Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Synthesis and Evaluation of Bifunctional DFO2K: a Modular Chelator with Ideal Properties for Zirconium-89 Chelation

Akam K. Salih¹, Elaheh Khozeimeh Sarbisheh², Shvan J. Raheem¹, Moralba Dominguez-Garcia¹, Hillary Mehlhorn¹, Eric W. Price^{1,*}.

¹ Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, 110 Science Place, S7N-5C9, Canada

² Life Sciences Division, TRIUMF, Vancouver, BC, Canada

* Corresponding author: Eric Price <u>eric.price@usask.ca</u>

Keywords

Desferrioxamine, hydroxamic acid, chelator, radiometal, radiochemistry, PET imaging, zirconium-89, theranostic, density functional theory calculations, DFT

Disclosures: None.

Figure S1. ¹H NMR spectrum of compound **1** in (CD₃)₂SO. The signals at 1.17, 1.99, 4.02 ppm are assigned to residual ethyl acetate and signal at 2.50 is assigned to residual DMSO in the NMR sample.

DFO-Lys(Z)-Boc (1)

Figure S2. ¹³C NMR spectrum of compound 1 in (CD₃)₂SO.

Figure S3. ¹H NMR spectrum of compound 2 in (CD₃)₂SO. The signal at 2.50 is assigned to residual DMSO in the NMR sample.

Figure S4. ¹³C NMR spectrum of compound 2 in $(CD_3)_2SO$.

Figure S5. ¹H NMR spectrum of compound **3** in (CD₃)₂SO. The signal at 2.50 is assigned to residual DMSO in the NMR sample.

Figure S6. ¹³C NMR spectrum of compound **3** in (CD₃)₂SO.

DFO2-Lys-Z (3)

Figure S7. ¹H NMR spectrum of compound **4** in D₂O. The signal at 4.79 is assigned to residual H₂O in the NMR sample.

Figure S8. 13 C NMR spectrum of compound 4 in D₂O.

Figure S9. Analytical HPLC chromatogram for semi-pure DFO2K. HPLC conditions: C18 Inspire analytical DIKMA; 5 μ m, 250 × 10.0 mm; (15 – 30% acetonitrile in water (0.1% formic acid); flow rate, 2 mL/min, t_R = 15.3 min)

Figure S10. ¹H NMR spectrum of compound **5** in $(CD_3)_2$ SO. The signal at 2.50 is assigned to residual DMSO and the signal at 3.33 pm is assigned to residual H₂O in the NMR sample.

[^{Nat}Zr]Zr-DFO2K (5)

Figure S11. ¹³C NMR spectrum of compound 5 in (CD₃)₂SO.

Figure S12. ¹H NMR spectrum of compound **6** in $(CD_3)_2$ SO. The signal at 2.50 is assigned to residual DMSO and the signal at 3.33 pm is assigned to residual H₂O in the NMR sample.

p-Ph-SCN-DFO2K (6)

Figure S13. Analytical HPLC chromatogram for *p*-Ph-SCN-DFO2K. HPLC conditions: C18 Inspire analytical DIKMA; 5 μ m, 250 × 10.0 mm; (30 – 60% acetonitrile in water (0.1% formic acid); flow rate, 2 mL/min, *t_R* = 14.3 min)

XYZ Coordinates of Zr(DFO2K) optimized structure *

94

- N 49.79700 -90.21100 0.67300
- C 48.63600 -89.60800 0.32000
- C 47.36800 -90.24200 0.95300

С	46.07400	-89.69800	0.33900
С	44.81500	-90.17400	1.06800
0	48.57500	-88.58600	-0.39000
Ν	47.45300	-91.70700	0.95800
С	51.11200	-89.87900	0.13100
С	51.72400	-91.08000	-0.59800
С	53.08100	-90.80800	-1.25700
С	54.23600	-90.53600	-0.28500
С	55.55200	-90.42200	-1.05200
N	56.69200	-90.03500	-0.22200
С	57.93000	-90.60200	-0.32400
С	59.09400	-89.80000	0.21200
С	60.43100	-90.49600	-0.00100
С	61.61300	-89.53700	0.07900
N	62.82500	-90.12200	-0.08300
С	64.06800	-89.36000	-0.19100
С	65.24900	-90.30500	-0.38500
С	66.57700	-89.57000	-0.58200
С	67.74800	-90.55000	-0.67100
0	56.64800	-88.68200	0.19400

