Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2025

## **Supprting Information**

## Triple-chromic (Photo-, Thermo-, and Mechano-chromism) of Metal Complexes Containing N-Salicylideneaminopyridine Ligands

Haruki Sugiyama<sup>1,2</sup>, Atsuko Arita<sup>1</sup>, Akiko Sekine<sup>1</sup>, and Hidehiro Uekusa<sup>1\*</sup>

- Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1, Ookayama, Meguro, Tokyo 152-8551, Japan. E-mail: uekusa@chem.sci.isct.ac.jp
- 2. Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki, 319-1106, Japan. E-mail: h sugiyama@cross.or.jp

### Table of Contents

#### Figure

| 1.  | Thermal Analysis                 | S1–S3   |
|-----|----------------------------------|---------|
| 2.  | Vapor Exposure Experiment        | S4–S5   |
| 3.  | X-ray Absorption Fine Structure  | S6      |
| 4.  | Photophysical Measurement        | S7      |
| 5.  | Magnetical Measurement           | S8–S9   |
| 6.  | Infrared Spectroscopy            | S10     |
| 7.  | Pictures of Chromic Color Change | S11–S13 |
|     |                                  |         |
| Tal | ble                              |         |
| 1.  | Crystal Structure Details        | S1–S5   |

| 2. | X-ray Absorption Fine Structure | S6–S7 |
|----|---------------------------------|-------|
| 3. | Magnetical Measurement          | S8–S9 |



Figure S1 TG-DTA analysis of Ni1 crystals at a rate of 5 °C/min under a dry nitrogen atmosphere (flow rate = 100 mL/min). TG analysis indicates that the Ni1 crystal does not contain any solvent molecules, despite the presence of a minor void space within its crystal structure.



Figure S2 TG-DTA analysis of **Co1** crystal at a rate of 5 °C/min under a dry nitrogen atmosphere (flow rate = 100 mL/min). TG analysis indicates that the **Co1** crystal does not contain any solvent molecules, despite the presence of a minor void space within its crystal structure.



Figure.S3 TG-DTA analysis of the green amorphous phase. DTA curves were highlighted by different colors as the measurement steps. In the initial step, the temperature increased to the 150 °C (represent by green). The second step shows a temperature decrease to 20 °C (blue). Finally, the third step show a temperature increase to 310 °C (red).



Figure S4 The green amorphous phase of **Co1** returned its color to orange crystalline phase upon exposure to various organic solvent vapor, such as methanol, ethanol, acetone, ethyl acetate, hexene, acetonitrile, diethyl ether, and cyclo-hexane.



Figure S5 PXRD patterns of amorphous phase of **Co1** and emerging crystalline phases following exposure to various organic solvent vapors. The green amorphous phase of **Co1** transform to original crystalline phase upon exposure to the vapors.



Figure S6 (a) Co K-edge X-ray absorption spectra of **Co1** crystal and amorphous. (b) The results of the Fourier transformation of the XAFS spectra.



Figure S7 (a) UV-vis. spectra of **Co1** amorphous before and after UV irradiation. The absorbance at 400-450 nm was slightly increased upon UV light irradiation, and gradually decreased under visible light irradiation (550 nm). (b) UV-vis. spectra of **Co1** amorphous for the temperature change from 20 °C to -196 °C to 20 °C.



Figure S8 Temperature dependence of  $\chi$  for orange crystalline phase (a, b) and green amorphous phase (c, d) at 10000 Oe from 5K to 300K. The sample information and analysis result were sumerized in Table S8.



Figure S9 Temperature dependence of magnetic moment (M) for orange crystalline phase (a, b) and green amorphous phase (c, d) at 10000 Oe from 270K to 400K. The sample information and analysis result were sumerized in Table S9. For the green amorphous, the color changed from green to orange after the SQUID measurement (inserted picutres).



Figure S10 Infrared (IR) spectra for orange crystalline phase and green amorphous phase using a KBr disk method.



Figure S11 Summary of the chromic colour change of **Co1** crystal. The colour tones in the photochromism and thermochromism are modified by mechanochromism.



