Supplementary information

Smaller rare-earth cation and mixed valent Mn incorporation as a dual strategy to enhance ferrimagnetic ordering temperatures in A-site ordered quadruple perovskites, $LnCu_3Mn_{1+x}Ti_{3-x}O_{12}$ (Ln = La, Nd; x = 0, 0.3)

Lalit Kumar,^{a, b} Sujan Sen^a and Tapas Kumar Mandal^{*, a, c}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee – 247667, India

^bDepartment of Applied Science and Humanities, Invertis University, Bareilly – 243123, India

^cCenter for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee – 247667, India.

Corresponding author:

*E-mail: tapas.mandal@cy.iitr.ac.in

Fig. S1 P-XRD patterns of (a) $LaCu_3MnTi_3O_{12}$, (b) $NdCu_3MnTi_3O_{12}$, (c) $LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$, and (d) $NdCu_3Mn_{1.3}Ti_{2.7}O_{12}$.

Table S1 Refined positional (x, y, z), thermal (B), occupancy parameters and reliability factors for $LnCu_3Mn_{1+x}Ti_{3-x}O_{12}$ (Ln = La, Nd; x = 0, 0.3)

Atom Site Position $LaCu_3MnTi_3O_{12}$ $NdCu_3MnTi_3O_{12}$ $LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$ $NdCu_3Mn_{1.3}Ti_{2.7}O_{12}$

a (Å	.)		7.4663(6)	7.4526(8)	7.4515(6)	7.4363(5)		
0	24g	x	0.3042(1)	0.3014(5)	0.3176(1)	0.3020(9)		
		у	0.1819(1)	0.1799(4)	0.1910(4)	0.1801(2)		
Occ (Mn/Ti) _{8c}			0.25/0.75	0.25/0.75	0.325/0.675	0.325/0.675		
B(Ų) (A) _{2a}			0.32(4)	0.42(5)	0.65(1)	0.78(1)		
B(Ų) (Cu) _{6b}			0.18(2)	0.32(4)	0.48(4)	0.67(6)		
B(Ų) (Mn/Ti) _{8c}			0.25(3)	0.51(3)	0.36(4)	0.75(5)		
B(Ų) (O) _{24g}		0.81(6)	0.78(8)	0.98(8)	0.87(9)			
R _p (%)		3.62	4.21	6.14	4.15			
R _{wp} (%)		5.12	5.73	7.20	6.18			
R _{Bragg} (%)		2.76	4.08	5.64	4.57			
R _F (%)		2.11	2.29	4.61	2.71			
χ ²		2.79	2.27	4.57	3.10			

Atomic positions: La/Nd 2a (0, 0, 0), Cu 6b (0, 0.5, 0.5), Mn/Ti 8c (0.25, 0.25, 0.25), O 24g (*x*, *y*, 0). The occupancy of rest La/Nd, Cu and O are 1. A = La or Nd.

Lengths (Å); LaCu₃MnTi₃O₁₂ NdCu₃MnTi₃O₁₂ LaCu₃Mn_{1.3}Ti_{2.7}O₁₂ NdCu₃Mn_{1.3}Ti_{2.7}O₁₂ Angles (°);

BVS					
*A – O (× 12)	2.633(7)	2.603(7)	2.631(4)	2.602(9)	
Cu – O (× 4)	1.985(7)	1.987(8)	1.983(4)	1.980(8)	
Mn/Ti – O (× 6)	1.966(3)	1.963(3)	1.965(3)	1.958(5)	
∠Mn/Ti – O – Mn/Ti	141.6(3)	141.7(8)	140.5(8)	141.5(8)	
∠Mn/Ti – O – Cu	108.9(4)	108.8(4)	109.7(4)	108.7(4)	
*∠A – O – Cu	106.2(6)	107.0(7)	102.2(6)	106.6(6)	
*∠A – O – Mn/Ti	87.5(4)	88.2(4)	84.1(4)	88.6(5)	
BVS (A)*	3.28	3.12	3.26	3.31	
BVS (Cu)	1.75	1.82	1.80	1.72	
BVS (Mn/Ti)	3.84	3.86	3.70	3.96	
*A = La or Nd					

Table S2 Bond lengths, bond angles and bond valence sums of $LnCu_3Mn_{1+x}Ti_{3-x}O_{12}$ (Ln = La, Nd; x

= 0, 0.3)

Fig. S2 FE-SEM images of (a) $LaCu_3MnTi_3O_{12}$, (b) $NdCu_3MnTi_3O_{12}$, (c) $LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$, and (d)

 $NdCu_{3}Mn_{1.3}Ti_{2.7}O_{12}.$

Fig. S3 EDS data of (a) $LaCu_3MnTi_3O_{12}$, (b) $NdCu_3MnTi_3O_{12}$, (c) $LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$, and (d)

 $NdCu_{3}Mn_{1.3}Ti_{2.7}O_{12}.$

Fig. S4 Survey XPS spectra of (a) $LaCu_3MnTi_3O_{12}$, (b) $NdCu_3MnTi_3O_{12}$, (c) $LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$, and (d) $NdCu_3Mn_{1.3}Ti_{2.7}O_{12}$.

