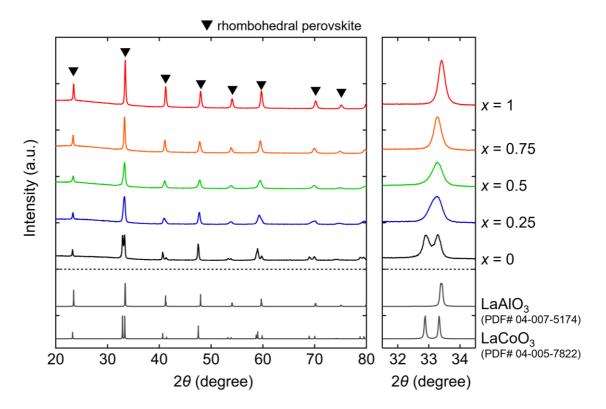
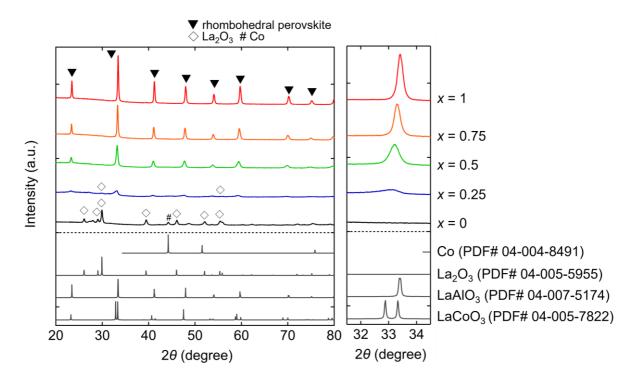
Supporting Information

Enhanced chemical looping CO₂ conversion activity and thermal stability of perovskite LaCo_{1-x}Al_xO₃ by Al

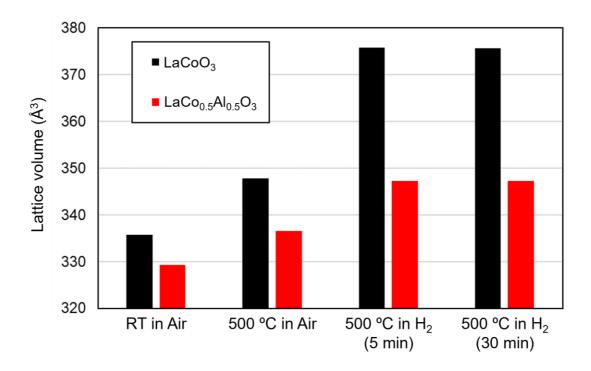
substitution

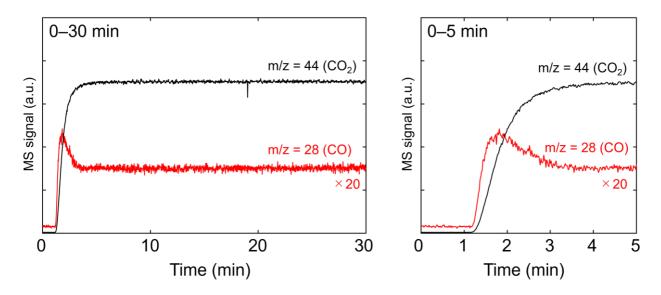

Yoshihiro Goto,^{*} Kiyoshi Yamazaki,^{*} Masashi Kikugawa, and Masakazu Aoki

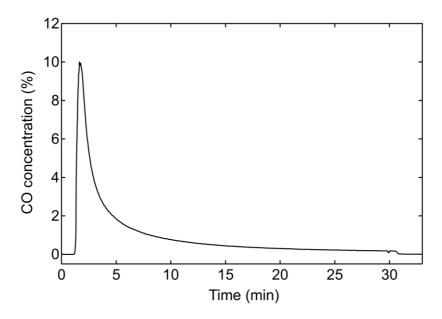
[†]Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan. ^{*}E-mail: yoshihiro-goto@mosk.tytlabs.co.jp (Y. Goto), e0936@mosk.tytlabs.co.jp (K. Yamazaki)

