Synthesis and reactivity of air stable Ni(II) complexes

with isocyanides and dialkyldithiophosphate ligands:

acyclic diaminocarbene formation

Lucía Álvarez-Miguel, *‡*a* Clara del Carmen-Rodríguez, *‡^b* María Valle, *^b* Raúl García-Rodríguez, *^b*

Celedonio M. Álvarez, ^b José M. Martín-Álvarez ^b and Daniel Miguel ^b.

^a Grupo SOSCATCOM, Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia and Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

^b GIR MIOMET-IU CINQUIMA/Química Inorgánica, Facultad de Ciencias Universidad de Valladolid, 47011 Valladolid (Spain).

Supplementary Information

Page S1-S2: General synthesis and optimization of the one-pot reaction conditions for complexes

3b-3f.

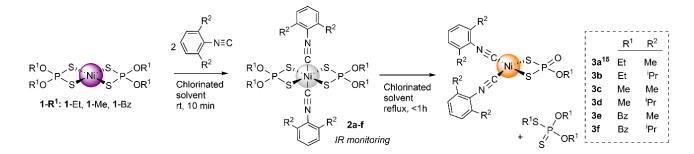
Page S3: ³¹P{¹H} NMR spectra monitoring of the reaction evolution of *bis* carbene bridge 7

Pages S4-S62: ¹H, ¹³C {¹H}, ³¹P{¹H} and bidimensional NMR spectra for neutral and cationic

(carbene)complexes 3b-3f, 4a-4g, 5a-5g, 6a-6h and 7.

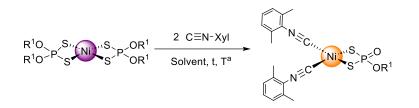
Pages S63-S66: X ray diffraction structures and crystallographic data of complexes 2e, 3c, 3d, 3e,

4a, 4c, 4e, 4f, 5b, 5c, 5e, 6c, 6e, 6g, 6h, 7 and 8.


General protocol for the synthesis of [Ni{S₂P(OR¹)₂}₂(CNXyl)₂], 3a-3f

One-pot preparation of [Ni{S₂P(OR)₂}], 1-R.^[1]

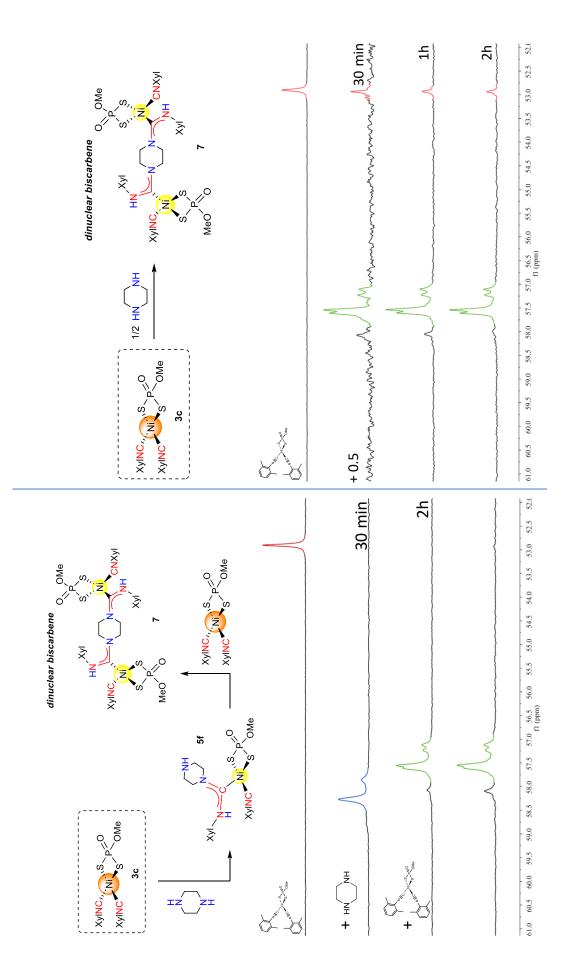
P₄S₁₀ (0.224 g, 0.5 mmol) was dissolved in the alcohol (MeOH, EtOH, ⁱPrOH, BzOH; 15 mL, excess) with magnetic stirring under N₂ in a round bottom flask equipped with a bubbler to purge the formed H₂S gas. Once the gas production had subsided, the solvent was evaporated under reduced pressure to *ca.* 80% volume to purge the dissolved H₂S gas. NiCl₂.6H₂O (0.238 g, 1 mmol) was added, and the mixture was stirred vigorously to afford a purple solution which was filtered and concentrated under reduced pressure. Addition of hexane produced the precipitation of **1** as purple microcrystals which were recrystallised from CH₂Cl₂/hexane. **1-Me** Yield: 0.345 g, 92 %. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 97.95 ppm. **1-Et** Yield: 0.405 g, 94 %. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 92.66 ppm. **1-**ⁱ**Pr** Yield: 0.457 g, 94 %. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 92.68 ppm. **3**¹P{¹H} NMR (CDCl₃, 162 MHz): δ 88.46 ppm. **1-Bz** Yield: 0.635 g, 94%. ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 93.53 ppm.


General synthesis of neutral diisocyanide alkylphosphate Ni(II) complexes (3a-3f).

To a solution of $[Ni{S_2P(OR)_2}_2]$ **1-R** (1 mmol) in dichloromethane (15 mL) was added *CNXyl* (0.266g, 2 mmol) or *CNAr* (0.374g, 2 mmol), and the octahedral **2n** complex was immediately detected by IR monitoring. The reaction conditions are detailed for each case (see below). The solvent was then evaporated in vacuo. The residue was washed with Et₂O (3 x 15 mL). The solid residue was recrystallized from CH₂Cl₂/ether. Slow evaporation gave **3a**^[2]-**3f** as orange microcrystals. Dialkyl-thoate byproducts have not been isolated but they have been detected by ¹H and ³¹P{¹H} NMR experiments. The data is in agreement with the literature.^[3]

Scheme S1. Formation of neutral diisocyanide alkyldithiophosphate nickel (II) complexes. The formation of complexes **3a-f** was followed by FT-IR.

Table S1. Conditions^[a] and yields for the reaction of dialkyldithiophosphate Ni(II) and two equivalents of isocyanide (CNXyI).


Entry	Solvent	R ¹	Temperature	Time ^[b]	Yield (%) ^[c]
,			i emperatare		
1	MeOH	Me	rt	24h	25
2	Toluene	Me	rt	24h	15
3	THF	Me	rt	24h	90
4	CH_2Cl_2	Me	rt	4h	90
5	CH_2Cl_2	Me	reflux	30 min	95
6	CHCl₃	Me	reflux	40 min	95
7	CH_2Cl_2	Me	MW 90°C	5 min	95
8	$C_2H_4Cl_2$	Et	reflux	5 days	80
9	CH_2Cl_2	Et	MW 140°C	40 min.	90
10	CH_2Cl_2	ⁱ Pr, Cy, ^t Bu	MW 140 °C	2 h	n. r.

[a] General conditions: $[Ni{(S_2POR)_2}_2]$, 0.15 mmol; CNXyl, 0.3 mmol; solvent 20 mL.

[b] FT-IR monitoring in solution.

[c] Isolated product.

$^{31}\text{P}\{^1\text{H}\}$ NMR spectra monitoring of the reaction evolution of *bis* carbene bridge 7

S3

¹H, ¹³C {¹H}, ³¹P{¹H} and bidimensional NMR spectra for neutral and cationic (carbene) complexes 3b-3f, 4a-4g, 5a-5g, 6a-6h and 7.

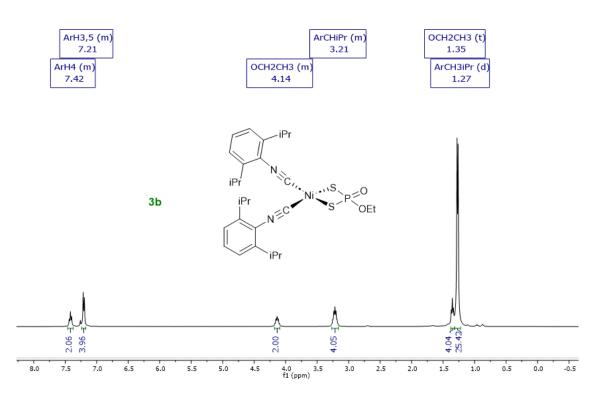


Figure S1. ¹H NMR (CDCl₃) of compound 3b, [Ni{S₂P(O)(OEt)}(CNAr)₂].

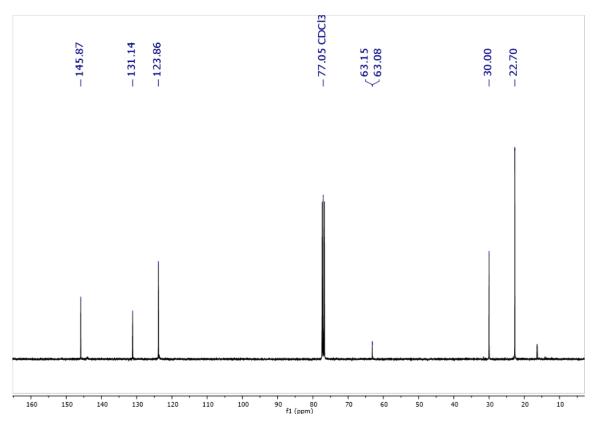


Figure S2. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 3b, [Ni{S₂P(O)(OEt)}(CNAr)₂].

