Supporting Information

mer-M(CO)₃(PNP)^{0/+}Pincer Complexes (M = W(0) or Re(I); PNP = 4,5-

Bis(diphenylphosphino)acridine): Synthesis, Spectroscopy and Anti-Kasha Emission

Yifei Gao,[‡] John H. K. Yip,*[‡] Eu Gene Lim,[‡] Van Ha Nguyen*[†]

Table S1	Crystal	data of 1	$\cdot 2CH_{2}Cl_{2}$	and $2 \cdot 1$.5CH ₂ Cl ₂ ·	$1/2H_2O$
	_		2 2		- 2 2	4

Table 51 Crystal data of 1 2CH2Cl2 a		
Compounds	$1 \cdot 2 C H_2 C l_2$	$2 \cdot 1.5 \mathrm{CH}_2 \mathrm{Cl}_2 \cdot 1/2 \mathrm{H}_2 \mathrm{O}$
Empirical formula	$C_{42}H_{31}Cl_4NO_3P_2W$	$C_{41.50}H_{31}Cl_4NO_{3.50}P_2Re$
Formula weight	985.27	989.61
Crystal system	Monoclinic	Triclinic
Space group	$P2_{1}/n$	P ₁
Unit cell dimensions		
$a(\text{\AA})$	9.4778(6)	11.8019(6)
$b(\text{\AA})$	18.2165(12)	17.4795(8)
c(Å)	21.7061(14)	19.5354(10)
$\alpha(^{\circ})$	90	92.227(2)
$\beta^{(\circ)}$	90.038(3)	91.695(2)
γ(°)	90	109.672(2)
Volume (Å ³)	3747.6(4)	3788.0(3)
Ζ	4	4
Calculated density (g cm ⁻³)	1.671	1.735
Absorption coefficient (mm ⁻¹)	3.423	3.62
<i>F</i> (000)	1860	1952
Crystal size (mm ³)	0.27 imes 0.18 imes 0.16	0.28 imes 0.07 imes 0.07
□ range for data collection (°)	2.6 to 28.3	2.5 to 28.5
	-12 ≤ <i>h</i> ≤ 12,	-15 ≤ <i>h</i> ≤ 15,
Index ranges	-24 <i>≤k≤</i> 24,	$-23 \leq k \leq 23,$
	-28 ≤ <i>l</i> ≤ 28	$0 \leq l \leq 26$
Reflections collected	91202	19284
Independent reflections [R(int)]	9311	19284
independent reflections [A(int)]	0.0407	0.058
Max and min transmission	0.7457 and	0.746 and
Max. and mm. transmission	0.5065	0.608
Data/restraints/parameters	9311/ 0 /478	19284/ 104 / 98 <u>1</u>
Goodness-of-fit	1.233	07
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0359	Rl = 0.0648
1 mar it matters [1 > 20(1)]	wR2 = 0.0840	wR2 = 0.125
Largest diff. peak and hole (e.Å ⁻³)	1.53 and -2.08	2.88 and -2.99

	1		2
W(1)-P(1)	2.401(1)	Re(1)-P(1)	2.374(2)
W(1)-P(2)	2.415(1)	Re(1)-P(2)	2.381(2)
W(1)-N(1)	2.280(4)	Re(1)-N(1)	2.217(8)
W(1)-C(14)	2.027(5)	Re(1)-C(14)	1.987(12)
W(1)-C(16)	2.020(5)	Re(1)-C(15)	1.969(11)
W(1)-C(15)	1.950(5)	Re(1)-C(16)	1.914(9)
P(1)-W(1)-P(2)	156.62(4)	P(1)-Re(1)-P(2)	161.49(9)
N(1)-W(1)-P(1)	79.2(1)	N(1)-Re(1)-P(1)	80.9(2)
N(1)-W(1)-P(2)	79.0(1)	N(1)-Re(1)-P(2)	80.5(2)
C(14)-W-C(16)	169.2(2)	C(14)-Re(1)-C(15)	174.8(4)
C(14)-W-C(15)	83.1(2)	C(15)-Re(1)-C(16)	87.9(4)

Table S2. Selected bond lenghts (Å) and angles (deg) in 1.2CH₂Cl₂ and 2.1.5CH₂Cl₂.1/2H₂O

Table S3Selected bond lenghts ((Å) and angles (°) of the other independent				
molecule in the crystal of 2 .					
Re(2)-P(3)	2.375(2)				
Re(2)-P(4)	2.373(2)				
Re(2)-N(2)	2.214(8)				
Re(2)-C(30)	1.973(11)				
Re(2)-C(31)	1.963(12)				
Re(2)-C(32)	1.930(10)				
P(3)-Re(2)-P(4)	161.49(9)				
N(2)-Re(2)-P(3)	80.3(2)				
N(2)-Re(2)-P(4)	80.9(2)				
C(30)-Re(2)-C(31)	172.3(4)				
C(30)-Re(2)-C(32)	86.5(4)				
P(3)-Re(2)-C(31)	92.2(3)				
P(3)-Re(2)-C(32)	99.8(3)				
N(2)-Re(2)-C(32)	174.8(4)				
N(2)-Re(2)-C(30)	88.3(4)				

