Supporting Information

Structure and Phase Changes of Alumina Produced by Flame Hydrolysis

Jamal Nasir¹, Franz Schmidt², Frank Menzel², Jörn Schmedt auf der Günne^{1*}

1 University of Siegen, Faculty IV: School of Science and Technology, Department of Chemistry and Biology, Inorganic materials chemistry and Center of Micro- and Nanochemistry and Engineering (Cμ), Adolf-Reichwein-Straße 2, D-57076 Siegen, Germany

2 Evonik, Operations GmbH, Rodenbacher Chaussee 4, D-63457 Hanau, Germany

*Email: gunnej@chemie.uni-siegen.de

Figure S1:	Rietveld refinement as γ-alumina (S200 and S180)
Table S1:	Parameters for Rietveld Refinement for the Sample S220
Figure S2:	Spectral Simulations of ²⁷ Al MAS NMR Spectra
Table S2:	Spectral Parameters Determined by Simulations Using the DMfit Software:
Figure S3:	²⁷ Al MQMAS Spectra of Fumed Alumina for the S220 to S45 Samples
Figure S4:	Projections of ²⁷ Al MQMAS Spectra of Fumed Alumina for the S220–45 Samples
Figure S5:	Aging Effect on the Local Structure of high BET Fumed Alumina
Figure S6:	TEM Images of Fumed Alumina for the S220 to S30 Samples
Figure S7:	Histograms for Particles Sizes for the S220 to S30 Samples

Figure S8: High-resolution TEM images of S65.

Figure S1: Rietveld refinement of the X-ray diffraction pattern for the S200 and S180 samples using Smrcok et al. spinel model for γ -alumina with a significant amount of non-spinel occupation. The black points represent the experimental data, the red solid line the calculated diffractogram with a residual profile factor R_{wp} respectively of 3.6% and 3.2%, and the grey line the difference plot. The peak marked with asterisk * is non-existent in γ -alumina.

Parameters for Rietveld refinement of γ-alumina (S220)

Table S1: Exemplary Rietveld refinement input file (used in Topas academic package^[1]) with the refined parameters for the S220 sample powder diffraction (Figure 2) recorded on Guinier camera.

r_wp 3.02719 r_exp 2.61441499 r_p 2.25241953 gof 1.15788427

iters 100000

chi2_convergence_criteria 0.001

do_errors

xdd BET220.xy

x_calculation_step = Yobs_dx_at(Xo); convolution_step 4

bkg @ 1376.83569`_1.42975713

-1071.80372`_1.87856674

189.442678`_1.8611632

-4.44479503`_1.74830992

-136.84087`_1.68499227

-49.7694861`_1.50821558

134.965508`_1.66444081

12.9518863`_1.93736098

-75.5144272`_1.49218123

-12.6398723`_1.49710774

15.7383351`_1.43657743

-13.0475097`_1.29415789

24.2915403`_1.12030175

16.4935932`_1.31027513

LP_Factor(!th2_monochromator, 27.28) CuKa1(0.0001) 'd8 Ge(111) monochromator Vantec Cu Ka1

Specimen_Displacement(height, 0.592872541`_42.5013868) Specimen_Tilt(@, 1.10207389`_0.0500654427)

Divergence(0.823576214 0.00574586197) Simple Axial Model(!axial, 2.15331558 0.00498608309) Tube Tails(, 0.00487350562,, -0.0388314018,, 0.00329872058 LIMIT MIN 1e-05,, 0.0620669557) Rp 220 Rs 57.3 'th2 offset prm a1 -1.57056476` 39.9589523 prm a2 1.38586295` 4.13264432 prm a3 0.644076644` 85.1791326 th2 offset = a1 Th 2 + a2 Th 1 + a3; start X16 finish X 80 Out Yobs Ycalc and Difference("S220 Yobs Ycalc and Diff.txt") Out X Yobs("S220 Out X Yobs .txt") str phase name gamma-Al2O3 space_group "F d -3 m Z" Cubic (@ 7.933079` 0.263268) volume 499.258` 49.710 site Al1 x = 0.125; y = 0.125; z = 0.125; occ Al+3 @ 0.42634` 0.00754 beg 0.489532378 site Al2 x = 0.5; y = 0.5; z = 0.5; occ Al+3 (a) 0.60394` 0.00511 beg 0.726402884 site O1 x = 0.25673; y = 0.25673; z = 0.25673; occ O-2 1 beq 0.876420871 site Al3 x = 0.0; y = 0.0; z = 0.0; occ Al+3 @ 0.24762` 0.00435 beg 0.710611517 site Al4 x = -0.123; y = 0.125; z = 0.125; occ Al+3 (a) 0.08999` 0.00264 beg 0.473741011

LVol_FWHM_CS_G_L(1, 5.19609424`_0.422947564, 0.89, 7.26466565`_0.581104289, , , cslc, 8.16254567`_0.652926168)

e0_from_Strain(2.18048578e-07`_0.000379272174, , , slc, 0.0001`_0.173939301) 'eo single strain value from Gaussian / Lorentzian

scale @ 0.00120704504`_1.678e-05

r_bragg 0.205480314

Phase_Density_g_on_cm3(3.61930318`_0.360609447)

Figure S2: ²⁷Al MAS NMR spectra simulated using Czjzek model for S220 to S100 samples, using Q mas 1/2 model for the S65–45 samples as implemented in DMfit software.^[1] The experimental data are shown in black, the total simulated spectra in red, and the individual decomposed spectra in grey.