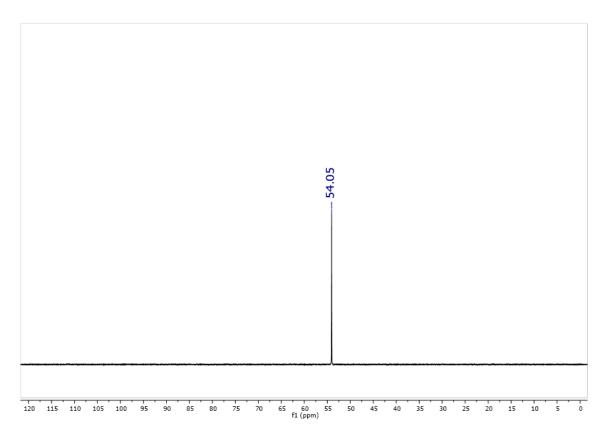


Figure S3. ${}^{31}P{}^{1}H{} NMR (CDCl_3)$ of compound 3b, $[Ni{S_2P(O)(OEt)}(CNAr)_2]$.

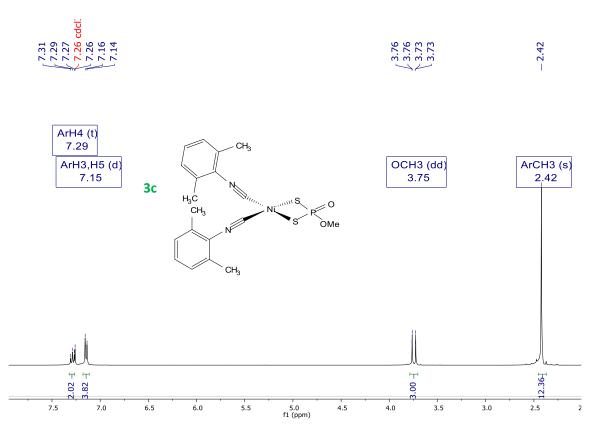
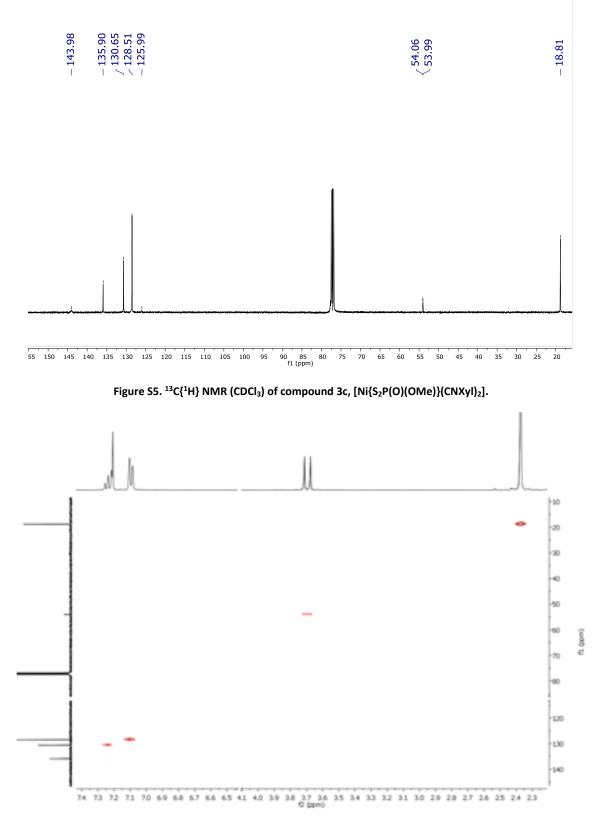



Figure S4. ¹H NMR (CDCl₃) of compound 3c, $[Ni{S_2P(O)(OMe)}(CNXyl)_2]$.

 $\label{eq:Figure S6. } ^1H^{-13}C\{^1H\} \ HSQC \ NMR \ (CDCl_3) \ of \ compound \ 3c, \ [Ni\{S_2P(O)(OMe)\}(CNXyl)_2].$

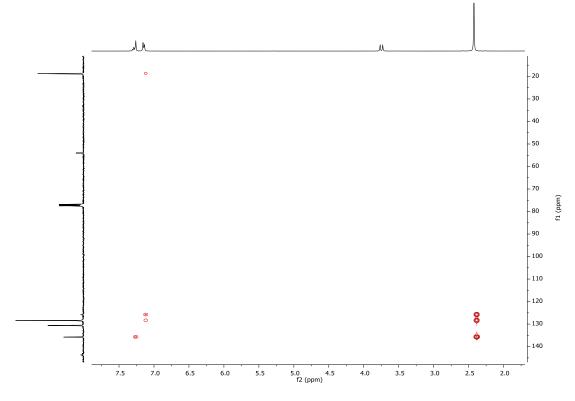


Figure S7. $^{1}H-^{13}C{^{1}H}$ HMBC NMR (CDCl₃) of compound 3c, [Ni{S₂P(O)(OMe)}(CNXyl)₂].

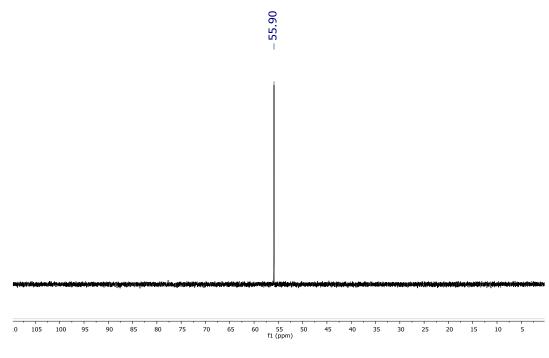


Figure S8. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃) of compound 3c, [Ni{S₂P(O)(OMe)}(CNXyl)₂].

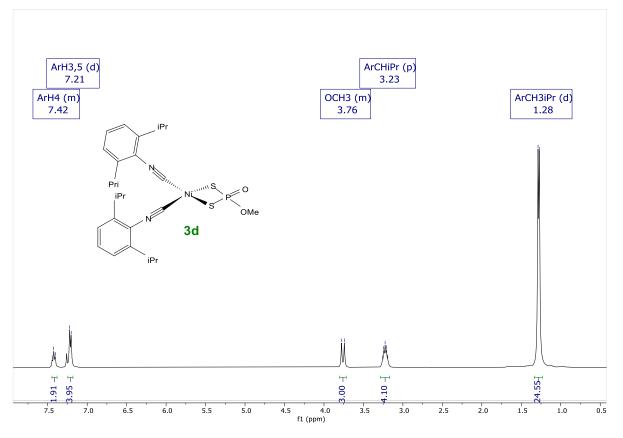


Figure S 9. ¹H NMR (CDCl₃) of compound 3d, [Ni{S₂P(O)(OMe)}(CNAr)₂].

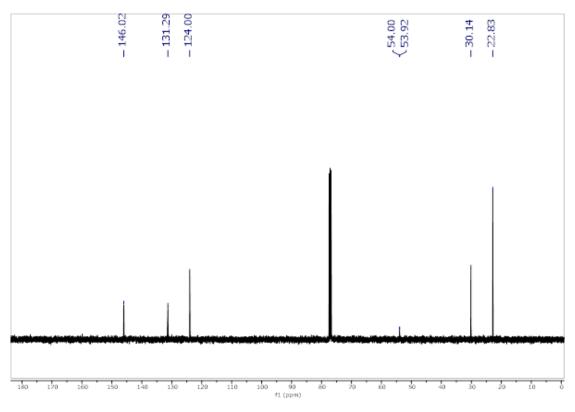


Figure S10. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 3d, [Ni{S₂P(O)(OMe)}(CNAr)₂].

Figure S 12. ${}^{1}H{}^{13}C{}^{1}H$ HSQC (CDCl₃) of compound 3d, [Ni{S₂P(O)(OMe)}(CNAr)₂].