 $\label{eq:stable_stable_stable_stable} \textbf{Table} \quad \textbf{S3} \quad \text{XPS} \quad \text{binding} \quad \text{energies} \quad \text{of} \quad \text{LaCu}_3 \text{MnTi}_3 \text{O}_{12}, \quad \text{NdCu}_3 \text{MnTi}_3 \text{O}_{12}, \quad \text{LaCu}_3 \text{Mn}_{1.3} \text{Ti}_{2.7} \text{O}_{12}, \quad \text{and} \quad \text{NdCu}_3 \text{MnTi}_3 \text{O}_{12}, \quad \text{LaCu}_3 \text{Mn}_{1.3} \text{Ti}_{2.7} \text{O}_{12}, \quad \text{and} \quad \text{NdCu}_3 \text{MnTi}_3 \text{O}_{12}, \quad \text{LaCu}_3 \text{Mn}_{1.3} \text{Ti}_{2.7} \text{O}_{12}, \quad \text{AdCu}_3 \text{Mn}_{1.3} \text{Ti}_{2.7} \text{O}_{12}, \quad \text{AdCu}_3 \text{Mn}_{1.3} \text{Mn}_{1.3$

Compounds	$LaCu_3MnTi_3O_{12}$	$NdCu_3MnTi_3O_{12}$	$LaCu_3Mn_{1.3}Ti_{2.7}O_{12}$	$NdCu_{3}Mn_{1.2}Ti_{2.7}O_{12}$	Ref.
Mn 2p _{3/2} (eV)	641.7	641.4	641.6 (Mn ³⁺)	641.5 (Mn ³⁺)	
			643.5(Mn ⁴⁺)	643.7(Mn ⁴⁺)	1
Mn 2p _{1/2} (eV)	653.2	653.3	652.7(Mn ³⁺)	652.5(Mn ³⁺)	
			654.2 (Mn ⁴⁺)	654.8 (Mn ⁴⁺)	1
Cu 2p _{3/2} (eV)	933.5	933.2	933.8	933.6	2
Cu 2p _{1/2} (eV)	953.7	953.4	953.7	953.6	2

 $NdCu_{3}Mn_{1.3}Ti_{2.7}O_{12} \\$

Fig. S5 Inverse magnetic susceptibility vs. temperature plots of (a) LaCu₃MnTi₃O₁₂, (b)

 $NdCu_{3}MnTi_{3}O_{12}$, (c) $LaCu_{3}Mn_{1.3}Ti_{2.7}O_{12}$, and (d) $NdCu_{3}Mn_{1.3}Ti_{2.7}O_{12}$.

Fig. S6 χ'' vs. T plots of (a) LaCu₃MnTi₃O₁₂, (b) NdCu₃MnTi₃O₁₂, (c) LaCu₃Mn_{1.3}Ti_{2.7}O₁₂, and (d)

$NdCu_{3}Mn_{1.3}Ti_{2.7}O_{12}$

Fig. S7 Magnetization vs. magnetic field plots of (a) NdCu₃MnTi₃O₁₂ at 60 K, and (b)

Fig. S8 Heat capacity data (a) C_p vs. T, (b) C_p/T vs. T, (c) C_p/T vs. T² and (d) lattice contribution (red) and magnetic contribution (blue) to total heat capacity (black) of LaCu₃Mn_{1.3}Ti_{2.7}O₁₂.

Fig. S9 Heat capacity data (a) C_p vs. T, (b) C_p/T vs. T, (c) C_p/T vs. T² and (d) lattice contribution (red) and magnetic contribution (blue) to total heat capacity (black) of NdCu₃Mn_{1.3}Ti_{2.7}O₁₂.

Fig. S10 $ln\rho$ vs. T^{-1} of (a) LaCu₃MnTi₃O₁₂, (b) NdCu₃MnTi₃O₁₂, (c) LaCu₃Mn_{1.3}Ti_{2.7}O₁₂, and (d)

NdCu₃Mn_{1.3}Ti_{2.7}O₁₂.

References

- M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, *Appl. Surf. Sci.*, 2010, 257, 887.
 M. Oku, K. Hirokawa, S. Ikeda, *J. Electron Spectrosc. Related Phenom.*, 1975, 7, 465.