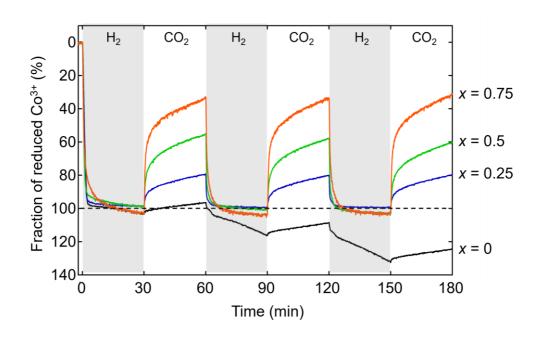

1. Preparation of benchmark reverse water-gas shift reaction chemical looping materials

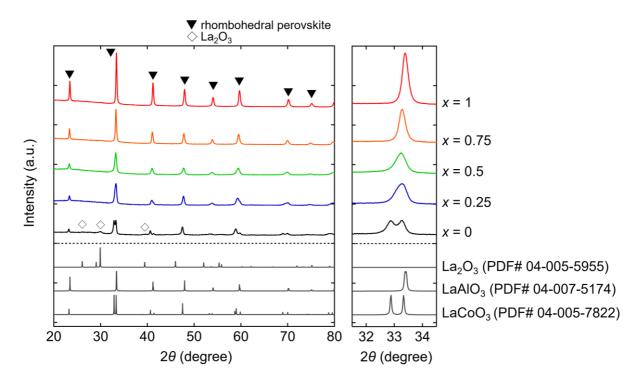
La_{0.6}Ca_{0.4}Fe_{0.4}Mn_{0.6}O₃ was prepared using the polymerized complex method. La(NO₃)₃·6H₂O (99.9%, FUJIFILM Wako Chemicals), Ca(NO₃)₂·4H₂O (99%, Sigma-Aldrich), Fe(NO₃)₃·9H₂O (99.99%, Sigma-Aldrich), Mn(NO₃)₂·6H₂O (99.9%, FUJIFILM Wako Chemicals), citric acid (98%, FUJIFILM Wako Chemicals), and ethylene glycol (99%, FUJIFILM Wako Chemicals) were dissolved in a minimum amount of deionized water in a molar ratio of 0.6:0.4:0.4:0.6:6:6. The prepared solution was stirred on a hotplate at 90 °C for 7 h; the obtained gel was preheated at 450 °C for 2 h followed by calcination twice at 950 °C for 5 h in air. Co/In₂O₃ was prepared using the wet impregnation method with In₂O₃ (99.9%, FUJIFILM Wako Chemicals) and Co(NO₃)₂·6H₂O (99.9%, FUJIFILM Wako Chemicals) in a molar ratio of In:Co = 2:1, followed by calcination at 500 °C for 5 h in air.

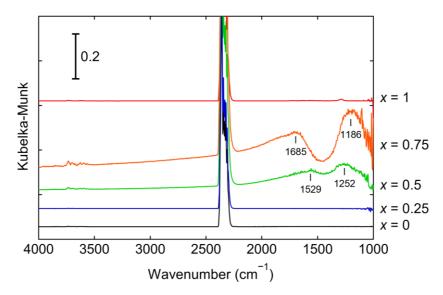

2. Supplementary figures

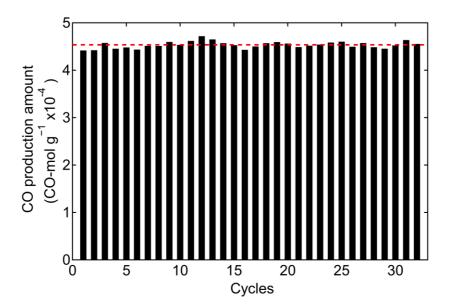

Figure S1. X-ray diffraction (XRD) patterns of $LaCo_{1-x}Al_xO_3$ ($0 \le x \le 1$) quenched at 500 °C under 5% H₂/N₂ flow.

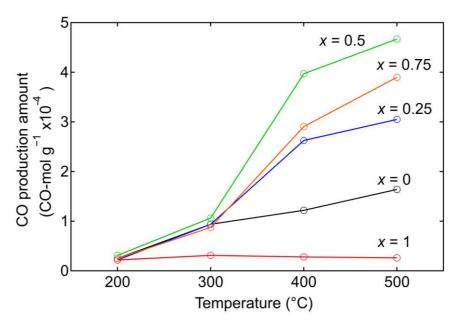

Figure S2. XRD patterns of LaCo_{1-x}Al_xO₃ ($0 \le x \le 1$) quenched at 800 °C under 5% H₂/N₂ flow.