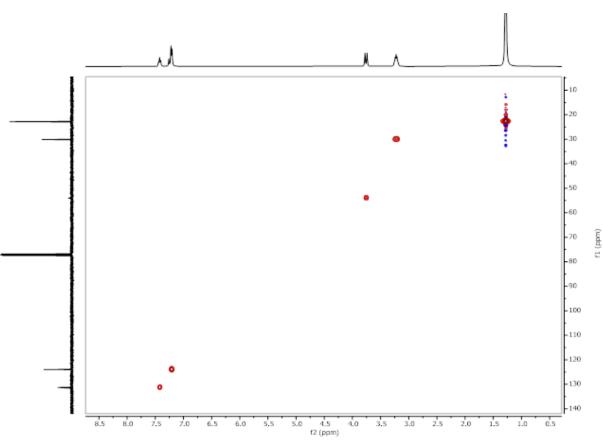
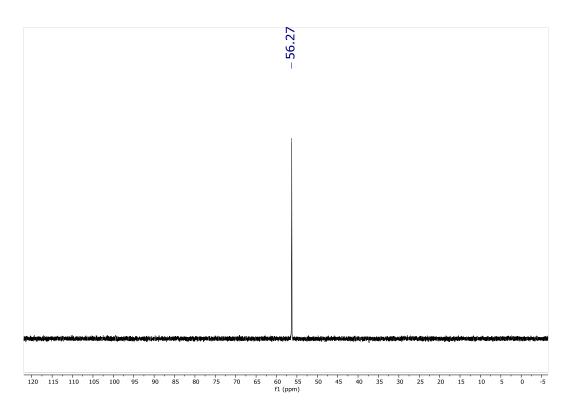
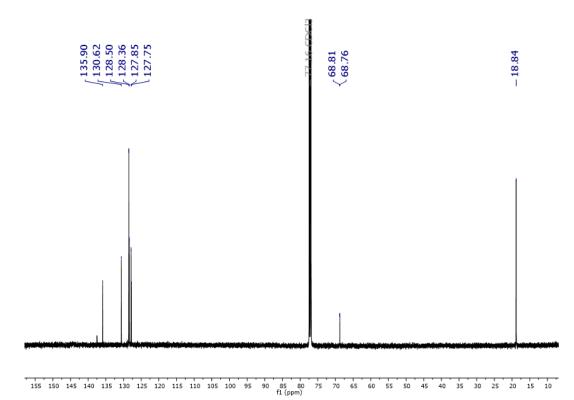
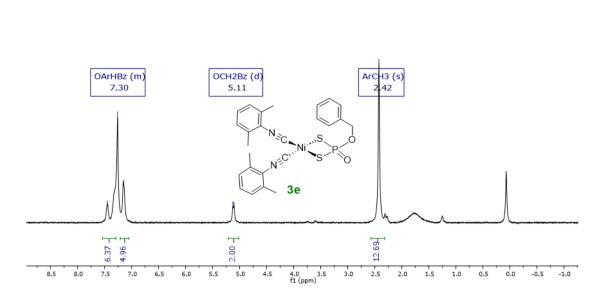
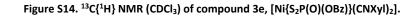



Figure S11. $^{31}P\{^{1}H\}$ NMR (CDCl3) of compound 3d, [Ni{S2P(O)(OMe)}(CNAr)2].


Figure S13. ¹H NMR (CDCl₃) of compound 3e, [Ni{S₂P(O)(OBz)}(CNXyl)₂].

- 2.42

 $<_{5.13}^{5.13}$

~7.45 ~7.26 ~7.15

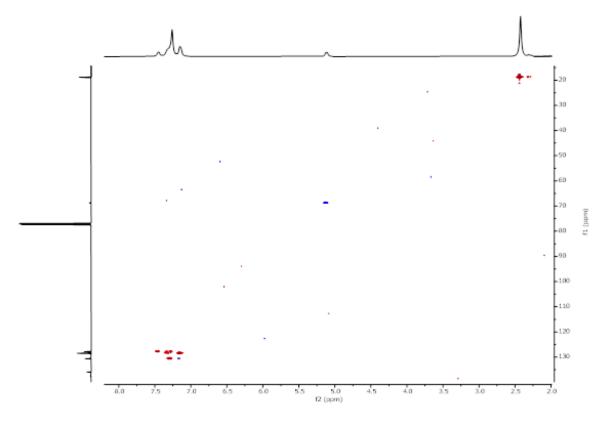


Figure S 15. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (CDCl₃) of compound 3e, [Ni{S₂P(O)(OBz)}(CNXyl)₂].

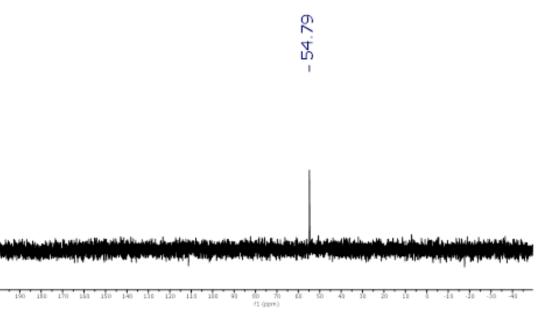


Figure S 16. ${}^{31}P{}^{1}H$ NMR (CDCl₃) of compound 3e, [Ni{S₂P(O)(OBz)}(CNXyl)₂].

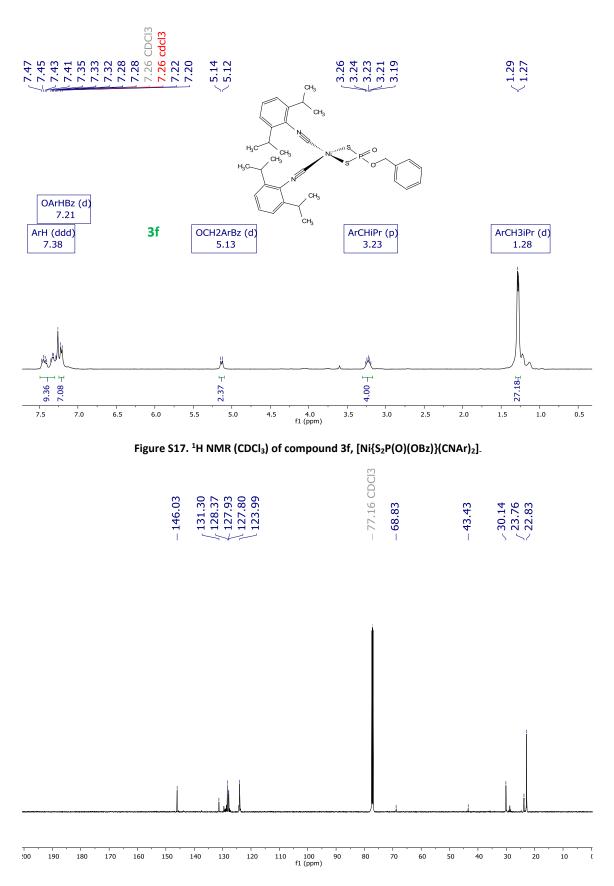


Figure S18. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 3f, [Ni{S₂P(O)(OBz)}(CNAr)₂].

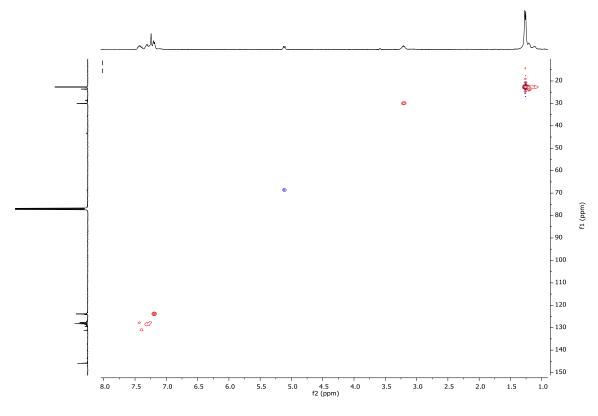


Figure S19. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (CDCl₃) of compound 3f, [Ni{S₂P(O)(OBz)}(CNAr)₂].

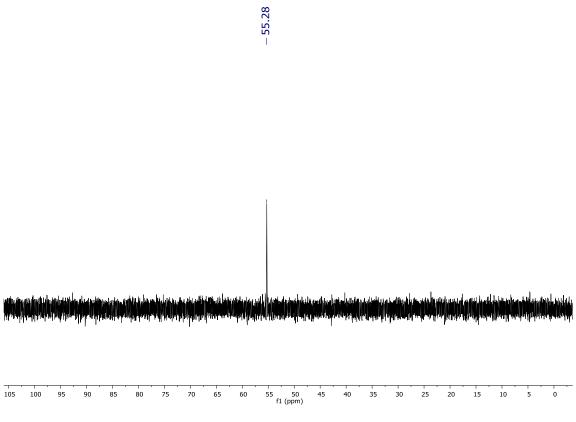


Figure S20. ${}^{31}P{}^{1}H$ NMR (CDCl₃) of compound 3f, [Ni{S₂P(O)(OBz)}(CNAr)₂].

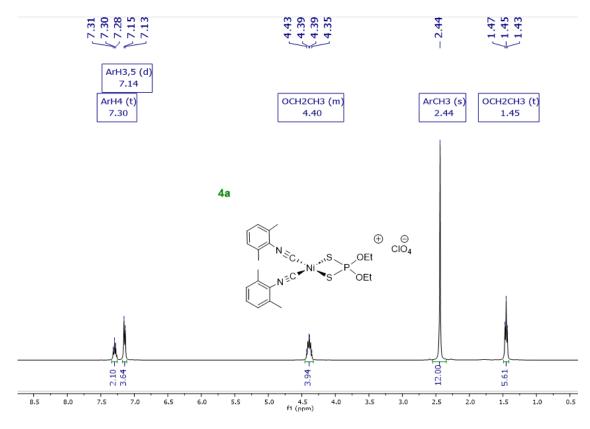


Figure S21. ¹H NMR (CDCl₃) of compound 4a, [Ni{S₂P(OEt)₂}(CNXyl)₂]ClO₄.

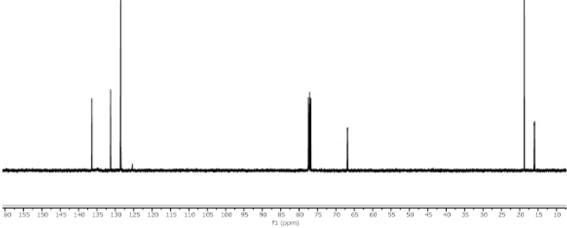


Figure S 22. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 4a, [Ni{S₂P(OEt)₂}(CNXyl)₂]ClO₄.

