		
Mn–Cl (Å)	2.3346(9),	Mn–Cl (Å)	2.3324(8),
	2.3400(8)		2.3325(7)
(Imine)N-Mn-	141.85(7)	(Imine)N-Mn-	142.04(10)
N(Imine) (°)		N(Imine) (°)	
(Imine)N-Mn-	71.60(6), 70.26(7)	(Imine)N-Mn-	71.02(5),
N(pyridine) (°)		N(pyridine) (°)	71.02(5)

Table S4. Selected bond lengths and bond angles around metal (Mn) centre

2. Magnetic Moment Studies

Figure S1. Determination of magnetic of ^{R2}NNNMnCl₂ complexes using Evan's method in CD₃OD.

3. HRMS analysis

3.1 HRMS analysis of 6a

Figure S2. HRMS(ESI) analysis of 6a at m/z value (a) 335.0952 (b) 335.0961

Figure S3. HRMS(ESI) analysis of 6a at m/z value (a) 420.1035 (b) 420.1017.

Figure S4. HRMS(ESI) analysis of 6a at m/z value (a) 444.1613 (b) 444.1255.

3.2 HRMS analysis of 6b

Figure S5. HRMS(ESI) analysis of 6b at m/z value (a) 409.1851 (b) 409.1176.

Figure S6. HRMS(ESI) analysis of 6b at m/z value (a) 456.1558 (b) 456.1673.

Figure S7. HRMS(ESI) analysis of **6b** at m/z value (a) 469.1875 (b) 469.1363.

Figure S8. HRMS(ESI) analysis of 6b at m/z value (a) 470.1889 (b) 470.1830.

Figure S9. HRMS(ESI) analysis of 6b at m/z value (a) 528.2246 (b) 528.1651.

3.3 HRMS analysis of 6c

Figure S10. HRMS(ESI) analysis of 6c at m/z value (a) 495.1508 (b) 495.1490.

Figure S11. HRMS(ESI) analysis of **6c** at m/z value (a) 497.1478 (b) 497.0811.

Figure S12. HRMS(ESI) analysis of 6c at m/z value (a) 522.4487 (b) 522.1698.

Figure S13. HRMS(ESI) analysis of 6c at m/z value (a) 552.4487 (b) 552.1233.

Figure S14. HRMS(ESI) analysis of 6d at m/z value (a) 475.3258 (b) 475.1280.

Figure S15. HRMS(ESI) analysis of 6d at m/z value (a) 701.4941 (b) 701.2101.

3.5 HRMS analysis of reaction mixture

Figure S16. HRMS(ESI) analysis of reaction mixture at t =0h at m/z value (a) 475.3260 (b) 475.1515.

Figure S17. HRMS(ESI) analysis of reaction mixture at t =0h at m/z value (a) 593.2429 (b) 593.1336.

Figure S18. HRMS(ESI) analysis of reaction mixture at t =0h at m/z value (a) 701.4939 (b) 701.2332.

Figure S19. HRMS(ESI) analysis of reaction mixture at t = 1h at m/z value (a) 566.8893 (b) 566.2063.

Figure S20. HRMS(ESI) analysis of reaction mixture at t = 1h at m/z value (a) 634.8765 (b) 634.2172.

Figure S21. HRMS(ESI) analysis of reaction mixture at t = 1h at m/z value (a) 701.4939 (b) 701.2332.

4. GC analysis

GC analysis (TCD detection) was performed on an Agilent 7820-GC instrument fitted with Agilent Front SSZ Inlet N₂ HP-PLOT Q column (30 m length x 530 μ m x 40 μ m) using the following method:

Agilent 7820-GC back detector TCD

Oven temperature: 50 °C

Time at starting temp: 0 min

Hold time $= 10 \min$

Inlet temperature: 100 °C

Detector temperature (TCD): 250 °C

Detector temperature (FID): 300 °C

Flow rate (carrier): 5 mL/min (N₂)

Split ratio: 10

Figure S22. Evidence for H₂ evolution in the transfer dehydrogenation of glycerol 7 using acetophenone 8a as acceptor, catalyzed by 6d (0.5 mol%) and NaOH (1 equivalent) at 140 °C via GC analysis. (Entry 1, Table 2)