Figure S12 Thermochromic colour change of Co1 and Ni1 single crystals



Figure S13 Sample color (a) and PXRD (b) change of Ni1 crystals before and after grinding. Although Ni1 crystals transformed to amorphous upon grinding, and recovered to crystalline phase by exposure in methanol vapor, the sample color did not changed through the transformation.

| Identification code                        | Ni1                                                                  |                 | Co1                                                                               |                                |  |
|--------------------------------------------|----------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------|--------------------------------|--|
| Chemical formula                           | C <sub>82</sub> H <sub>104</sub> N <sub>10</sub> Ni O <sub>4</sub> S | 2               | C <sub>82</sub> H <sub>104</sub> Co N <sub>10</sub> O <sub>4</sub> S <sub>2</sub> |                                |  |
| Formula weight                             | 1416.58                                                              |                 | 1416.80                                                                           |                                |  |
| Temp/°C                                    | 20(2)                                                                | -180(2)         | 20(2)                                                                             | -180(2)                        |  |
| wavelength/Å                               | 1.54186                                                              |                 | 0.71075                                                                           | 1.54186                        |  |
| crystal system                             | Monoclinic                                                           |                 | Monoclinic                                                                        |                                |  |
| space group                                | C2/c                                                                 |                 | C2/c                                                                              |                                |  |
| <i>a</i> / Å                               | 39.408(3)                                                            | 39.1141(7)      | 39.4956(16)                                                                       | 39.2182(10)                    |  |
| b / Å                                      | 16.3007(11)                                                          | 16.0970(3)      | 16.3855(8)                                                                        | 16.1188(3)                     |  |
| <i>c</i> / Å                               | 13.0803(8)                                                           | 12.9490(2)      | 13.0852(7)                                                                        | 12.9084(2)                     |  |
| $\beta$ / deg                              | 95.388(3)                                                            | 95.1466(8)      | 95.4017(15)                                                                       | 95.216(2)                      |  |
| Vol / Å <sup>3</sup>                       | 8365.4(9)                                                            | 8120.1(2)       | 8430.5(7)                                                                         | 8126.3(3)                      |  |
| Z/Z'                                       | 4/0.5                                                                |                 | 4/0.5                                                                             |                                |  |
| density (calculated)/ g·cm <sup>-3</sup>   | 1.125                                                                | 1.159           | 1.116                                                                             | 1.158                          |  |
| <i>F</i> (000)                             | 3032                                                                 |                 | 3028                                                                              |                                |  |
| crystal size / mm <sup>3</sup>             | 0.221 x 0.100 x 0.02                                                 | 21              | 0.11 x 0.06 x 0.05                                                                | $0.14 \times 0.14 \times 0.05$ |  |
| $\theta$ range for data collection         | 4.334 to 68.241                                                      | 2.970 to 68.215 | 3.065 to 27.410                                                                   | 5.932 to 152.344               |  |
| index ranges                               | $-47 \le h \le 45$                                                   | -46<=h<=47      | $-48 \le h \le 51$                                                                | $-49 \le h \le 48$             |  |
|                                            | $-19 \le k \le 17$                                                   | -19<=k<=16      | $-21 \le k \le 21$                                                                | $-20 \le k \le 19$             |  |
|                                            | $-15 \le l \le 15$                                                   | -15<=l<=15      | $-16 \le l \le 15$                                                                | $-15 \le l \le 12$             |  |
| reflections collected                      | 38528                                                                | 37109           | 40664                                                                             | 27828                          |  |
| independent reflections                    | 7638                                                                 | 7390            | 9571                                                                              | 8259                           |  |
| R <sub>int</sub>                           | 0.0710                                                               | 0.0696          | 0.0962                                                                            | 0.0266                         |  |
| absorption correction                      |                                                                      | Semi-empirical  | l from equivalents                                                                |                                |  |
| max and min transmission                   | 0.959 and 0.843                                                      | 0.975 and 0.706 | 0.985 and 0.54                                                                    | 0.883 and 0.540                |  |
| refinement method                          |                                                                      | Full-matrix lea | ast-squares on $F^2$                                                              |                                |  |
| data / restraints / params                 | 7638 / 5 / 461                                                       | 7390 / 3 / 459  | 9571 / 0 / 511                                                                    | 8259/0/459                     |  |
| goodness-of-fit on $F^2$                   | 0.950                                                                | 1.077           | 1.025                                                                             | 1.041                          |  |
| final <i>R</i> indices $[I > 2\sigma(I)]$  | $R_1 = 0.0575$                                                       | $R_1 = 0.0629$  | $R_1 = 0.0545$                                                                    | $R_1 = 0.0460$                 |  |
|                                            | $wR_2 = 0.1537$                                                      | $wR_2 = 0.1610$ | $wR_2 = 0.1232$                                                                   | $wR_2 = 0.1155$                |  |
| R indices (all data)                       | $R_1 = 0.0795$                                                       | $R_1 = 0.0789$  | $R_1 = 0.1063$                                                                    | $R_1 = 0.0477$                 |  |
|                                            | $wR_2 = 0.1680$                                                      | $wR_2 = 0.1702$ | $wR_2 = 0.1501$                                                                   | $wR_2 = 0.1166$                |  |
| largest diff peak, hole, e∙Å <sup>-3</sup> | 0.50 and -0.31                                                       | 0.82 and -0.61  | 0.35 and -0.35                                                                    | 1.00 and -0.71                 |  |
| CCDC Number                                | 2045507                                                              | 2045508         | 2045509                                                                           | 2056772                        |  |