ė5

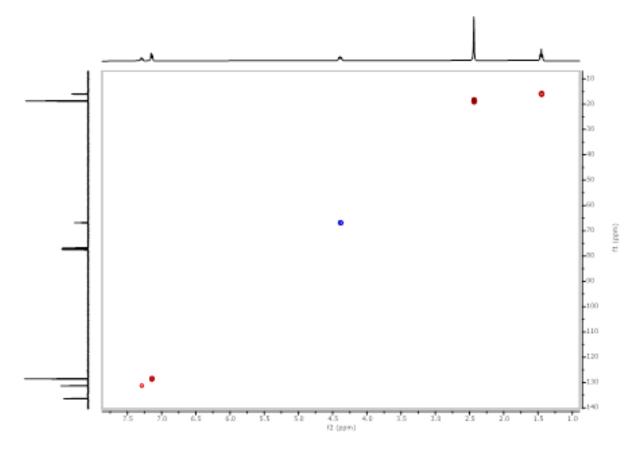
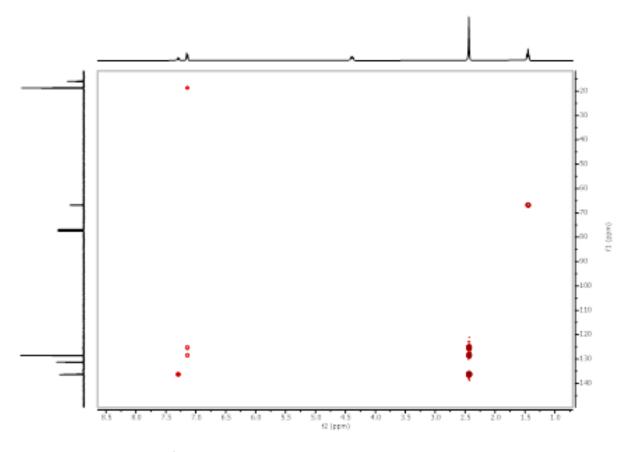


\$5

Figure S 23. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (CDCl₃) of compound 4a, [Ni{S₂P(OEt)₂}(CNXyl)₂]ClO₄.

 $\label{eq:Figure S 24. 1H-$^3C{1H} HMBC NMR (CDCI_3) of compound $4a, [Ni{S_2P(OEt)_2}(CNXyI)_2]CIO_4.$}$

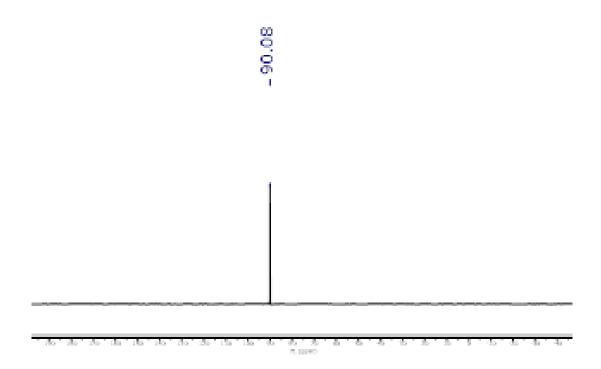


Figure S 25. $^{31}P\{^{1}H\}$ NMR (CDCl₃) of compound 4a, [Ni{S_2P(OEt)_2}(CNAr)_2]ClO_4.

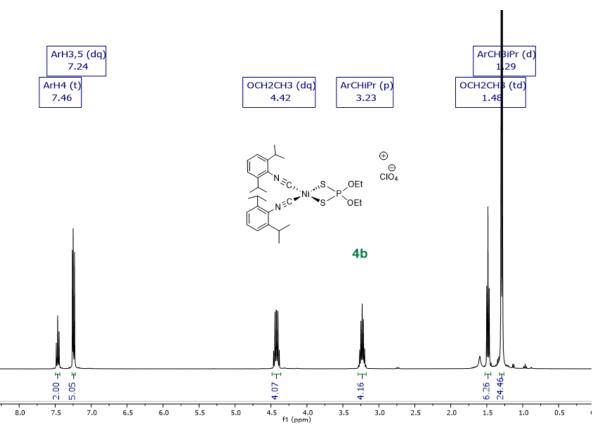


Figure S 26. ¹H NMR (CDCl₃) of compound 4b, [Ni{S₂P(OEt)₂}(CNAr)₂]ClO₄.

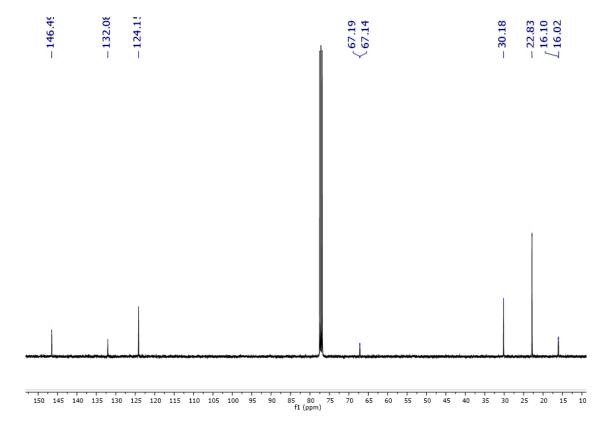


Figure S 27. ¹³C{¹H} NMR (CDCl₃) of compound 4b, [Ni{S₂P(OEt)₂}(CNAr)₂]ClO₄.

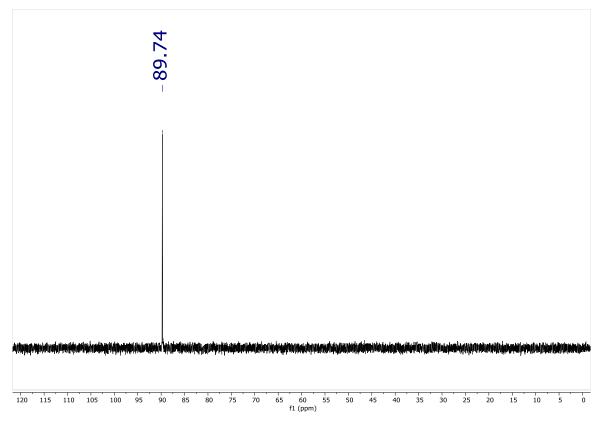
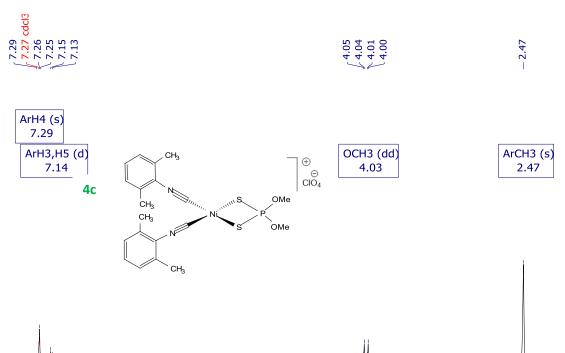



Figure S 28. ³¹P{¹H} NMR (CDCl₃) of compound 4b, [Ni{S₂P(OEt)₂}(CNAr)₂]ClO₄.

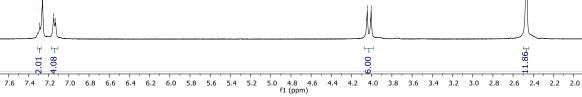


Figure S29. ¹H NMR (CDCl₃) of compound 4c, [Ni{S₂P(OMe)₂}(CNXyl)₂]ClO₄.

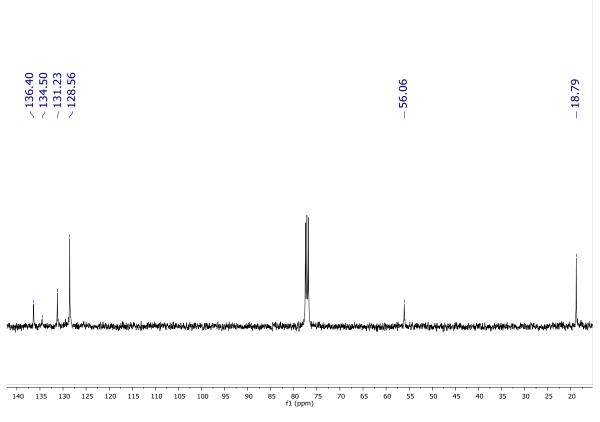


Figure S30. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 4c, [Ni{S₂P(OMe)₂}(CNXyl)₂]ClO₄.

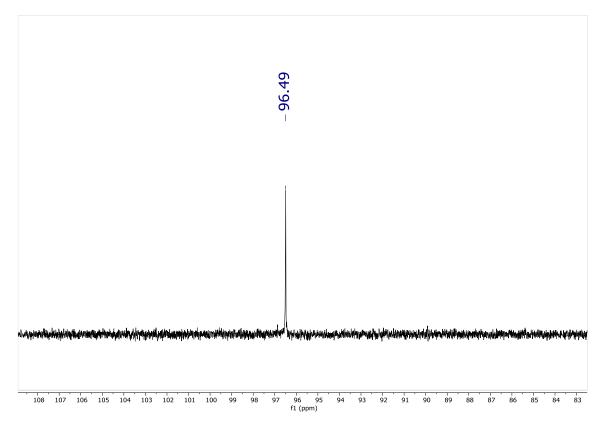


Figure S31. ${}^{31}P{}^{1}H$ NMR (CDCl₃) of compound 4c, [Ni{S₂P(OMe)₂}(CNXyl)₂]ClO₄.