Figure S23. Evidence for H₂ evolution in the transfer dehydrogenation of glycerol **7** using 4-Bromoacetophenone **8f** as acceptor, catalyzed by **6d** (0.5 mol%) and NaOH (1 equivalent) at 140 °C via GC analysis. (Entry 6, Table 2)

Figure S24. Evidence for H_2 evolution in the transfer dehydrogenation of glycerol 7 using 4acetylpyridine **8j** as acceptor, catalyzed by **6d** (0.5 mol%) and NaOH (1 equivalent) at 140 °C via GC analysis. (Entry 10, Table 2)

Figure S24. Evidence for H_2 evolution in the transfer dehydrogenation of glycerol 7 using 4*tert*-butylacetophenone **81** as acceptor, catalyzed by **6d** (0.5 mol%) and NaOH (1 equivalent) at 140 °C via GC analysis. (Entry 12, Table 2)

5. Kinetic studies

Figure S26. Time profile of formation of LA with concentration of NaOH (Reaction condition: Glycerol (7) (0.460 g, 5.0 mmol), 8 (372 μ L, 5 mmol), NaOH (0.050 g (1.25 mmol), 0.100 (2.5 mmol), 0.150 g (3.75 mmol), 0.200 g (5.0 mmol) and **6d** (0.010 g, 0.025 mmol) at 140 °C for 24 h in closed-vessel condition.

Figure S27. Time profile of formation of LA with concentration of **6d** (Reaction condition: Glycerol (**7**) (0.460 g, 5.0 mmol), **8** (372 μ L, 5 mmol), 100 μ L of water, NaOH (0.200 g (5.0 mmol) and **6d** (0.010 g, 0.025 mmol), (0.007 g, 0.018 mmol), (0.005 g, 0.0125 mmol) and in metal free condition at 140 °C for 24 h in closed-vessel condition.

Figure S28. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), KOH (1 equiv.) at 140 °C in D₂O. (Entry 1, Table 1)

Figure S29. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaO'Bu (1 equiv.) at 140 °C in D₂O. (Entry 2, Table 1)

Figure S30. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), KO^{*t*}Bu (1 equiv.) at 140 °C in D₂O. (Entry3, Table 1)

Figure S31. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 4, Table 1)

Figure S32. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, catalyzed by $MnCl_{2.4}H_{2}O$ (0.5 mol%), NaOEt (1 equiv.) at 140 °C in D₂O. (Entry 8, Table 1)

Figure S33. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, in metal free condition, NaOH (1 equiv.) at 140 °C in D₂O. (Entry 9, Table 1)

Figure S34. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), in base free condition at 140 °C in D₂O. (Entry 10, Table 1)

Figure S35. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (0.75 equiv.) at 140 °C in D₂O. (Entry 11, Table 1)

Figure S36. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (0.5 equiv.) at 140 °C in D₂O. (Entry 12, Table 1)

Figure S37. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (0.25 equiv.) at 140 °C in D₂O. (Entry 13, Table 1)

Figure S38. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.25 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 14, Table 1)

Figure S39. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.125 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 15, Table 1)

Figure S40. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.0625 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 16, Table 1)

Figure S41. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl_{2.4}H₂O (0.5 mol%), NaOH (1 equiv.) at 120 °C in D₂O. (Entry 17, Table 1)

Figure S42. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 160 °C in D₂O. (Entry 18, Table 1)

Figure S43. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, catalyzed by **6a** (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 20, Table 1)

Figure S44. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by **6b** (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 21, Table 1)

Figure S45. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetone (8) as acceptor, catalyzed by **6c** (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 22, Table 1)

Figure S46. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using acetone (**8**) as acceptor, catalyzed by **6d** (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 23, Table 1)

Figure S47. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetophenone (8a) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 1, Table 2)

Figure S48. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using benzaldehyde (8b) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 2, Table 2)

Figure S49. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using 4-methyl acetophenone (**8c**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 3, Table 2)

Figure S50. ¹H NMR spectrum of glycerol (**7**) dehydrogenation to lactate (**9**) using 3-methoxy acetophenone (**8d**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 4, Table 2)

Figure S51. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-chloro acetophenone (8e) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 5, Table 2)