 Table S4. Experimental and calculated frequency of CO vibrations

Table S4. Experimental and calculated frequency of CO vibrations						
Complexes	Experimental /calculated frequencies of vibrational modes (cm ⁻¹)					
	$A_1(1)$ B_1 $A_1(2)$					
1	1950/ 1938	1845/ 1862	1815/ 1849			
2	2075/ 2026	1970/ 1950	1916/ 1934			

		//					
	Contribution						
Orbital	Metal		D	60	60	A · 1·	
	p	d	- P	CO_{eq}	CO _{ax}	Acriaine	
	•		1				
L+2	1.1	0.1	1.9	0.1	2.1	70.3	
L+1	0.1	0.2	0.3	0.0	0.2	95.2	
L	0.1	0.5	1.1	0.4	0.4	95. 7	
Н	2.6	61.0	5.7	21.7	1.4	3.9	
H-1	0.0	53.1	1.3	12.5	24.1	8.2	
H-2	0.0	59.2	5.9	0.1	24.6	0.9	
H-3	0.1	3.1	0.8	0.4	0.9	82.1	
			2				
L+2	10.6	0.2	5.3	0.5	69.7	0.0	
L+1	15.5	3.2	2.6	0.0	71.9	3.3	
L	0.0	0.2	1.0	0.3	0.2	96.7	
Н	2.9	49.7	7.8	15.5	0.8	1.3	
H-1	0.0	16.3	1.3	3.5	5.0	66.4	
H-2	0.4	43.6	4.1	0.3	11.2	5.4	
H-3	0.9	29.9	8.7	1.9	3.4	6.7	
H-4	0.0	31.1	0.2	5.4	8.8	11.7	

Table S5. B3PW91/(6-31G(d) + SDD) calculated compositions of frontier orbitals of **1** and **2** with the major contributors highlighted in bold (CO_{ax} and CO_{eq} stand for axial and equatorial CO, respectively).

		1				2	
Transitio	λ(nm	Oscillato		Transitio	λ(nm	Oscillato	
n)	r		n)	r	
		strength				strength	
$H-2 \rightarrow L$	757	0.0032	$d_{yz} \rightarrow \pi^*$ (acridin	$H-1 \rightarrow L$	422	0.1287	$d_{xz} \rightarrow \pi^*(acridine)$
(100%)	7 21	0.0407	e)	(98%)	410	0.000	$\pi \rightarrow \pi^*$ (acridine)
$\begin{array}{c} H-1 \rightarrow L \\ (99\%) \end{array}$	/31	0.0427	$d_{xz} \rightarrow \pi^*$ (acridin e)	$\begin{array}{c} H-2 \rightarrow L \\ (98\%) \end{array}$	412	0.0029	$d_{yz} \rightarrow \pi^*(acridine)$
$H \rightarrow$	435	0.0108	$d_{xy} \rightarrow \pi^*(CO_{ax})$	$H-7 \rightarrow L$	343	0.0249	$\pi(Ph) \rightarrow \pi^*(acridin)$
L+3				(94%)			e)
(85%)							
$H \rightarrow$							
L+6							
(12%)	207	0 0072		II 10 .	225	0.0144	$-(\mathbf{D}_{1}) \rightarrow -*(, -, 1)$
$H-3 \rightarrow L$ (06%)	391	0.00/5	π	$H-10 \rightarrow I (01\%)$	333	0.0144	$\pi(Pn) \rightarrow \pi^*(acridin)$
(9070)			$\rightarrow \pi^{*}(\operatorname{acridine})_{i}$	$H_7 \rightarrow I$			6)
				(5%)			
$H \rightarrow L+4$	377	0.0167	$d_{xy} \rightarrow \pi^*(CO_{ax})$	$H-12 \rightarrow$	318	0.1092	$\pi \rightarrow \pi^*$ (acridine)
(6%)			xy (ux)	L (77%))
$H \rightarrow L+5$				H–1 →			
(49%)				L+3			
$H \rightarrow L+6$				(18%)			
(35%)							
$H-2 \rightarrow$	326	0.0816	$d_{yz} \rightarrow \pi^*(CO_{ax})$				
L+6							
(65%) H 2 \							
n-2 → I +3							
(11%)							
(11/0)							

 Table S6. Calculated energies and major components of selected electronic transitions for 1 and 2 (intense transitions are in bold).

Figure S1. Stacking of molecules of 1 in crystal.

Figure S2a. ¹H NMR spectrum of 1 in CD₂Cl₂ (400 MHz)

Figure S2b. ${}^{31}P{}^{1}H$ NMR spectrum of 1 in CD₂Cl₂ (162 MHz)

Figure S3a. ¹H NMR spectrum of 2 in CD₂Cl₂ (400 MHz)

Figure S3b. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in CD₂Cl₂ (162 MHz)

Figure S4. ESI-MS of 2.

Figure S5a. Experimental (black) and DFT-calculated (Blue) IR spectra for 1 (B3PW91/LANL2DZ+6-31G(d); 0.94)

Figure S5b. Experimental (black) and DFT-calculated (blue) IR spectra for **2** (B3PW91/LANL2DZ+6-31G(d); 0.94)