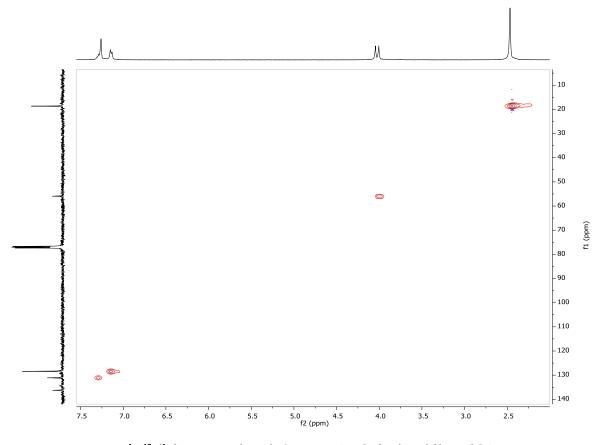


Figure S32. $^{1}H-^{13}C{^{1}H}$ HSQC NMR (CDCl₃) of compound 4c, [Ni{S₂P(OMe)₂}(CNXyl)₂]ClO₄.

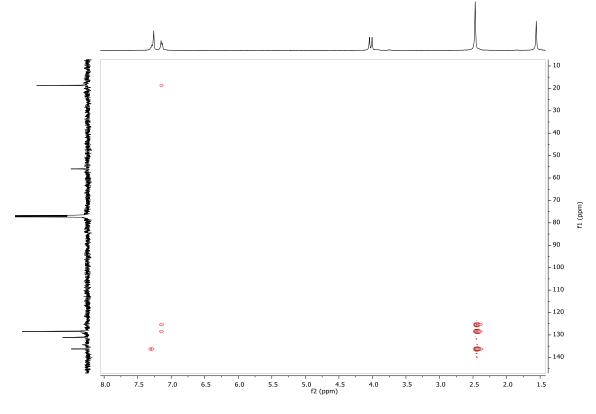


Figure S33. $^1H-^{13}C\{^1H\}$ HMBC NMR (CDCl₃) of compound 4c, [Ni{S₂P(OMe)₂}(CNXyl)₂]ClO₄.

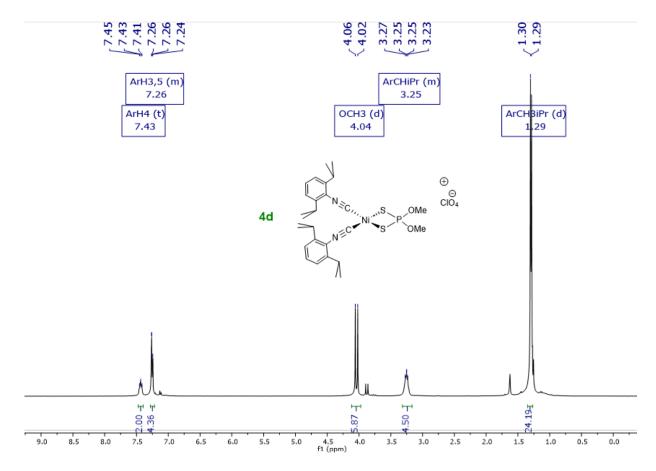
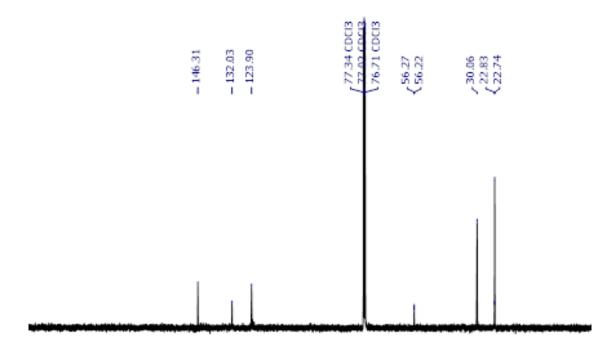
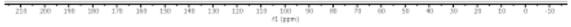




Figure S34. ¹H NMR (CDCl₃) of compound 4d, $[Ni{S_2P(OMe)_2}(CNAr)_2]ClO_4$.

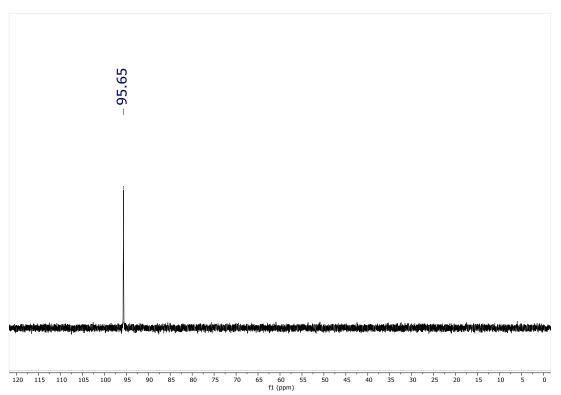


Figure S 35. ¹³C {¹H} NMR (CDCl₃) of compound 4d, [Ni{S₂P(OMe)₂}(CNAr)₂]ClO₄.

Figure S 36. ${}^{31}P$ { ${}^{1}H$ } NMR (CDCl₃) of compound 4d, [Ni{S₂P(OMe)₂}(CNAr)₂]ClO₄.

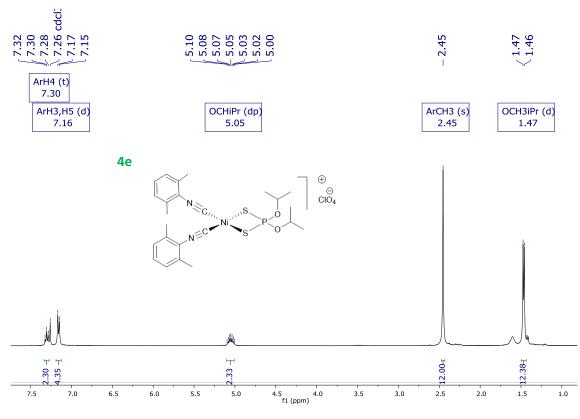


Figure S37. ¹H NMR (CDCl3) of compound 4e, [Ni{S₂P(OⁱPr)₂}(CNXyl)₂]ClO₄.

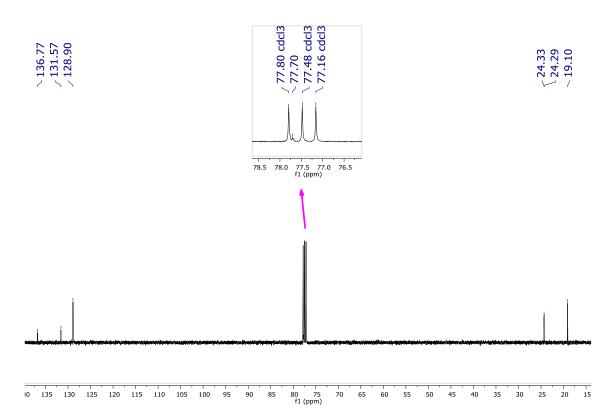


Figure S38. ¹³C{¹H} NMR (CDCl₃) of compound 4e, [Ni{S₂P(OⁱPr)₂}(CNXyl)₂]ClO₄.

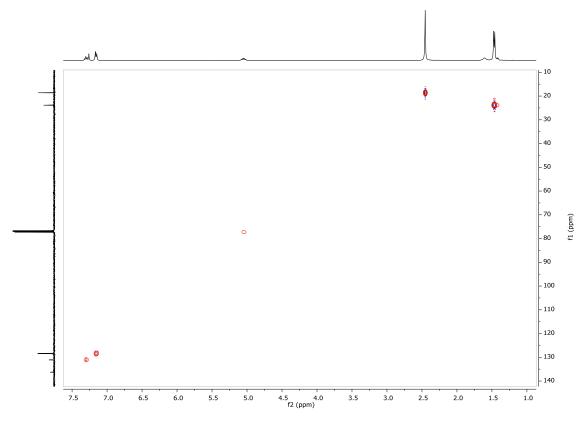


Figure S39. ${}^{1}H-{}^{13}C{}^{1}H$ HSQC NMR (CDCl₃) of compound 4e, [Ni{S₂P(OⁱPr)₂}(CNXyl)₂]ClO₄.

