Electronic Supplementary Information

Continuous-flow synthesis of CsPbI₃/TiO₂ nanocomposites with enhanced water and thermal stability

Jingshan Hou,*a Jiafeng Hu,a Jianghua Wu,a Qing Zhang,a Zhifu Liu,a Langping Dong,a Guangxiang Jiang,a Yufeng Liu,a Wei Gao*a and Yongzheng Fang*a

^a School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China

Experimental details

Precursor preparation

Precursor 1 (Cs-oleate): 2.5 mmol of Cs_2CO_3 , 2.5 mL of OA and 40 mL of ODE were loaded into a 3-necked flask of 100 mL, dried for 1 h at 120 °C under N₂, and then heated to 150 °C until all Cs_2CO_3 reacted with OA. Because Cs-oleate precipitates from ODE at room temperature, the Cs-oleate solution needs to be preheated to 120 °C before injection. The oleic acid Cs-oleate precursor was diluted with ODE at a volume ratio of 1:20 and rapidly stirred for 10 min at 120 °C, until the solution was clear, then the 10 mL solution was loaded into a 10 ml closed syringe for subsequent microfluidic synthesis.

Precursor 2 (PbI₂): 1.88 mmol of PbI₂, 5 mL of OA, 5 mL of OAm, and 50 mL of ODE were loaded into a three-necked flask of 100 mL, and the mixed solution was magnetically stirred at 120 °C under N_2 for 0.5 min, until the solution was clear, then the 10 mL solution was loaded into a 10 ml closed syringe for subsequent microfluidic synthesis.

Precursor 3 (PbI₂/TiO₂): 1.88 mmol of PbI₂, 0.5 g TiO₂, 5 mL of OA, 5 mL of OLA, and 50 mL of ODE were loaded into a three-necked flask of 100 mL, and the mixed solution was magnetically stirred at 120 °C under N₂ for 0.5 min, until PbI₂ completely reacted with OA and OAm and TiO₂ was uniformly dispersed in the solvent, then the 10 mL solution was loaded into a 10 ml closed syringe for subsequent microfluidic synthesis.

Fig. S2 PL spectra of $CsPbI_3$ nanocrystals prepared by microfluidic method at different temperatures (a and b) and different flow rates (c and d).

Fig. S3 SEM image of the CsPbI₃/TiO₂ nanocomposites.

Fig. S4 SEM image of the CsPbI₃ nanorods.

Fig. S5 (a) SEM image of the $CsPbI_3$ nanorods. (b, c and d) Elemental mapping images of Cs, Pb and I in $CsPbI_3$ nanorods.

Fig. S6 PL intensity of $CsPbI_3$ nanorods and $CsPbI_3/TiO_2$ nanocomposites excited by 618 nm and 577 nm, respectively.

Fig. S7 PL spectra of CsPbI₃ nanorods (blue lines), CsPbI₃/TiO₂ nanocomposites prepared by microfluidic method (CsPbI₃/TiO₂-mic) (red lines) and composites directly mixed with CsPbI₃ nanorods and TiO₂ (CsPbI₃/TiO₂-mix) (gray lines).

Fig. S8 (a) and (b) Water stability dependent PL spectra of $CsPbI_3$ nanorods and $CsPbI_3/TiO_2$ nanocomposites, (c) and (d) Temperature-dependent PL spectra of $CsPbI_3$ nanorods and $CsPbI_3/TiO_2$ nanocomposites.

Fig. S9 (a) Emission spectra and corresponding photograph of the white $CsPbX_3/TiO_2$ LED at a driving current of 10 mA. (b) CIE color coordinates of the blue chip, green $CsPbBr_3/TiO_2$ nanocomposites, red $CsPbI_{1.5}Br_{1.5}/TiO_2$ nanocomposites, and the fabricated LED.

Material	A_1	<i>A</i> ₂	$ au_1$	$ au_2$	Time (ns)
CsPbI ₃	0.49	0.45	22.94	124.83	107.7
CsPbI ₃ /TiO ₂	0.51	0.45	22.68	110.26	93.6

Table S1. PL lifetime for $CsPbI_3$ nanocrystals and $CsPbI_3/TiO_2$ nanocomposites. The PL lifetime is fitted by a biexponential decay function.