Electronic Supplementary Information

For

Aluminum Complexes of Phenoxy-Azo Ligands

in Catalysis of *rac*-Lactide Polymerisation

Pattarawut Sumrit,^{a,b} Sirawan Kamavichanurat,^{a,b} Wasan Joopor,^{a,b} Worawat Wattanathana,^c Chutikan Nakornkhet,^{a,b} and Pimpa Hormnirun^{*,a,b}

^{*a*}Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Cente of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^bCentre for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

^cDepartment of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

*E-mail: fscipph@ku.ac.th

Fig. S1 ¹H NMR spectrum of 1a in CDCl₃ at 298 K.

Fig. S2 ¹H NMR spectrum of 2a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S3 ¹H NMR spectrum of 3a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S4 ¹H NMR spectrum of 4a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S5 ¹H NMR spectrum of 5a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S6 ¹H NMR spectrum of 6a in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S7 ¹H NMR spectrum of **7a** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S8 ¹H NMR spectrum of 1b in CDCl₃ at 298 K.

Fig. S9 ¹H NMR spectrum of **2b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S10 ¹H NMR spectrum of **3b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S11 ¹H NMR spectrum of **4b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S12 ¹H NMR spectrum of **5b** in CDCl₃ at 298 K.

Fig. S13 ¹H NMR spectrum of 5b in toluene-d₈ at 298 K (* = solvent residue signal).

Fig. S14 ¹H NMR spectrum of 5b in toluene-d₈ at 343 K (* = solvent residue signal).

Fig. S15 VT 1 H NMR spectra of 5b in toluene-d₈.

Fig. S16 ¹H NMR spectrum of **6b** in CDCl₃ at 298 K (* = solvent residue signal).

Fig. S17 ¹H NMR spectrum of **7b** in CDCl₃ at 298 K (* = solvent residue signal).

Crystal and refinement data	Complex 4a
Empirical formula	C ₁₆ H ₁₉ AlN ₂ O
Formula weight	282.31
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	7.3646(6)
b/Å	9.4194(8)
c/Å	11.4053(10)
α/°	77.248(2)
β/°	80.825(2)
γ/°	82.816(2)
Volume/Å ³	758.47(11)
Z	2
$\rho_{calc}g/cm^3$	1.236
µ/mm ⁻¹	1.139
F(000)	300.0
Crystal size/mm ³	$0.15\times0.15\times0.15$
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2Θ range for data collection/°	9.67 to 144.268
Index ranges	$-9 \le h \le 9, -11 \le k \le 11, -14 \le l \le 13$
Reflections collected	11471
Independent reflections	2940 [$R_{int} = 0.0223$, $R_{sigma} = 0.0219$]
Data/restraints/parameters	2940/0/185
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0314, wR_2 = 0.0825$
Final R indexes [all data]	$R_1=0.0316,wR_2=0.0826$
Largest diff. peak/hole / e Å $^{-3}$	0.27/0.27

 Table S1 Crystallographic data and structure refinement details for complex 4a.

Bond lengths (Å)						
Al1-O1	1.7770(9)	C1-C2	1.3919(16)	C10-C11	1.3726(17)	
Al1-N1	2.0012(10)	C1-C6	1.3943(16)	C11-C12	1.4114(17)	
Al1-C7	1.9581(12)	C2-C3	1.3867(18)	C11-C15	1.5071(16)	
Al1-C8	1.9568(13)	C3-C4	1.3945(18)	C12-C13	1.3816(17)	
O1-C14	1.3214(14)	C4-C5	1.3819(17)	C13-C14	1.4138(16)	
N1-N2	1.2852(14)	C5-C6	1.3977(17)	C13-C16	1.5050(16)	
N1-C6	1.4358(14)	C9-C10	1.4182(16)			
N2-C9	1.3762(15)	C9-C14	1.4209(16)			
Bond angles (°)						
01-Al1-N1	93.45(4)	C2-C1-C6	119.75(11)	C9-C10-C11	121.41(11)	
O1-Al1-C7	109.97(5)	C1-C2-C3	120.16(11)	C10-C11-C12	117.50(11)	
O1-Al1-C8	111.69(5)	C2-C3-C4	119.5(2)	C10-C11-C15	122.09(11)	
N1-Al1-C7	112.79(5)	C3-C4-C5	120.54(11)	C12-C11-C15	120.40(11)	
N1-Al1-C8	107.98(5)	C4-C5-C6	119.58(11)	C11-C12-C13	123.51(11)	
C7-Al1-C8	118.22(6)	N1-C6-C1	118.00(10)	C12-C13-C14	118.89(11)	
Al1-01-C14	127.99(7)	N1-C6-C5	121.84(10)	C12-C13-C16	122.17(10)	
Al1-N1-N2	124.71(8)	C1-C6-C5	120.13(10)	C14-C13-C16	118.94(11)	
Al1-N1-C6	122.07(8)	N2-C9-C10	112.94(10)	O1-C14-C9	121.85(10)	
N2-N1-C6	113.02(9)	N2-C9-C14	127.04(10)	O1-C14-C13	119.45(10)	
N1-N2-C9	121.98(10)	C10-C9-C14	119.99(10)	C9-C14-C13	118.69(10)	