Table S1 Details of crystallographic data.

| Ni1 (20 °C)                     |            |                   |            |  |
|---------------------------------|------------|-------------------|------------|--|
| Ni(1)-N(1)                      | 2.053(2) Å | N(1)-Ni(1)-N(5)#1 | 90.14(8)°  |  |
| Ni(1)-N(4)                      | 2.143(2) Å | N(1)-Ni(1)-N(5)   | 90.43(8)°  |  |
| Ni(1)-N(5)                      | 2.116(2) Å | N(1)-Ni(1)-N(4)#1 | 89.67(7)°  |  |
|                                 |            | N(1)-Ni(1)-N(4)   | 89.76(7)°  |  |
| Distortion index <sup>[5]</sup> | 0.016      | N(5)-Ni(1)-N(4)#1 | 92.30(8)°  |  |
| (bond length)                   |            |                   |            |  |
| Quadratic elongation            | 1.001      | N(5)-Ni(1)-N(5)#1 | 88.93(11)° |  |
| #1: -x+1, y, -z+1/2             |            |                   |            |  |

Table S2 Coordination bond length and angles of Ni1 from the X-ray structure analysis at 20  $^{\circ}$ C.

| Table S3 | Coordination | bond length a | and angles | of Ni1 | from the | X-ray | structure | analysis at | t -180 |
|----------|--------------|---------------|------------|--------|----------|-------|-----------|-------------|--------|
| °C       |              |               |            |        |          |       |           |             |        |

| Ni1 (-180 °C)        |            |                   |            |
|----------------------|------------|-------------------|------------|
| Ni(1)-N(1)           | 2.061(2) Å | N(1)-Ni(1)-N(5)#1 | 89.73(8)°  |
| Ni(1)-N(4)           | 2.122(2) Å | N(1)-Ni(1)-N(5)   | 90.86(8)°  |
| Ni(1)-N(5)           | 2.110(2) Å | N(1)-Ni(1)-N(4)#1 | 89.54(8)°  |
|                      |            | N(1)-Ni(1)-N(4)   | 89.85(8)°  |
| Distortion index     | 0.012      | N(5)-Ni(1)-N(4)#1 | 92.28(8)°  |
| (bond length)        |            |                   |            |
| Quadratic elongation | 1.001      | N(5)-Ni(1)-N(5)#1 | 88.70(10)° |
| #1: -x+1, y, -z+1/2  |            |                   |            |