Figure S3. Lattice volumes of LaCoO₃ and LaCo_{0.5}Al_{0.5}O₃ at room temperature in air, 500 °C in air, and 500 °C in 100% H₂ (5 and 30 min) estimated from in situ synchrotron XRD patterns.


Figure S4. Mass spectra of CO (m/z = 28) and CO₂ (m/z = 44) in the LaCo_{0.5}Al_{0.5}O₃ outlet gas (40 mg) after switching the flow from 5% H₂/He (100 mL min⁻¹) to 5% CO₂/He (100 mL min⁻¹) at 500 °C. Pretreatment was conducted for 30 min under 5% H₂/He flow. The CO intensity increased temporarily after CO₂ introduction and then decreased, indicating that CO was produced in the RWGS-CL reaction between LaCo_{0.5}Al_{0.5}O₃ and CO₂, in addition to the fragmentation of unreacted CO₂.


Figure S5. CO concentration in the LaCo_{0.5}Al_{0.5}O₃ outlet gas (2.00 g) after switching the flow from 50% H₂/He (50 mL min⁻¹) to 50% CO₂/He (50 mL min⁻¹) at 500 °C. Pretreatment was conducted for 30 min under 5% H₂/He flow. The CO concentration was determined by Fourier-transform infrared (FT-IR) spectroscopy. The maximum concentration of CO was 10.0%. The CO production amount was 3.31×10^{-4} CO-mol g⁻¹.


Figure S6. Fraction of reduced Co^{3+} ([Co^{2+}] + [Co^{3+}])) in the isothermal reverse water–gas shift reaction chemical looping (RWGS-CL) reaction at 500 °C.


Figure S7. XRD patterns of LaCo_{1-*x*}Al_{*x*}O₃ ($0 \le x \le 1$) after the RWGS-CL reaction at 500 °C.

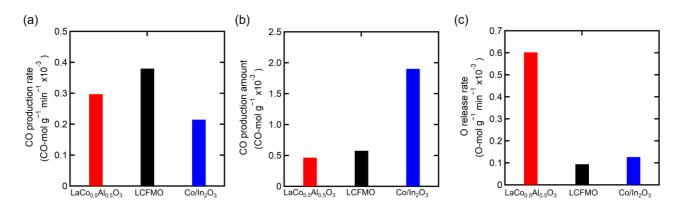

Figure S8. Diffuse reflectance infrared Fourier transform spectra of $LaCo_{1-x}Al_xO_3$ ($0 \le x \le 1$) at 500 °C in 5% CO₂/N₂. The spectra collected after the pretreatment at 500 °C for 30 min under 5% H₂/N₂ flow are used as background. Peaks at approximately 2300 cm⁻¹ are assigned to the CO₂ gas phase.^{S1}

Figure S9. RWGS-CL stability test for LaCo_{0.5}Al_{0.5}O₃. The red dashed line represents the average CO production amount $(4.54 \times 10^{-4} \text{ CO-mol g}^{-1})$.

Figure S10. Temperature dependence of the CO production amount of $LaCo_{1-x}Al_xO_3$ estimated from the weight increase in 5% CO₂/N₂ at 200–500 °C. Pretreatment was carried out for 30 min under 5% H₂/N₂ flow at the same temperature as that under 5% CO₂/N₂ flow (200–500 °C).

Figure S11. Comparison of (a) CO production rate, (b) CO production amount, and (c) O release rate on $LaCo_{0.5}Al_{0.5}O_3$ in this study and prepared various oxides ($La_{0.6}Ca_{0.4}Fe_{0.4}Mn_{0.6}O_3^{S2}$ and $Co/In_2O_3^{S3}$) reported in literatures.

References

- S1 F. Azzolina-Jury and F. Thibault-Starzyk, Top. Catal., 2017, 60, 1709.
- S2 D. Maiti, B. J. Hare, Y. A. Daza, A. E. Ramos, J. N. Kuhn, and V. R. Bhethanabotla, *Energy Environ. Sci.*, 2018, **11**, 648.
- S3 J. Makiura, S. Kakihara, T. Higo, N. Ito, Y. Hirano, and Y. Sekine, *Chem. Commun.*, 2022, 58, 4837.