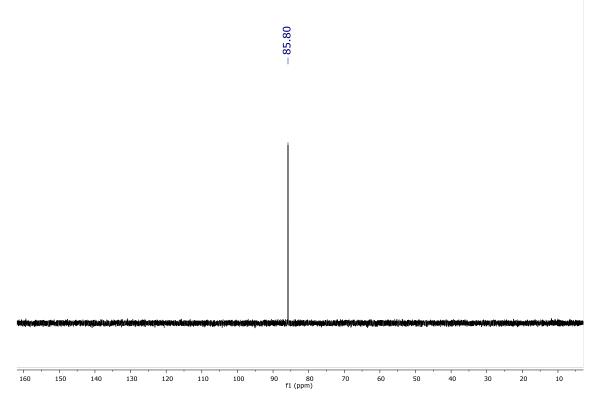
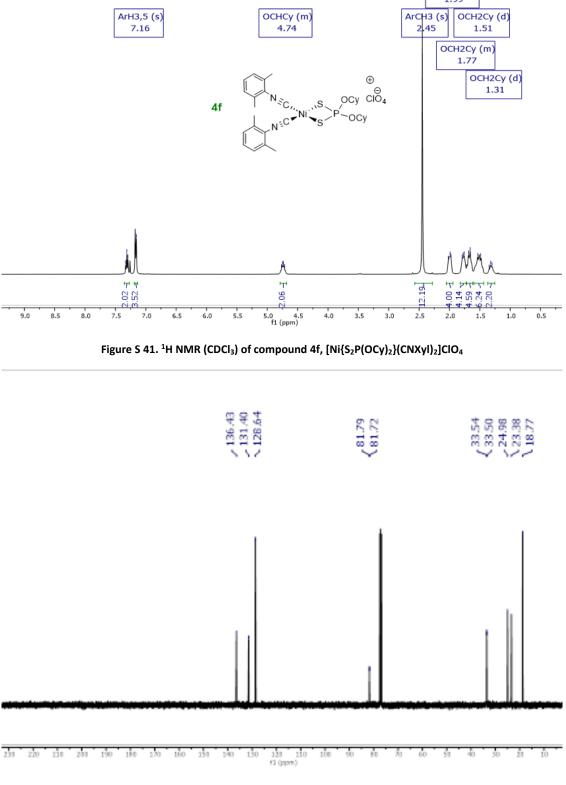



Figure S40. $^{31}P\{^{1}H\}$ NMR (CDCl₃) of compound 4e, [Ni{S_2P(O^{i}Pr)_2}(CNXyl)_2]ClO_4.

4.77 4.75 4.74 4.71

OCHCy (m)

1.67 OCH2Cy (t) 1.99

7.33 7.31 7.29 7.16

ArH3,5 (s)

Figure S 42. ^{13}C {¹H} NMR (CDCl₃) of compound 4f, [Ni{S₂P(OCy)₂}(CNXyl)₂]ClO₄

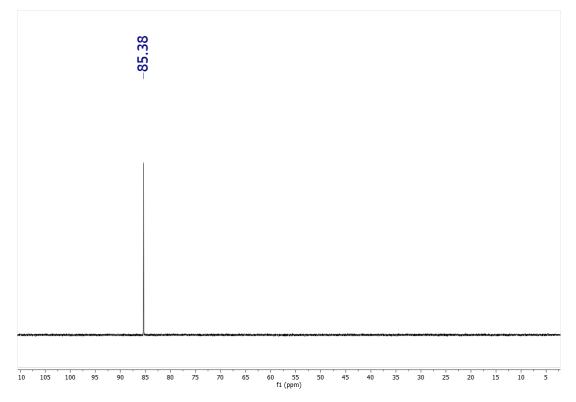


Figure S 43. ^{31}P {¹H} NMR (CDCl₃) of compound 4f, [Ni{S₂P(OCy)₂}(CNXyl)₂]ClO₄

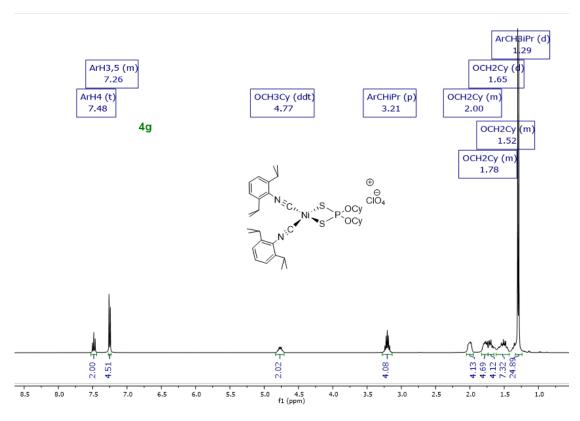
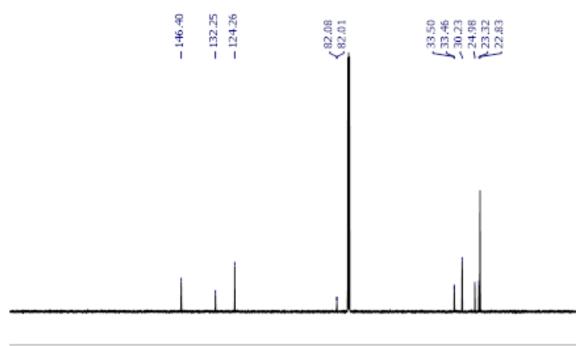
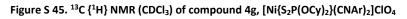




Figure S 44. ¹H NMR (CDCl₃) of compound 4g, [Ni{S₂P(OCy)₂}(CNAr)₂]ClO₄.

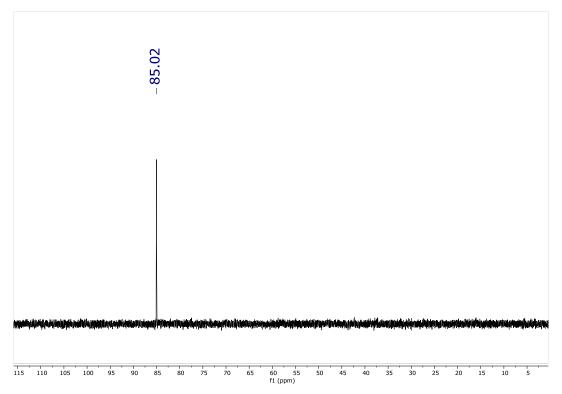
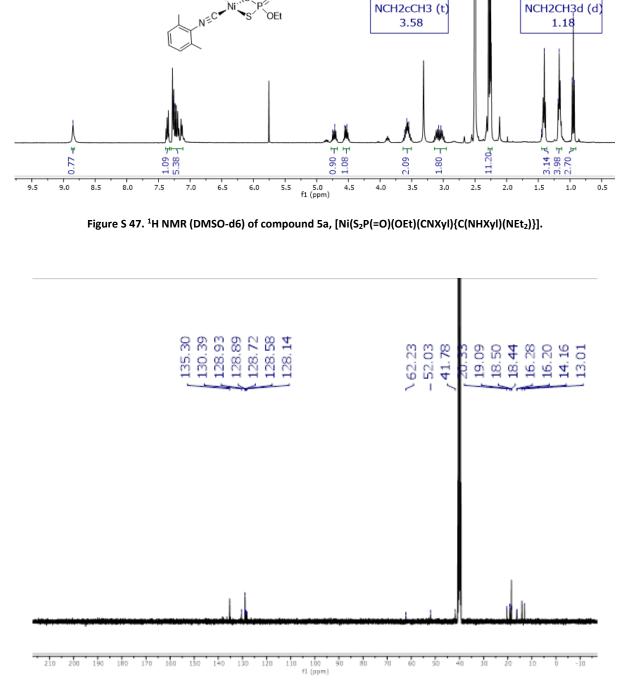



Figure S 46. ^{31}P { ^{1}H } NMR (CDCl₃) of compound 4g, [Ni{S_2P(OCy)_2}(CNAr)_2]ClO_4

4.75 4.72 4.56

NCH2a'CH3 (d)

4.54

NCH2aCH3 (d)

4.73

3.61 3.58 3.55 3.55 3.08 3.07 3.07 <u>2.27</u> 2.25

ArCH3 (d)

2.26

OCH2CH3 (d)

3.06

1.45 1.41 1.19 1.19 1.17 0.97 0.95

OCH2CH3 (t)

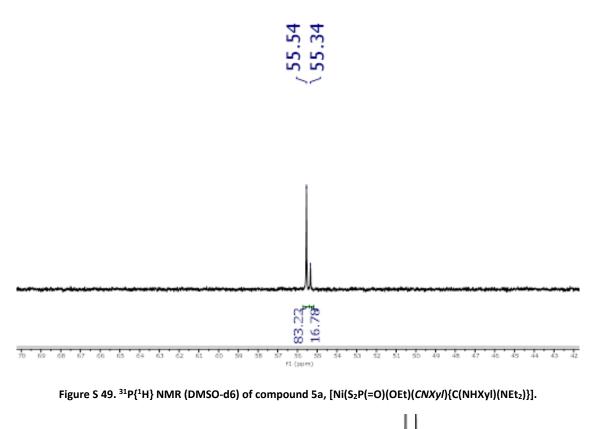
0.95

NCH2cCH3 (m)

1.41

- 8.85

NHcarbene (s) 8.85 ~7.24


5a

b

0

Figure S 48. ¹³C{¹H} NMR (DMSO-d6) of compound 5a, [Ni(S₂P(=O)(OEt)(*CNXyI*){C(NHXyI)(NEt₂)].

S27

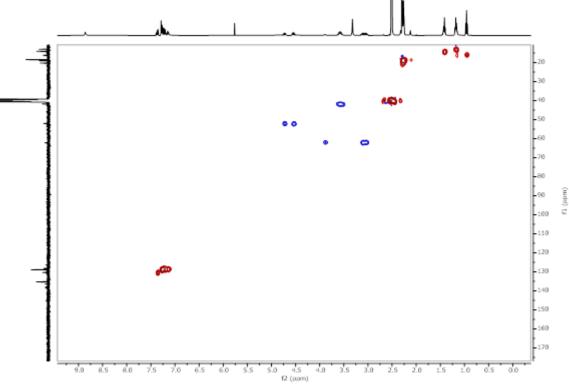


Figure S 50. ¹H-¹³C{¹H} HSQC NMR (CDCl₃) of compound 5b, [Ni(S₂P(=O)(OEt)(CNXyI){C(NHXyI)(NEt₂)}].

