Supporting Information

Construction of 2D zinc(II) MOFs with tricarboxylate and *N*-donor mixed ligands for multiresponsive luminescence sensor and CO₂ adsorption

Kenika Khotchasanthong,^{*a*} Kunlanit Chinchan,^{*a*} Kanokwan Kongpatpanich,^{*b*} Waraporn Pinyo,^{*c*} Filip Kielar,^{*d*} Winya Dungkaew,^{*e*} Mongkol Sukwattanasinitt,^{*f*} Sakchai Laksee,^{*g*} and Kittipong Chainok*^{*a,h*}

^aThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand, E-mail: kc@tu.ac.th; Fax: +662 654 4548; Tel: +66 86 339 5079
^bSchool of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
^eNSTDA Characterization and Testing Center, Thailand Science Park, Pathum Thani 12120, Thailand
^dDepartment of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
^eDepartment of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 43100, Thailand
^fDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
^gNuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Ongkharak, Nakhon Nayok, 26120, Thailand
^hCenter of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand

Compound (CCDC No.)	1 (2363871)	2 (2363872)
Empirical formula	$C_{67}H_{62}N_7O_{13}Zn_2$	$C_{69}H_{71}N_8O_{16}Zn_2$
Formula weight	1302.96	1399.07
Temperature (K)	100(2)	100(2)
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/n$	<i>P</i> -1
<i>a</i> (Å)	16.3834(5)	14.5880(4)
<i>b</i> (Å)	27.2898(9)	16.0895(4)
<i>c</i> (Å)	17.2612(6)	16.5097(4)
α (°)	90	65.0510(10)
β (°)	112.9720(10)	86.8360(10)
γ (°)	90	89.4830(10)
$V(Å^3)$	7105.4(4)	3507.66(16)
$D_{\rm calc} ({ m g}~{ m cm}^{-3})$	1.218	1.325
Ζ	4	2
$\mu (\mathrm{mm^{-1}})$	1.340	1.430
Reflections collected	76405	42959
Unique Reflections	13441	13708
$R_1, w \mathbf{R}_2 (I > 2\sigma(I))$	0.0660, 0.1885	0.0608, 0.1957
R_1 , wR_2 (all data)	0.0716, 0.1945	0.0643, 0.2010
GOF on F^2 , S	1.038	1.043
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	2.96, -0.88	1.60, -0.55

 Table S1 Crystallographic data and refinement summary for 1 and 2.

	1		2
Zn1–O1	1.996(2)	Zn1-O1	1.946(2)
Zn1–O7	1.977(2)	Zn1-O3 ⁱ	1.9650(19)
Zn1-O12 ⁱ	1.981(2)	Zn1–O6 ⁱⁱ	1.951(2)
Zn1-N1	2.005(3)	Zn1–N1	2.095(3)
Zn2-O3	1.964(2)	Zn2–O7	1.968(2)
Zn2-O5 ⁱⁱ	1.968(2)	Zn2–O10 ⁱⁱⁱ	1.9893(19)
Zn2–O9 ⁱⁱⁱ	2.028(2)	Zn2-O11 ^{iv}	2.124(3)
Zn2-N3	2.041(2)	Zn2-O12 ^{iv}	2.188(2)
O1-Zn1-N1	121.64(10)	Zn2-N2	2.130(3)
O7–Zn1–O1	101.32(9)	O1–Zn1–O3 ⁱ	130.52(9)
$O7-Zn1-O12^{i}$	129.34(9)	O1–Zn1–O6 ⁱⁱ	120.47(9)
O7–Zn1–N1	95.99(10)	O1–Zn1–N1	101.07(10)
O12 ⁱ –Zn1–O1	100.23(9)	O3 ⁱ –Zn1–N1	100.57(10)
O12 ⁱ –Zn1–N1	110.35(10)	O6 ⁱⁱ –Zn1–O3 ⁱ	101.37(9)
O3–Zn2–O5 ⁱⁱ	123.55(9)	O6 ⁱⁱ –Zn1–N1	94.61(12)
O3–Zn2–O9 ⁱⁱⁱ	118.59(9)	O7–Zn2–O10 ⁱⁱ	103.79(10)
O5 ⁱⁱ –Zn2–O9 ⁱⁱⁱ	99.80(9)	O7–Zn2–O11 ^{iv}	109.97(10)
O3-Zn2-N3	100.43(9)	O7–Zn2–O12 ^{iv}	112.12(10)
O5 ⁱⁱ –Zn2–N3	116.45(10)	O7–Zn2–N2	91.74(11)
O9 ⁱⁱⁱ –Zn2–N3	95.18(9)	O10 ⁱⁱⁱ –Zn2–O11 ^{iv}	144.30(10)
		$O10^{iii}$ – $Zn2$ – $O12^{iv}$	96.85(9)
		O10 ⁱⁱⁱ –Zn2–N2	92.27(9)
		O11 ^{iv} -Zn2-O12 ^{iv}	59.99(10)
		O11 ^{iv} –Zn2–N2	97.90(10)
		N2–Zn2–O12 ^{iv}	151.37(11)

Table S2 Selected bond lengths and bond angle $(\text{\AA}, \circ)$ for 1 and 2.