 Table S2 Bond lengths (Å) and bond angles (°) for complex 4a.

Fig. S18 Plot of PLA $M_n(\bullet)$ (versus polystyrene standards) and PDI (\circ) as a function of monomer conversion for a *rac*-LA polymerisation using **1b**/PhCH₂OH ([LA]₀/[Al] = 50, toluene, 70 °C).

Fig. S19 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C wth complexes **1a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S20 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **2a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S21 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **4a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S22 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **5a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S23 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **6a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S24 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **7a** (\bullet) ([LA]₀/[Al]/[PhCH₂OH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S25 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complexes **1b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S26. Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex 2b (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S27 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **3b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S28 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **4b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S29 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **5b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S30 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **6b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S31 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex 7b (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S32 Semilogarithmic plots of the *rac*-lactide conversion versus time in toluene at 70 °C with complex **2b**/BnOH as an initiator ([LA]₀ = 0.42 M: **I**, [A1] = 24.99 mM, [LA]₀/[A1] = 17; **II**, [A1] = 20.82 mM, [LA]₀/[A1] = 20; **III**, [A1] = 16.66 mM, [LA]₀/[A1] = 25; **IV**, [A1] = 14.58 mM, [LA]₀/[A1] = 29; **V**, [[A1] = 12.50 mM, [LA]₀/[A1] = 34; **VI**, [A1] = 10.41 mM, [LA]₀/[A1] = 40; **VII**, [A1] = 8.33 mM [LA]₀/[A1] = 50).

Fig. S33 Plot of $\ln k_{app}$ versus $\ln [Al]$ for the polymerisation of *rac*-lactide with complex **2b**/BnOH as an initiator (toluene, 70 °C, $[LA]_0 = 0.42$ M).

Fig. S34 Plot of k_{app} versus [A1] for the polymerisation of *rac*-lactide with complex **2b**/BnOH as an initiator (toluene, 70 °C, [LA]₀ = 0.42 M).

Fig. S35 Semilogarithmic plots of the *rac*-lactide conversion versus time in toluene with complex **4a**/BnOH as an initiator at **I**, 100 °C, $k_{app} = (18.71 \pm 0.43) \times 10^{-5} \text{ s}^{-1}$; **II**, 90°C, $k_{app} = (11.99 \pm 0.13) \times 10^{-5} \text{ s}^{-1}$; **III**, 80°C, $k_{app} = (5.48 \pm 0.06) \times 10^{-5} \text{ s}^{-1}$; **IV**, 70°C, $k_{app} = (2.71 \pm 0.04) \times 10^{-5} \text{ s}^{-1}$ ([LA]₀ = 0.42 M, [AI] = 8.33 mM [LA]₀/[AI] = 50).

