Octahedral molybdenum iodide clusters with pyrazole or pyrazolate ligands

Ksenia S. Kozlova,^{a,b} Alexey S. Berezin,^a Natalia V. Kuratieva,^a Michael A. Shestopalov,^a Anton A. Ivanov^{a*}

- ^a Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
- ^b Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russian Federation.
- * Correspondence: ivence.com;

TABLE OF CONTENT

Powder X-ray diffraction analysis data	3
Single-crystal X-ray diffraction data	4
Reactivity: ¹ H NMR data	6
Luminesce in solution: ¹ H NMR data	8
TGA data and FTIR spectra	9
Crystal structure data	12
References	13

Powder X-ray diffraction analysis data

Figure S1. Powder X-ray diffraction patterns of **3** and **3a** in comparison with calculated one from the SCXRD data for **3·6pzH**.

Figure S2. Powder X-ray diffraction patterns of **4** and **4a** in comparison with calculated one from the SCXRD data for **4**·**4pzH**.

Single-crystal X-ray diffraction data

Table S1. Selected crystallographic parameters of the single-crystal X-ray diffraction structural analysis for $K_2[Mo_6I_8(OH)_6] \cdot 13H_2O$ $(1 \cdot 13H_2O)$ $[Mo_6I_8(H_2O)_6](NO_3)_4 \cdot 2H_2O$ $(2 \cdot 2H_2O)$ $[K_2[Mo_6I_8(pz)_6] \cdot 6pzH$ $(3 \cdot 6pzH)$ $[Mo_6I_8(pzH)_6](NO_3)_4 \cdot 4pzH$ $(4 \cdot 4pzH)$ in comparison with literature data.

Cluster	Mo–Mo distances, Å	Mo–I distances, Å	Mo–O distances, Å	Mo-N distances, Å	Ref
1·13H ₂ O	2.6536(5) – 2.6738(5)	2.7745(4) – 2.8147(4)	2.098(3) – 2.106(3)	_	This work
2·2H₂O	2.6469(7) – 2.6652(6)	2.7644(4) – 2.7852(4)	2.150(4) – 2.191(4)	_	This work
[Mo ₆ I ₈ (H ₂ O) ₂ (OH) ₄]·2H ₂ O	2.6683(8)	2.7896(7) – 2.8092(6)	2.125(4)	_	1
[Mo ₆ l ₈ (H ₂ O) ₂ (OH) ₄]·12H ₂ O	2.6623(5) – 2.6753(5)	2.7633(4) – 2.7923(4)	2.136(3)	_	1
[Mo ₆ I ₈ (H ₂ O) ₂ (OH) ₄]·14H ₂ O	2.6533(3) – 2.6730(3)	2.7723(3) – 2.8195(3)	2.085(2) – 2.175(2)	_	1
[Mo ₆ I ₈ (H ₂ O) ₄ (OH) ₂](NO ₃) ₂ ·3H ₂ O	2.6509(4) – 2.6751(4)	2.7599(4) – 2.8049(4)	2.113(2) – 2.189(3)	-	2
[Mo ₆ I ₈ (H ₂ O) ₄ (OH) ₂](OTs) ₂ ·2H ₂ O	2.647(1) – 2.662(1)	2.781(1) – 2.801(1)	2.053(7) – 2.175(8)	-	2
3∙6pzH	2.6677(4) – 2.6808(4)	2.7687(4) – 2.7801(3)	_	2.186(3)	This work
4·4pzH	2.6757(3) – 2.6819(3)	2.7522(3) – 2.7782(3)	_	2.216(2) – 2.235(2)	This work
(Bu ₄ N) ₂ [Mo ₆ I ₈ (trz) ₆]	2.6645(19) – 2.6973(19)	2.7479(19) – 2.7921(18)	_	2.158(13) - 2.210(14)	3
Cs _{0.27} [Mo ₆ I ₈ (trz)I ₅] _{0.27} . <i>cis</i> - [Mo ₆ I ₈ (trz) ₂ I ₄] _{0.73}	2.665(10) – 2.688(8)	2.752(7) – 2.791(10)	-	2.21(2)	4
(Bu ₄ N) ₂ [Mo ₆ I ₈ (N ₃ C ₂ (COOCH ₃) ₂) ₆]	2.6721(7) – 2.6794(6)	2.7588(6) – 2.7815(6)	_	2.183(5) – 2.220(4)	5
(Bu ₄ N) ₂ [Mo ₆ I ₈ (N ₄ C-Ph) ₆]	2.6728(10) – 2.6856(9)	2.7588(8) – 2.7768(9)	_	2.230(8) – 2.238(9)	6