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y - 1, z; (iv) x, y + 1, z for **1**;

(i) *x*, *y* - 1, *z*; (ii) *x*, *y*, *z* - 1; (iii) *x*, *y* + 1, *z* - 1; (iv) *x*, *y* + 1, *z* for **2**.

Zn-based MOFs	Ions	$K_{sv}\left(\mathrm{M}^{-1} ight)$	LOD	Ref
$[Zn_2(L^1)_2(bpp)(H_2O)_2]$	Fe ³⁺	1.68×10^{4}	1.76 μM	1
	Hg^{2+}	1.34×10^{4}	3.75 μM	1
[ZnL ² (dpa)]	Fe ³⁺	3.09×10^{4}	1.94 μM	2
HBU-19	Fe ³⁺	2.24×10^{5}	3.40 µM	3
TMU-16	Fe ³⁺	2.80×10^4	20.0 µM	4
TMU-48	Fe ³⁺	1.86×10^{5}	1.79 μM	5
$[Zn(BBDF)(ATP)] \cdot 2DMF \cdot 3H_2O$	Hg^{2+}	$3.89 imes 10^4$	0.12 µM	6
[Zn(TIBTC)(DMA)](Me ₂ NH ₂)	Fe ³⁺	9.71×10^4	6.40 µM	7
$[Zn_2(tpeb)(bpdc)_2](Me_2NH_2)_{0.5} \cdot 4H_2O$	Fe ³⁺	1.33×10^{4}	0.88 µM	8
$[Zn_2(NO_3)_2(4,4'-bpy)_2(TBA)]$	Fe ³⁺	7.48×10^{3}	7.18 μM	9
$[Zn(5-AIP)(Ald-4)] \cdot H_2O$	Fe ³⁺	$9.00 imes 10^4$	0.30 µM	10
	Cr^{3+}	2.30×10^{4}	0.46 µM	
[Zn(tbda)]	Cr^{3+}	2.68×10^4	180 μM	11
$[Me_2NH_2]_4[Zn_6(qptc)_3(trz)_4] \cdot 6H_2O$	Cr^{3+}	4.39×10^4	1.00 µM	12
$[Zn(L^5)(H_2O)] \cdot H_2O$	Cr^{3+}	2.03×10^{4}	2.44 μM	13
[Zn ₂ (tbta)(phen)(OH)]·4H ₂ O	Cr^{3+}	1.44×10^{5}	0.18 µM	14
	Cu^{2+}	2.01×10^{5}	0.07 µM	
$[Zn_2(L^6)(phen)(H_2O)_3] \cdot 2.4H_2O$	Cu^{2+}	4.38×10^{5}	134 µM	15
$[Zn(bpy)(H_2O)_4][Zn(H_2L^6)_2(bpy)(H_2O)_2]$	Cu^{2+}	7.29×10^{4}	33.1 µM	
$[Zn_2(5-AIA)_2(DPTTZ)]$ ·DMF	Hg^{2+}	4.20×10^{4}	2.17 μM	16
$[Zn(4-pzpt)_2(H_2O)]$	Hg^{2+}	1.09×10^{3}	26.70 μM	17
[Zn(4-pzpt) ₂]·CH ₃ OH	Hg^{2+}	7.13×10^{2}	34.08 µM	
ZU-1	Hg^{2+}	7.50×10^{8}	3.00 µM	18
MOF-5-NH ₂	Cu^{2+}	-	0.06 µM	19
	Pb^{2+}	2.8×10^{2}	0.25 µM	
$[Zn(HPydc)_2]$ ·2H ₂ O	Pb^{2+}	5.47×10^{2}	5.15 µM	20
[Zn-APT]	Fe ²⁺	1.90×10^{4}	0.12 µM	21
$[Zn(ATA)(L^7)] \cdot H_2O$	Fe ³⁺	0.56×10^{3}	3.76 µM	22
	Pb^{2+}	4.18×10^{4}	0.20 µM	
[Zn(OBA)(DPT) _{0.5}]·DMF	Hg^{2+}	3.74×10^{3}	1.80 µM	23
[Zn(2-NH ₂ bdc)(bibp)]	Hg^{2+}	4.55×10^{3}	42.0 µM	24
$[Zn_2(suc)_2(4-nvp)_2]$	Pb^{2+}	3.80 x 10 ⁵	0.05 μΜ	25
$[Zn(fum)(4-nvp)_2]$ ·2H ₂ O	Pb^{2+}	8.22 x 10 ⁵	0.13 μΜ	26
$[Zn(mes)(4-nvp)_2] \cdot H_2O$	Pb^{2+}	5.04×10^{5}	0.15 µM	
[Zn(glu)(4-nvp)]	Pb^{2+}	4.90×10^{5}	0.15 µM	