Fig. S36 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerisation of *rac*-LA with **4a**/BnOH as an initiator ([LA]₀/[A1] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S37 Eyring plot of $\ln (k_p/T)$ versus 1/T for the polymerisation of *rac*-LA with 4a/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S38 Semilogarithmic plots of the *rac*-lactide conversion versus time in toluene with complex **6a**/BnOH as an initiator at **I**, 100 °C, $k_{app} = (14.54 \pm 0.30) \times 10^{-5} \text{ s}^{-1}$; **II**, 90°C, $k_{app} = (6.30 \pm 0.10) \times 10^{-5} \text{ s}^{-1}$; **III**, 80°C, $k_{app} = (3.68 \pm 0.03) \times 10^{-5} \text{ s}^{-1}$; **IV**, 70°C, $k_{app} = (1.87 \pm 0.02) \times 10^{-5} \text{ s}^{-1}$ ([LA]₀ = 0.42 M, [AI] = 8.33 mM [LA]₀/[AI] = 50).

Fig. S39 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerisation of *rac*-LA with **6a**/BnOH as an initiator ([LA]₀/[A1] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S40 Eyring plot of ln (k_p /T) versus 1/T for the polymerisation of *rac*-LA with **6a**/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S41 Semilogarithmic plots of the *rac*-lactide conversion *versus* time in toluene with complex **2b**/BnOH as an initiator at **I**, 100 °C, $k_{app} = (24.23 \pm 0.29) \times 10^{-5} \text{ s}^{-1}$; **II**, 90°C, $k_{app} = (12.60 \pm 0.08) \times 10^{-5} \text{ s}^{-1}$; **III**, 80°C, $k_{app} = (8.10 \pm 0.14) \times 10^{-5} \text{ s}^{-1}$; **IV**, 70°C, $k_{app} = (4.90 \pm 0.06) \times 10^{-5} \text{ s}^{-1}$ ([LA]₀ = 0.42 M, [Al] = 8.33 mM [LA]₀/[Al] = 50).

Fig. S42 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerisation of *rac*-LA with **2b**/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S43 Eyring plot of ln (k_p /T) versus 1/T for the polymerisation of *rac*-LA with **2b**/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S44 Semilogarithmic plots of the *rac*-lactide conversion *versus* time in toluene with complex **4b**/BnOH as an initiator at **I**, 100 °C, $k_{app} = (16.83 \pm 0.54) \times 10^{-5} \text{ s}^{-1}$; **II**, 90°C, $k_{app} = (10.85 \pm 0.27) \times 10^{-5} \text{ s}^{-1}$; **III**, 80°C, $k_{app} = (5.64 \pm 0.15) \times 10^{-5} \text{ s}^{-1}$; **IV**, 70°C, $k_{app} = (3.64 \pm 0.08) \times 10^{-5} \text{ s}^{-1}$ ([LA]₀ = 0.42 M, [Al] = 8.33 mM [LA]₀/[Al] = 50).

Fig. S45 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerisation of *rac*-LA with **4b**/BnOH as an initiator ([LA]₀/[A1] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S46 Eyring plot of ln (k_p/T) versus 1/T for the polymerisation of *rac*-LA with **4b**/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S47 Semilogarithmic plots of the *rac*-lactide conversion *versus* time in toluene with complex **6b**/BnOH as an initiator at **I**, 100 °C, $k_{app} = (14.74 \pm 0.26) \times 10^{-5} \text{ s}^{-1}$; **II**, 90°C, $k_{app} = (8.46 \pm 0.08) \times 10^{-5} \text{ s}^{-1}$; **III**, 80°C, $k_{app} = (4.61 \pm 0.05) \times 10^{-5} \text{ s}^{-1}$; **IV**, 70°C, $k_{app} = (2.48 \pm 0.02) \times 10^{-5} \text{ s}^{-1}$ ([LA]₀ = 0.42 M, [Al] = 8.33 mM [LA]₀/[Al] = 50).

Fig. S48 Arrhenius plot of $\ln k_p$ versus 1/T for the polymerisation of *rac*-LA with **6b**/BnOH as an initiator ([LA]₀/[Al] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S49 Eyring plot of ln (k_p/T) versus 1/T for the polymerisation of *rac*-LA with **6b**/BnOH as an initiator ([LA]₀/[A1] = 50, [LA]₀ = 0.42 M, toluene).

Fig. S50 Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex 8a (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).

Fig. S51Semilogarithmic plots of *rac*-lactide conversion *versus* time in toluene at 70 °C with complex **8b** (\bullet) ([LA]₀/[Al]/[BnOH] = 50:1:1, [LA]₀ = 0.42 M, [Al] = 8.33 mM).