# Table S4 Coordination bond length and angles of ${\bf Co1}$ at 20 $^{\circ}{\rm C}$

| <b>Col</b> (20 °C)   |            |                               |            |  |
|----------------------|------------|-------------------------------|------------|--|
| Co(1)-N(1)           | 2.078(2) Å | N(1)-Co(1)-N(5) <sup>#1</sup> | 90.17(8)°  |  |
| Co(1)-N(5)           | 2.173(2) Å | N(1)-Co(1)-N(5)               | 90.74(7)°  |  |
| Co(1)-N(4)           | 2.197(2) Å | N(1)-Co(1)-N(4) <sup>#1</sup> | 89.46(8)°  |  |
|                      |            | N(1)-Co(1)-N(4)               | 89.60(7)°  |  |
| Distortion index     | 0.022      | N(5)-Co(1)-N(4) <sup>#1</sup> | 92.71(7)°  |  |
| (bond length)        |            |                               |            |  |
| Quadratic elongation | 1.002      | N(5)-Co(1)-N(5)#1             | 88.55(10)° |  |
| #1: -x+1, y, -z+1/2  |            |                               |            |  |

| <b>Co1</b> (-180 °C) |            |                               |           |  |  |
|----------------------|------------|-------------------------------|-----------|--|--|
| Co(1)-N(1)           | 2.079(1) Å | N(1)-Co(1)-N(5) <sup>#1</sup> | 90.21(6)° |  |  |
| Co(1)-N(5)           | 2.154(2) Å | N(1)-Co(1)-N(5)               | 89.81(6)° |  |  |
| Co(1)-N(4)           | 2.174(2) Å | N(1)-Co(1)-N(4)#1             | 89.30(6)° |  |  |
|                      |            | N(1)-Co(1)-N(4)               | 89.66(6)° |  |  |
| Distortion index     | 0.018      | N(5)-Co(1)-N(4)#1             | 92.77(6)° |  |  |
| (bond length)        |            |                               |           |  |  |
| Quadratic elongation | 1.002      | N(5)-Co(1)-N(5)#1             | 88.25(8)° |  |  |
| #1: -x+1, y, -z+1/2  |            |                               |           |  |  |

Table S5 Coordination bond length and angles of **Co1** from the X-ray structure analysis at -180 °C

Table S6 Local structure parameters of N shells around the Co(II) ion in the Co1 amorphous. Parameters of R were estimated by fitting. Parameters with (\*) were fixed.

|            | Ν     | R       | dE     | DW     | MF  |
|------------|-------|---------|--------|--------|-----|
| <2 shell>  | 4.0 * | 2.066 Å | 1 50 * | 0.02 * | 40* |
| Octahedral | 2.0 * | 2.238 Å | 1.37   | 0.06   | 4.0 |

**Table S7** Coordination bond lengths of the **Co1** complex in the crystal and amorphous phases estimated by SXRD and XAFS analysis at room temperature.

| Bond length         | Crystal Phase<br>[SXRD] | Bond length<br>[XAFS] |
|---------------------|-------------------------|-----------------------|
| CoN <sub>SAP1</sub> | 2.197(2) Å              |                       |
| CoN <sub>SAP2</sub> | 2.173(2) Å              | 2.066 Å               |
| CoN <sub>NCS</sub>  | 2.078(2) Å              | 2.238 Å               |

**Table S8** The sample information and analysis result of magnetic magnetic investigation investigation was carried out from 5K-300K

| Name                       | Orange crystal | Green amorphous |
|----------------------------|----------------|-----------------|
| Sample weight (mg)         | 3.04           | 8.58            |
| curie constant             | 1.98           | 1.79            |
| (emu K mol <sup>-1</sup> ) |                |                 |
| μeff                       | 3.97           | 3.78            |
| $2\sqrt{S(S+1)}$ (S=3/2)   | 3.872983346    | 3.87            |

 Table S9 The sample information and analysis result of magnetic magnetic investigation investigation was carried out from 270K-400K

| Name                              | Orange crystal | Green amorphous |
|-----------------------------------|----------------|-----------------|
| Sample weight (mg)                | 6.16           | 6.34            |
| χ(emu mol <sup>-1</sup> ) at 293K | 0.0102         | 0.0104          |