 Table S3 Examples of Zn-based MOF luminescent sensors for metal ion detection.

[Zn(dttp)(H ₂ O)]	Cu ²⁺	4.01×10^{3}	250 µM	27
$[Zn_3(L^8)_2(dpp)_2]$	Cu^{2+}	9.70×10^{3}	1.05 µM	28
Compound 1	Fe ³⁺	2.08×10^4	1.23 µM	This work
	Fe ²⁺	1.44×10^4	1.97 µM	This work
	Cu^{2+}	$8.89 imes 10^4$	3.60 µM	This work
	Cr^{3+}	5.55×10^{3}	3.50 µM	This work
	Pb^{2+}	5.40×10^{3}	3.20 µM	This work
	Hg^{2+}	8.02×10^{3}	4.17 μΜ	This work
Compound 2	Fe ³⁺	$1.86 imes 10^4$	1.29 µM	This work
	Fe^{2+}	$1.00 imes 10^4$	1.45 μM	This work
	Cu^{2+}	6.26×10^4	3.21 µM	This work
	Cr^{3+}	6.89×10^{3}	2.92 μM	This work
	Pb^{2+}	1.45×10^4	1.47 µM	This work
	Hg^{2^+}	2.98×10^{3}	3.96 µM	This work

bpp = 1,3-di(4-pyridyl)propane and; $H_2L^1 = 2,5$ -thiophenedicarboxylic acid; $H_2L^2 = 4,4'$ -(ethynylimino)bis[benzoic acid]; dpa = 4,4'-dipyridylamine; L³ = 2,3,5,6-tetra(4-carboxyphenyl)pyrazine; L⁴ $= 1,2-di(4-pyridyl)ethylene; BBDF = 2,7-bis(1H-benzimidazol-1-yl)-9,9-dimethyl-9H-fluorene); 3,5-H_2btc =$ 1,3,5-benzenetricarboxylic acid; DAT = diamino triazole; $H_2ATP = 2$ -aminoterephthalic acid; $H_3TIBTC =$ 2,4,6-triiodo-1,3,5-benzenetricarboxylic acid; DMA = dimethylacetamide; H_{2} tpeb = 1,3,5-tri-4-pyridyl-1,2ethenylbenzene; H_2 bpdc = biphenyl-4,4'-dicarboxylic acid; H_2 TBA = 4-(1*H*-tetrazol-5-yl)-benzoic acid; 4,4'bpy = 4.4'-bipyridine; 5-AIP = 5-amino isophthalate; Ald-4 = aldrithiol-4; H₂tbda = 4-(2,2';6',2''-tripyridyl)-4'-1,2-phenyl dicarboxylic acid; H₄qptc = terphenyl-2,5,2'5'-tetracarboxylic acid; trz = 1,2,4-triazole; H_2L^5 = 5-(2- methylpyridin-4-yl)isophthalic acid; H_3 tbta = 1-(triazol-1-yl)- 2,4,6-benzene tricarboxylic acid; phen = 1,10-phenanthroline; $H_4L^6 = (3,5-di(3,4-dicarboxylphenyl))$ pyridine); 2,2-bpy = 2.2-bipyridine; 5-AIA = 5-aminoisophthalic acid; DPTTZ = N.N'-di(4-pyridyl)-thiazolo-[5.4-d]thiazole; DMF = N, N'-dimethylformamide; 4-Hpzpt = 3-(pyridin-4-yl)-5-(pyrazin-2-yl)- 1H-1,2,4-triazole; H₂ndc = 1,4-Naphthalenedicarboxylic acid; $H_2Pydc = 2,3$ -Pyridinedicarboxylic acid; APT = 2-amino-6-purinethiol; $TPC_4A = 2,8,14,20$ -tetra-phenyl-6,12,18,24-tetra-methoxy-4,10,16,22-tetra-carboxy-methoxyresorcin[4]arene; TNC₄A = 2,8,14,20-tetra-1-naphthal-6,12,18,24-tetra- methoxy-4,10,16,22-tetra-carboxymethoxy-resorcin[4]arene; $L^7 =$ bipyridyl-based Schiff base, (E)-N'-(pyridin-4ylmethylene)isonicotinohydrazide; $H_2ATA =$ amino functionalized 2-aminoterephthalic acid; $H_2OBA = 4,4'$ oxybis(benzoic acid); DPT = 3.6-di(pyridin-4-yl)-1,2,4,5-tetrazine; 2-NH₂bdc = 2-amino-1,4benzenedicarboxylic acid; bibp = 4,4'-bis(imidazol-1-ylmethyl)biphenyl; H_2 suc = succinic acid; 4-nyp = 4-(1-naphthylvinyl)pyridine; H₂fum = fumaric acid; 4-nvp = 4-(1-naphthylvinyl)pyridine; H₂mes = mesaconic acid; H_2 glu = glutaric acid; H_2 dttp = 2,5-di(1H-1,2,4-triazol-1-yl)terephthalic acid; $L^8 = (3,5-1)$ dibromosalicylaldehyde salicylhydrazone); $dpp = 1,3-di(4-pyridyl)propane; H_2tpt = 2,4,6-tri(pyridin-4-yl)-$ 1,3,5-triazine; H_2 tdc = 2,5-thiophenedicarboxylic acid.