Table S2: ²⁷Al MAS NMR parameters for the AlO₄, AlO₅ and AlO₆ sites in fumed alumina materials obtained by using Dmfit package and the corresponding literature values.

BET	/ Main	Site	δ _{iso} / ppm	C _Q /	η	Model	Relative	Comment
m²/g	phase			MHz		used	intensities	
	γ-alumina	AlO ₄	77.5 ± 0.2	3.5 ± 0.1		Czjzek 10%	10%	DNP NMR
		AlO ₅	37.2 ± 0.2	4.5 ± 0.1			13%	
		AlO ₆	14.0 ± 0.2	4.3 ± 0.1		-	78%	
	δ-alumina	AlO ₄	73.2	4.6	0.6		19.6%	^[3] Al isopropoxide precursor; sol- gel
		AlO ₄	68.3	6.6	0.4		20.7%	
		AlO ₆	16.3	4.8	0.0		25.8%	
		AlO ₆	14.5	4.3	0.6		33.9%	
	θ-alumina	AlO ₄	80 (1)	6.4 (0.1)	0.65(0.02)		47.8%	^[4] Al tributoxide precursor; sol- gel
		AlO ₆	10.5 (1)	3.5 (0.3)	0(0.1)		52.2%	
S220	γ-alumina	AlO ₄	75	6.6		Czjzek	30.1%	This study
		AlO ₅	42	6.2			21.5%	
		AlO ₆	15.3	5.6		-	48.4%	
S200	γ-alumina	AlO ₄	75.2	6.3		Czjzek	24.5%	This study
		AlO ₅	42.2	6			8.6%	
		AlO ₆	14	4.9			66.9%	
S180	γ-alumina	AlO ₄	75	5.8		Czjzek	28.8%	This study
		AlO ₅	39	5.5		-	1.2%	-
		AlO ₆	15	5.4			70%	
S130	γ-alumina	AlO ₄	74.4	5.4		Czjzek	31%	This study
		AlO ₆	15	5.1			69%	
S100		AlO ₄	74.4	5.1		Czjzek	33%	This study
		AlO ₆	15.0	4.7			66.7%	
S65	θ-alumina	AlO ₄	80.9	6.3	0.8	Q mas	17.9%	This study

		AlO ₆	12.3	3.6	0.4	1/2	19%	
	δ-alumina	AlO ₄	77	6.3	0.3	-	9.5%	-
		AlO ₄	64	6.3	0.4		4.5%	-
		AlO ₆	16.6	3.5	0.8		16.2%	
		AlO ₆	11.1	5	0.7		32.8%	
S45	θ-alumina	AlO ₄	81.3	6.3	0.8	Q mas	27%	This study
		AlO ₆	12.4	3.7	0.5	1/2	27.3%	-
	δ-alumina	AlO ₄	77.4	6.6	0.2		4.1%	-
		AlO ₄	67.6	7.1	0.6		3%	-
		AlO ₆	17.3	3.6	0.8		14%	-
		AlO ₆	10.8	5	0.9		24.7%	-
\$30	θ-alumina	AlO ₄	80.4	6.1	0.9	Q mas	15.6%	This study
		AlO ₆	12.7	3.9	0.5	1/2	18.3%	-
	δ-alumina	AlO ₄	76.6	6.4	0.2		8%	
		AlO ₄	73.3	8.3	0.7		9%	
		AlO ₆	16.4	3.3	1		24.1%	
		AlO ₆	10.2	5.2	0.7		25%]

Figure S3: Sheared ²⁷Al triple-quantum MQMAS NMR spectra of fumed alumina for the S220 to S45 samples measured at 20 kHz MAS frequency. The sum projection of the isotropic spectra are shown on the right of each 2D spectrum.

Figure S4: Sum projections of ²⁷Al triple-quantum MQMAS spectra of fumed alumina samples with S220–30 measured at 20 kHz MAS frequency. In the shearing execution, not all the 2D spectra are shifted by the same value.

Figure S5: ²⁷Al MAS NMR spectra intended to reveal an aging effect on the samples S220 to S130 measured at 20 kHz MAS frequency a second time after various periods of time. As is obvious, there is no noticeable change in the shape or intensities of the spectra.

TEM Images of Fumed Alumina for the S220 to S30 Samples

Figure S6: TEM images of fumed alumina samples S220 to S30 samples.

Histograms for Particles Sizes for the S220 to S30 Samples

Figure S7: Particle size distribution of the fumed alumina samples S220 to S30 obtained by analysis of TEM micrographs of about 2000 particles each. For agglomerates the primary particles were counted.

Figure S8: High-resolution TEM pictures of fumed alumina S65. The picture sure primary particles of different sizes which are the result of nucleation (small monocrystalline particles), collision and coalescence (bigger monocrystalline particles) and agglomeration and aggregation (bigger polycrystalline particles.

- [1] A.A. Coelho, J. Appl. Cryst. 51 (2018) 210–218.
- [2] M. Mais, S. Paul, N.S. Barrow, J.J. Titman, Johnson Matthey Technol. Rev. 62 (2018) 271–278.
- [3] S. Xu, N.R. Jaegers, W. Hu, J.H. Kwak, X. Bao, J. Sun, Y. Wang, J.Z. Hu, ACS Omega 6 (2021) 4090–4099.
- [4] L.A. O'Dell, S.L.P. Savin, A.V. Chadwick, M.E. Smith, Solid State Nucl. Magn. Reson. 31 (2007) 169–173.