Figure S3. Packing of potassium cations in the layers in the crystal structure of $1 \cdot 13H_2O$. Color code: O – red, K – cyan, O···O – dashed red, O···K – dashed blue.

Figure S4. Packing in the crystal structure of **4**•**4pzH**: a) hydrogen bonds forming the layers, b) hydrogen bonds between layers. Color code: Mo – dark blue, N – light blue, O – red, C – gray, H – white, N…H-N – dashed yellow, O…H-N – dashed red, O…H-C – dashed blue, N…H-C – dashed pink.

Reactivity: ¹H NMR data

Figure S5. ¹H NMR spectra of compound **3** in DMSO-d₆ in presence of competing ligands (py = pyridine) and/or under heating at 100°C for 4 h.

Figure S6. ¹H NMR spectra of compound **3** in DMSO-d₆ in presence of competing ligands (^tBu-py = 4-tertbutylpyridine, CONH₂-py = isonicotinamide) and under heating at 100°C for 4 h.

Figure S7. ¹H NMR spectra of compound **4** in DMSO-d₆ in presence of competing ligands (py = pyridine) and/or under heating at 100° C for 4 h.

Figure S8. ¹H NMR spectra of compound **4** in DMSO-d₆ in presence of competing ligands (^tBu-py = 4-tertbutylpyridine, CONH₂-py = isonicotinamide) and under heating at 100°C for 4 h.

Luminesce in solution: ¹H NMR data

Figure S9. ¹H NMR spectra of DMSO-d₆ solution of compound **3** before and after UV irradiation (λ = 365 nm).

Figure S10. ¹H NMR spectra of DMSO-d₆ solution of compound **4** before and after UV irradiation (λ = 365 nm).

TGA data and FTIR spectra

Figure S11. TG and DTG curves of 1.8H₂O.

Figure S12. TG and DTG curves of 2.2CH₃CN.

Figure S13. FTIR spectrum of 3 in comparison with pyrazole and 1.8H₂O.

Figure S14. TG and DTG curves of 3.

Figure S15. FTIR spectrum of 4 in comparison with pyrazole and 2·2CH₃CN.

Figure S16. TG and DTG curves of 4.

Crystal structure data

Table S2. Selected crystallographic parameters of the single-crystal X-ray diffraction structural analysis for $K_2[Mo_6I_8(OH)_6] \cdot 13H_2O$ $(1 \cdot 13H_2O)$ $[Mo_6I_8(H_2O)_6](NO_3)_4 \cdot 2H_2O$ $(2 \cdot 2H_2O)$ $K_2[Mo_6I_8(pz)_6] \cdot 6pzH$ $(3 \cdot 6pzH)$ $[Mo_6I_8(pzH)_6](NO_3)_4 \cdot 4pzH$ $(4 \cdot 4pzH)$ $(4 \cdot 4pzH)$