Figure S52. ¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-bromo acetophenone (**8f**) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 6, Table 2)

Figure S53.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using benzophenone (8h) as acceptor, catalyzed by $MnCl_2.4H_2O(0.5 \text{ mol}\%)$, NaOH (1 equiv.) at 140 °C in D₂O. (Entry 8, Table 2)

Figure S54.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 2-acetyl thiophene (8i) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 9, Table 2)

Figure S55.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-acetyl pyridine (**8j**) as acceptor, catalyzed by MnCl₂.4H₂O (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 10, Table 2)

Figure S56.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using cyclopentanone (8k) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 11, Table 2)

Figure S57.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-Fluoro acetophenone (8n) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 14, Table 2)

Figure S58.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-trifluoromethyl acetophenone (80) as acceptor, catalyzed by $MnCl_2.4H_2O$ (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 15, Table 2)

Figure S59.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using acetophenone (8a) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 1, Table 2)

Figure S60.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using benzaldehyde (8b) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 2, Table 2)

Figure S61.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-methyl acetophenone (8c) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 3, Table 2)

Figure S62.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 3-methoxy acetophenone (8d) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 4, Table 2)

Figure S63.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-chloro acetophenone (8e) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 5, Table 2)

Figure S64.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-bromo acetophenone (**8f**) as acceptor, catalyzed by **6d** (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 6, Table 2)

Figure S65.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using benzophenone (8h) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D_2O . (Entry 8, Table 2)

Figure S66.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 2-acetyl thiophene (8i) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 9, Table 2)

Figure S67.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-acetyl pyridine (8j) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 10, Table 2)

Figure S68.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using cyclopentanone (8k) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 11, Table 2)

Figure S69.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-fluoro acetophenone (8n) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 14, Table 2)

Figure S70.¹H NMR spectrum of glycerol (7) dehydrogenation to lactate (9) using 4-trifluoro methyl acetophenone (80) as acceptor, catalyzed by 6d (0.5 mol%), NaOH (1 equiv.) at 140 °C in D₂O. (Entry 15, Table 2)

Figure S71. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), catalyzed by **6d** (0.5 mol%), NaOH (1 equiv.), in the presence of 0.5 mol% of PPh₃ at 140 °C in D₂O. (Scheme 2, equation 2).

Figure S72. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), catalyzed by **6d** (2.5 mol%), NaOH (1 equiv.), in the presence of 0.5 mol% of PPh₃ at 140 °C in D₂O. (Scheme 2, equation 3).

Figure S73. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), catalyzed by **6d** (0.5 mol%), NaOH (1 equiv.), in the presence of 0.5 mol% of CS₂ at 140 °C in D₂O. (Scheme 2, equation 4).

Figure S74. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), catalyzed by **6d** (0.5 mol%), NaOH (1 equiv.), in the presence of 2.5 mol% of CS₂ at 140 °C in D₂O. (Scheme 2, equation 5).

Figure S75. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), catalyzed by 6d (0.5 mol%), NaOH (1 equiv.), in the presence of excess Hg at 140 °C in D₂O. (Scheme 2, equation 6).

Figure S76. ¹H NMR spectra of deuterium labelling experiment of glycerol (**7**) transfer dehydrogenation to lactate (**9**) catalyzed by 0.5 mol% **6d**, 1 equivalent NaOH using acetone as hydrogen acceptor, at 140 °C. (Scheme 2, equation 7).

Figure S77.²H NMR spectra of deuterium labelling experiment of glycerol (**7**) transfer dehydrogenation to lactate (**9**) catalyzed by 0.5 mol% **6d**, 1 equivalent NaOH using acetone as hydrogen acceptor, at 140 °C. (Scheme 2, equation 7).

Figure S78. ¹H NMR spectra of glycerol (7) dehydrogenation to lactate (9), using acetophenone (8a) as acceptor catalyzed by 6d (0.5 mol%), NaOH (1 equiv.), under open vessel condition at 140 °C in D₂O. (Scheme 2, equation 8).

Figure S79. HRMS analysis of reaction mixture obtained from the $MnCl_2.4H_2O$ catalyzed transfer dehydrogenation of glycerol under the optimized conditions at (a) t = 0h and (b) t = 1h.