Referances

- 1. J. Huang, X.-Y. Pu, Z. Liu, X.-Y. Cao and J. Fu, J. Inorg. Organomet. Polym. Mater., 2021, **31**, 2209–2217.
- 2. B. Zhao, J. Lu, H. Liu, S. Li, Q. Sun and B. Zhang, CrystEngComm, 2024, 26, 1319–1327.
- J.-M. Liu, Y.-B. Ren, H.-Y. Xu, L.-J. Li, Y.-J. Mu and J.-L. Du, *Inorg. Chim. Acta*, 2021, 527, 120583– 120588.
- 4. Y. D. Farahani and V. Safarifard, J. Solid State Chem., 2019, 275, 131-140.
- 5. L. Esrafili, M. Gharib and A. Morsali, New J. Chem., 2019, 43, 18079–18091.
- 6. C. Li, X. Sun, X. Meng, D. Wanga and C. Zheng, *Dalton Trans.*, 2023, 52, 7611–7619.
- C. H. Liu, Q. L. Guan, X. D. Yang, F. Y. Bai, L. X. Sun and Y. H. Xing, *Inorg. Chem.*, 2020, 59, 8081– 8098.
- 8. B. B. Rath and J. J. Vittal, Inorg. Chem., 2020, 59, 13, 8818-8826.
- X. Zhang, X. R. Zhuang, N. X. Zhang, C. Y. Ge, X. Luo, J. X. Li, J. Wu, Q. F. Yang and R. Liu, *CrystEngComm*, 2019, 21, 1948–1955.
- P. Daga, P. Manna, P. Majee, D. K. Singha, S. Hui, A. K. Ghosh, P. Mahata and S. K. Mondal, J. Inorg. Organomet. Polym. Mater., 2020, 30, 4496–4509.
- 11. X. Liang, Y. Jia, Z. Zhan and Ming Hu, Appl. Organometal. Chem., 2019, 33, 1-11.
- 12. X.-X. Jia, R.-X. Yao, F.-Q. Zhang and X.-M. Zhang, Inorg. Chem., 2017, 56, 2690–2696.
- 13. X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu and Y.-Q. Wang, J. Mater. Chem. A, 2017, 5, 20035–20043.
- 14. X. Chen, L. Shang, H. Cui, H. Yang, L. Liu, Y. Ren and J. Wang, CrystEngComm, 2020, 22, 5900–5913.
- 15. X. Liu, Y. Liu, S. Feng and L. Lu, J. Mol. Struc., 2023, 1274, 134570-134578.
- 16. A. Nath, G. M Thomas, S. Hans, S. R. Vennapusa and S. Mandal, Inorg. Chem., 2022, 61, 2227–2233.
- 17. Y.-M. Fang, X. Ye, L. Xia, W.-W. Dong, J. Zhao and D.-S. Li, J. Solid State Chem., 2018, 266, 181–188.
- M. S. Khan, S. Kamal, M. Zulkiflain, M. Khalid, S. Khan, M. Shahid, and M. Ahmad, *J. Mol. Liq*, 2024, 405, 125019–125027.
- X. An, Q. Tan, S. Pan, H. Liu, X. Hu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 247, 119073– 119083.
- M. Ashafaq, M. Khalid, M. Raizada, M. S. Ahmad, M. S. Khan, M. Shahid and M. Ahmad, J. Inorg. Organomet. Polym. Mater, 2020, 30, 4496–4509.
- 21. J. Wang, D. Yan, and W. Huang, Inorg. Chem. Comm., 2022, 138, 109282–109290.
- 22. B. Parmar, Y. Rachuri, K. K. Bisht and E. Suresh, Inorg. Chem., 2017, 56, 10939–10949.
- 23. S. A. A. Razavi, M. Y. Masoomi and A. Morsali, Inorg. Chem., 2017, 56, 16, 9646–9652.
- 24. L. Wen, X. Zheng, K. Lv, C. Wang and X. Xu, Inorg. Chem., 2015, 54, 7133-7135.
- 25. S. Bera, B. Dutta, D. Mandal, C. Sinha and M. H. Mir, Inorg. Chem., 2022, 61, 13244–13249.
- 26. B. Dutta, S. Bera, G. Bairy, M. Shit, S. Khanra, C. Sinha and M. H. Mir, *ES Energy Environ.*, 2022, **16**, 74–81.
- 27. H. Cai, N. Li, Y. Li and D.-M. An, Inorg. Chim. Acta, 2020, 512, 119886–119891.
- 28. Y. Wu, Z. Gu, W. Luo, L. Wu, Y. Li, B. Xie and L. Zou, Transit. Met. Chem., 2018, 43, 673-681.