Compound	1·13H₂O	2·2H₂O	3∙6pzH	4∙4pzH	
CCDC	2363823	2363821	2363822	2363824	
Empirical formula	H32l8K2M06O19	H16l8M06N4O20	C36H42I8K2M06N24	C30H40I8M06N24O12	
Formula weight	2005.29	1983.01	2479.97	2519.70	
Temperature, K	220	150	150	150	
Crystal system	Triclinic	Triclinic	Trigonal	Monoclinic	
Space group	P 1	P Ī	R 3	<i>P</i> 2 ₁ /n	
<i>a,</i> Å	9.6328(4)	10.5953(2)	17.3571(3)	11.0559(3)	
b, Å	11.7341(5)	10.7947(2)	17.3571(3)	11.5527(3)	
<i>c,</i> Å	15.9020(7)	15.9552(3)	17.8314(6)	24.1189(6)	
<i>α,</i> °	88.590(2)	90.1550(10)	90	90	
<i>в,</i> °	86.932(2)	90.6780(10)	90	101.3400(10)	
γ, °	88.658(2)	117.1390(10)	120	90	
<i>V</i> , Å ³	1793.88(13)	1623.75(5)	4652.3(2)	3020.46(14)	
Z	2	2	3	2	
ρ_{calc} , g/cm ³	3.712	4.056	2.656	2.770	
μ, mm⁻¹	9.207	9.925	5.343	5.368	
F (000)	1796	1760	3420	2320	
Crystal size	0.07 × 0.08 × 0.03	$0.24 \times 0.18 \times 0.16$	0.08 × 0.07 × 0.03	$0.20 \times 0.14 \times 0.09$	
Θ range for data collection, $\ ^\circ$	2.135 to 31.547	1.276 to 27.604	2.347 to 28.288	2.215 to 34.355	
	$-14 \le h \le 14$	$-13 \le h \le 13$	–20 ≤ <i>h</i> ≤ 23	$-17 \le h \le 17$	
Index ranges	$-17 \le k \le 17$	$-14 \le k \le 14$	–23 ≤ <i>k</i> ≤ 22	$-18 \le k \le 18$	
	–23 ≤ / ≤ 23	<i>−</i> 20 ≤ <i>l</i> ≤ 20	–23 ≤ l ≤ 23	-33 ≤ / ≤ 38	
Reflections collected	40283	13976	18111	69472	
Independent reflections	11877 [R _{int} = 0.0322]	7429 [R _{int} = 0.0411]	2572 [R _{int} = 0.0369]	12673 [R _{int} = 0.0496]	
Data/restraints/parameters	11877/0/317	7429/15/353	2572/0/125	12673/18/375	
Goodness-of-fit on F ²	1.036	1.080	1.088	1.068	
$R_1 / wR_2(I > 2\sigma(I))$	0.0279/0.0655	0.0333/0.0817	0.0223/0.0448	0.0306/0.0586	
R1 / wR1 (all data)	0.0363/0.0681	0.0369/0.0836	0.0325/0.0467	0.0505/0.0617	
Δρ _{max} /Δρ _{min} (e·Å ⁻³)	2.546/-2.540	1.448/-1.745	0.571/-0.532	1.377/-1.271	

References

- 1. M. A. Mikhaylov, P. A. Abramov, V. Y. Komarov and M. N. Sokolov, *Polyhedron*, 2017, **122**, 241-246.
- 2. M. V. Marchuk, N. A. Vorotnikova, Y. A. Vorotnikov, N. V. Kuratieva, D. V. Stass and M. A. Shestopalov, *Dalton Trans.*, 2021, **50**, 8794-8802.
- 3. M. A. Mikhaylov, A. S. Berezin, T. S. Sukhikh, D. G. Sheven', N. B. Kompankov and M. N. Sokolov, *J. Struct. Chem.*, 2022, **63**, 2101-2112.
- 4. A. A. Ulantikov, K. D. Podolets, T. S. Sukhikh, Y. V. Mironov, K. A. Brylev and Y. M. Gayfulin, *Polyhedron*, 2024, **247**, 116737.
- 5. A. D. Mironova, M. A. Mikhailov, K. A. Brylev, A. L. Gushchin, T. S. Sukhikh and M. N. Sokolov, *New J. Chem.*, 2020, **44**, 20620-20625.
- 6. A. Mironova, A. Gushchin, P. Abramov, I. Eltsov, A. Ryadun and M. Sokolov, *Polyhedron*, 2021, **205**, 115282.