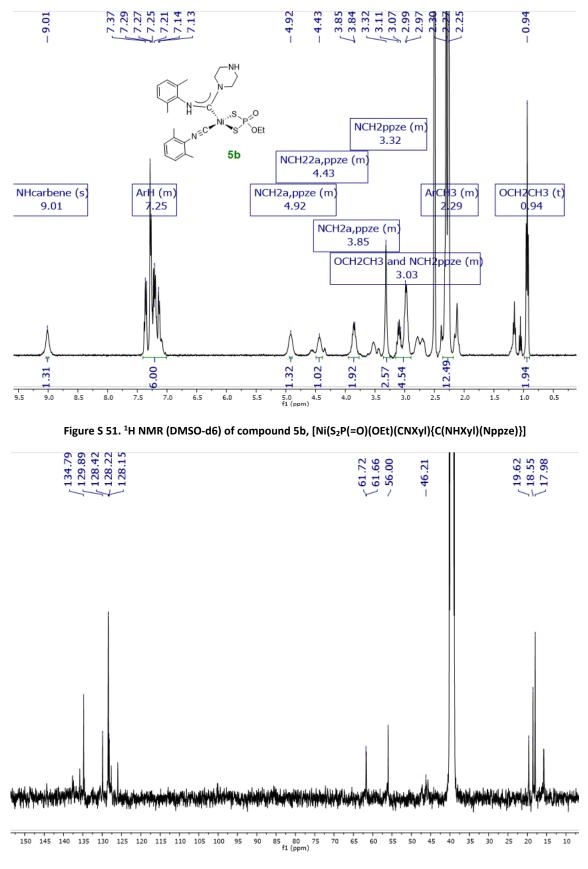


Figure S 52. ¹³C{¹H} NMR (DMSO-d6) of compound 5b, [Ni(S₂P(=O)(OEt)(CNXyI){C(NHXyI)(Nppze)}]

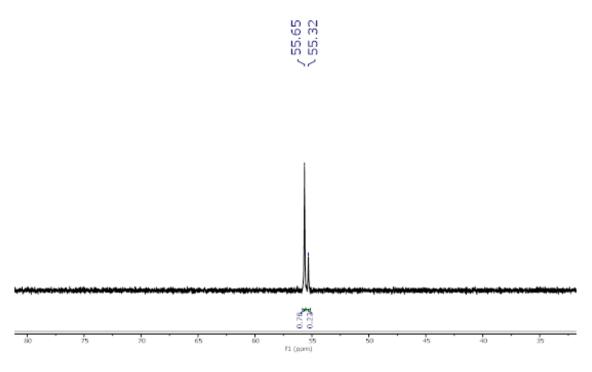


Figure S 53. ³¹P{¹H} NMR (DMSO-d6) of compound 5b, [Ni(S₂P(=O)(OEt)(CNXyI){C(NHXyI)(NPpze)}]

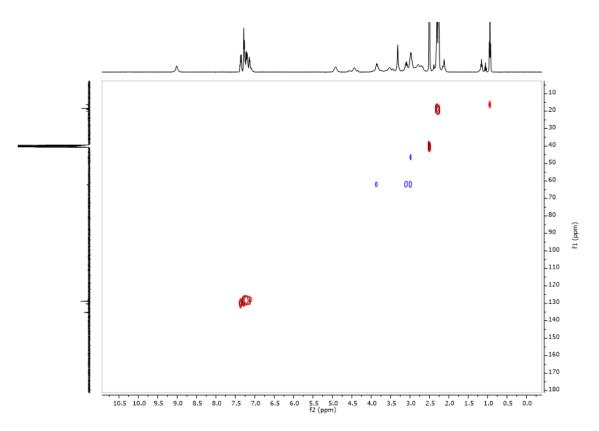


Figure S 54. ¹H-¹³C{¹H} HSQC NMR (CDCl₃) of compound 5b, [Ni(S₂P(=O)(OEt)(CNXyI){C(NHXyI)(NPpze}].

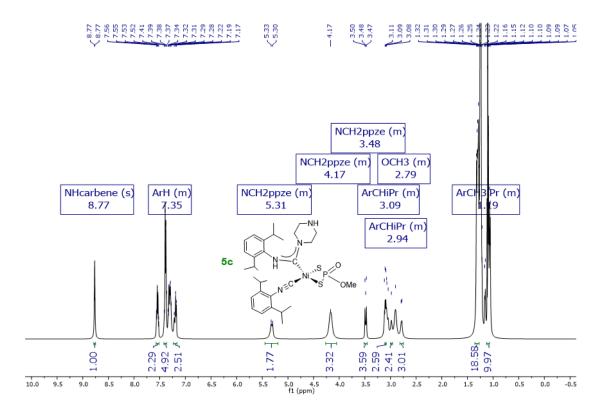


Figure S 55. ¹H NMR (DMSO-d6) of compound 5c, [Ni(S₂P(=O)(OMe)(CNAr){C(NHAr)(Nppze}]

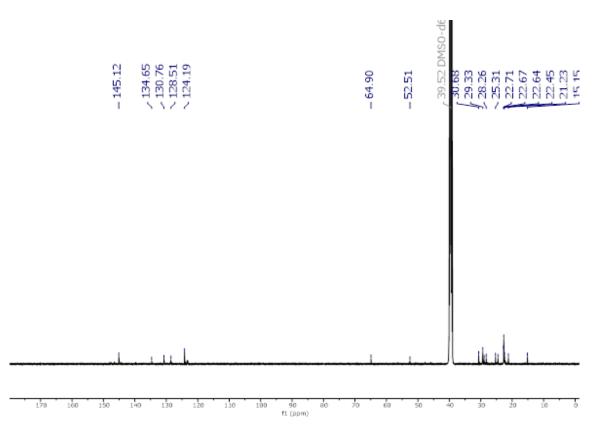
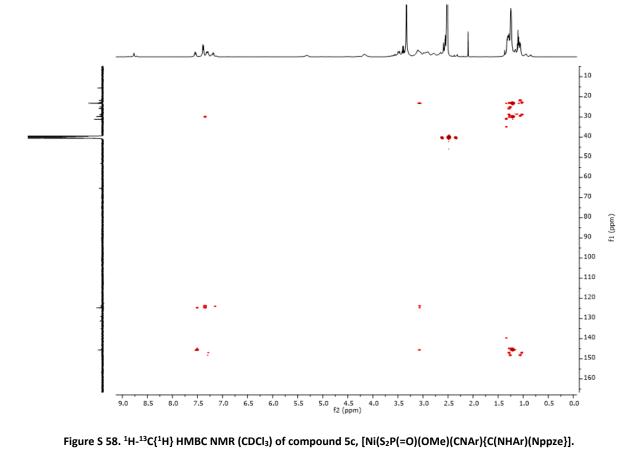
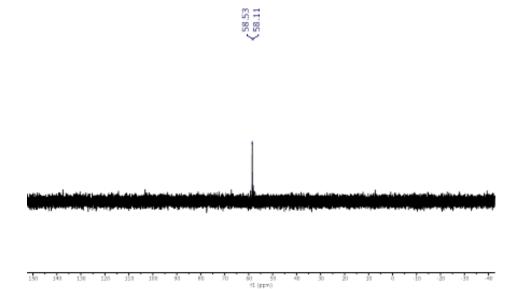
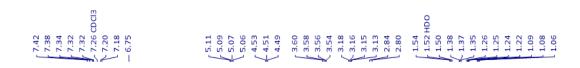





Figure S 56. ¹³C {¹H} NMR (DMSO-d6) of compound 5c, [Ni(S₂P(=O)(OEt)(CNAr){C(NHAr)(Nppze)}].

 $Figure \ S \ 57. \ ^{31}P \ ^{1}H \ NMR \ (DMSO-d6) \ of \ compound \ 5c, \ [Ni(S_2P(=O)(OEt)(CNAr) \ (CNAr)(Nppze) \)]$



Figure S 56. ¹H NMR (CDCl₃) of compound 5d, [Ni(S₂P(=O)(OMe)(CNAr){C(NHAr)(NEt₂}].

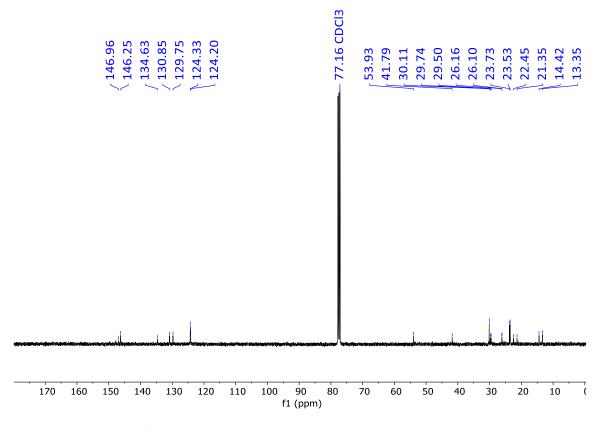


Figure S 57. ¹³C NMR (CDCl₃) of compound 5d, [Ni(S₂P(=O)(OMe)(CNAr){C(NHAr)(NEt₂}].