Fig. S1 Comparison of the simulated and as-synthesized PXRD patterns for 1 and 2.

Fig. S2 The IR spectra of 1 and 2.

Fig. S3 The coordination modes of the btb³⁻ ligands observed in 1 and 2.

Fig. S4 Views of $\pi \cdots \pi$ stacking between neighboring btb³⁻ ligands for (*a*) **1** and (*b*) **2**.

Fig. S5 Room temperature PXRD patterns after two days of immersion in water and various organic solvents for (*a*) 1 and (*b*) 2.

Fig. S6 (*a*) TGA curves of 1 and 2, and (*b*) comparison of the room temperature PXRD patterns for 1 and 2 before and after the desolvation processes.

Fig. S7 Solid-state photoluminescence spectra of 1, 2, and H₃BTB at room temperature.

Fig. S8 The UV-vis absorbance spectra of water and various organic compounds together with excitation spectra of 1 and

Fig. S9 (a) IR spectra and (b) PXRD patterns of 1 and 2 after soaking in acetone.

Fig. S10 Relative luminescence intensities of 1 dispersed in the aqueous solutions of individual metal ions (yellow columns) and the quenched luminescence intensities after the addition of (a) Hg²⁺, (b) Cu²⁺, (c) Cr³⁺, (d) Pb²⁺, (e) Fe²⁺, and (f) Fe³⁺ ions.

Fig. S11 Relative luminescence intensities of 2 dispersed in aqueous solutions of individual metal ions (turquoise columns) and the quenched luminescence intensities after the addition of (a) Hg²⁺, (b) Cu²⁺, (c) Cr³⁺, (d) Pb²⁺, (e) Fe²⁺, and (f) Fe³⁺ ions.

(a)

Fig. S12 PXRD patterns of (a) 1 and (b) 2 before and after the fluorescence quenching experiments.

(a)

Fig. S13 IR spectra of (a) 1 and (b) 2 before and after the fluorescence quenching experiments.

Fig. S14 High resolution XPS spectra of O 1s core levels of 1 (black) and its metal incorporated forms (red) (a) $1@Hg^{2+}$, (b) $1@Cu^{2+}$, (c) $1@Cr^{3+}$, (d) $1@Pb^{2+}$, (e) $1@Fe^{3+}$, and (f) $1@Fe^{2+}$.

Fig. S15 High resolution XPS spectra of O 1s core levels of 2 (black) and its metal incorporated forms (red)
(a) 2@Hg²⁺, (b) 2@Cu²⁺, (c) 2@Cr³⁺, (d) 2@Pb²⁺, (e) 2@Fe³⁺, and (f) 2@Fe²⁺.

Fig. S16 The UV–vis absorbance spectra of aqueous solutions containing individual metal ions together with excitation spectra of 1 and 2.

Fig. S17 Comparison PXRD patterns of the as-synthesized 1 and 2 and their activated samples 1' and 2'.

Fig. S18 Comparison PXRD patterns of activated **1'** and **2'** and those samples after high-pressure (up to 20 bar) CO₂ sorption at 338 K (65 °C).