0	58.07100	-91.72900	-0.85600
0	61.49100	-88.30700	0.26100
С	69.09200	-89.85900	-0.90100
Ν	70.20500	-90.78200	-0.68200
С	70.94600	-91.42300	-1.57300
С	70.91800	-91.15900	-3.05200
С	72.34900	-90.92300	-3.59500
С	72.96600	-89.67300	-2.98600
Ν	73.63500	-89.86300	-1.82200
С	74.01900	-88.77000	-0.92900
С	72.82500	-88.19500	-0.15200
С	73.25800	-87.24900	0.98800
С	72.59200	-87.51100	2.34800
С	73.09400	-88.73700	3.13400
N	72.51500	-90.03600	2.78200
С	71.55500	-90.67500	3.44100
С	70.86600	-90.05300	4.61800
0	70.42600	-91.08500	0.62700
0	71.79800	-92.28500	-1.11600
0	72.81500	-88.54600	-3.50800

0	71.21200	-91.85300	3.03600
0	73.09200	-90.69400	1.72800
N	50.72500	-95.89500	0.66700
С	51.43600	-97.15000	0.88900
С	52.89400	-97.07200	0.41600
С	53.72000	-95.99600	1.12900
С	55.16600	-95.91600	0.63200
С	55.93500	-94.77200	1.30000
N	57.30800	-94.64000	0.82000
С	58.37800	-95.24000	1.42800
С	59.67000	-95.27000	0.63300
С	60.86900	-95.71600	1.46700
С	61.99600	-96.23600	0.59000
N	63.24800	-95.81800	0.89500
С	64.41500	-96.29300	0.15200
С	65.71300	-95.61900	0.59300
С	66.86600	-96.07100	-0.31300
С	68.20200	-95.33500	-0.14000
0	57.41500	-94.32600	-0.55400
0	58.27100	-95.71800	2.57700

0	61.78300	-97.03600	-0.34800
С	69.02800	-95.75100	1.08500
N	70.35800	-95.12800	1.05800
С	71.41400	-95.50600	0.33500
С	71.55000	-96.90500	-0.20500
С	72.63200	-97.69300	0.56700
С	72.13600	-98.21700	1.90600
Ν	72.80700	-97.87800	3.03600
С	73.92200	-96.93800	3.20400
С	75.29900	-97.56700	2.97100
С	76.47100	-96.58300	3.12100
С	76.40200	-95.36800	2.16900
С	75.86400	-94.06800	2.81500
N	74.86800	-93.36400	1.99300
С	75.09200	-92.79600	0.81500
С	76.47600	-92.56000	0.29700
0	70.40100	-93.85100	1.56700
0	72.36700	-94.66700	0.17100
0	71.14200	-98.97800	1.95200
0	74.08500	-92.42600	0.09500

0	73.56900	-93.49700	2.41100
С	49.66000	-95.72400	-0.15800
С	49.26900	-94.27000	-0.36900
С	47.82400	-93.93900	0.04400
С	47.60300	-92.45200	-0.17200
0	49.05900	-96.66300	-0.72100
0	47.65300	-91.93700	-1.30500
Zr	72.07200	-92.54800	1.07300
С	43.53300	-89.58800	0.46800
С	42.26300	-90.09300	1.14900
Ν	41.05800	-89.51700	0.51800

* Density Functional Theory calculations performed by using Material Studio software via DMol³/PBE.