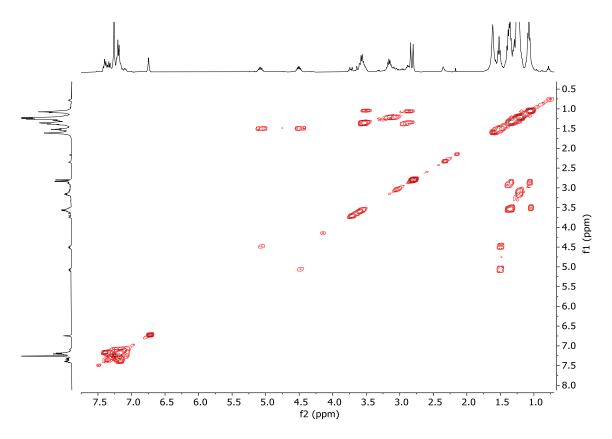


Figure S 58. ¹H-¹H COSY NMR (DMSO-*d6*) of compound 5d, [Ni(S₂P(=O)(OMe)(CNAr){C(NHAr)(NEt₂)}].

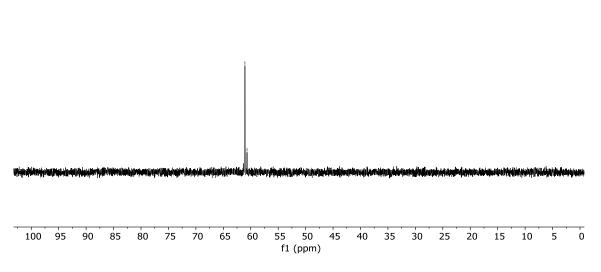
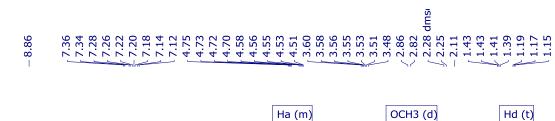



Figure S 59. ³¹P {¹H} NMR (CDCl₃) of compound 5d, [Ni(S₂P(=O)(OEt)(CNAr){C(NHAr)(NEt₂)}]

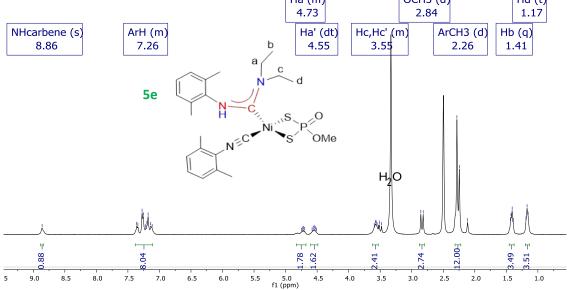


Figure S 60. ¹H NMR (DMSO-d6) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

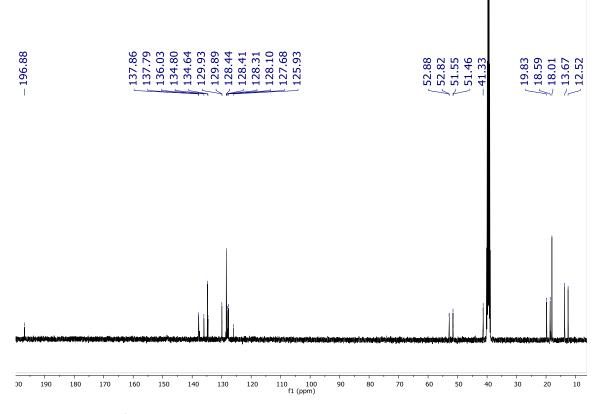


Figure S 61. ¹³C{¹H} NMR (DMSO-*d6*) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

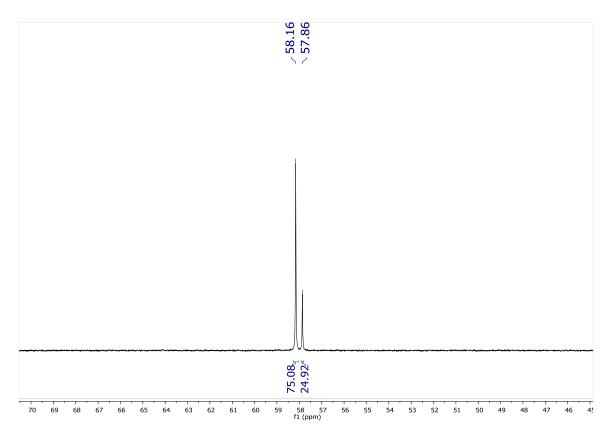


Figure S 62. ³¹P{¹H} NMR (DMSO-*d6*) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

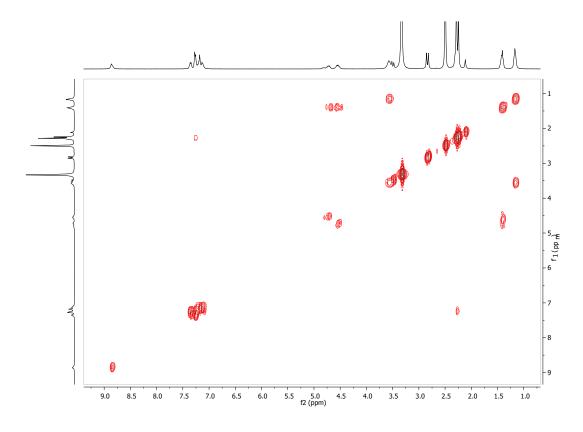


Figure S 63. ¹H-¹H COSY NMR (DMSO-*d6*) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

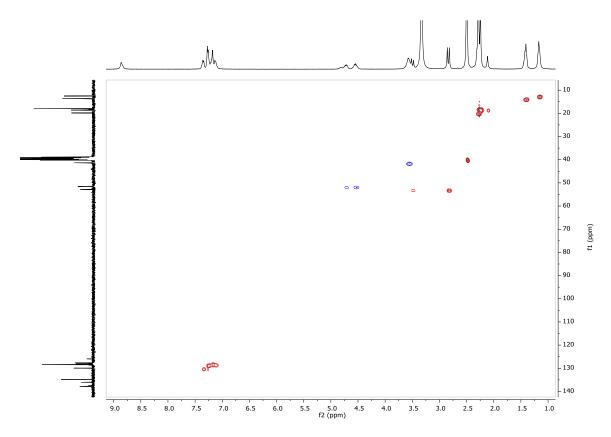


Figure S 64. ¹H-¹³C{¹H} HSQC NMR (DMSO-*d6*) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

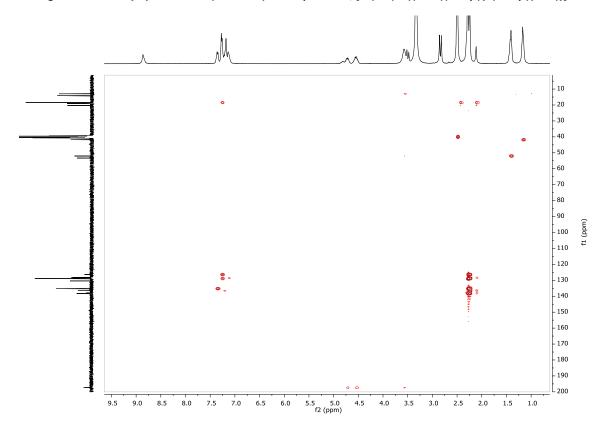


Figure S 65. ¹H-¹³C{¹H} HMBC NMR (DMSO-*d6*) of compound 5e, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(NEt₂)}].

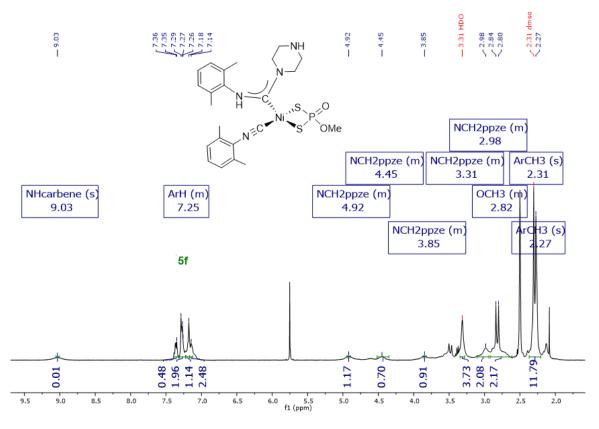


Figure S 66. ¹H NMR (DMSO-d6) of compound 5f, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(Nppze)}].

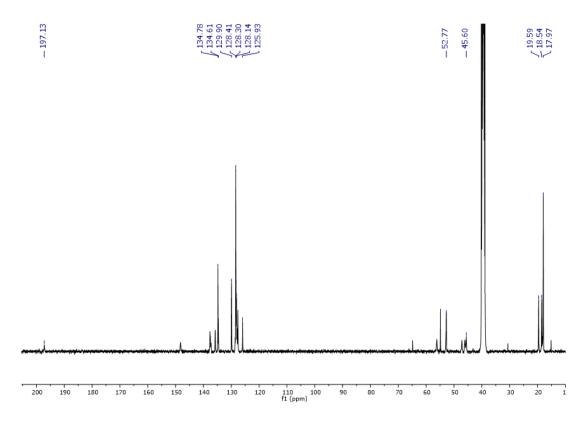
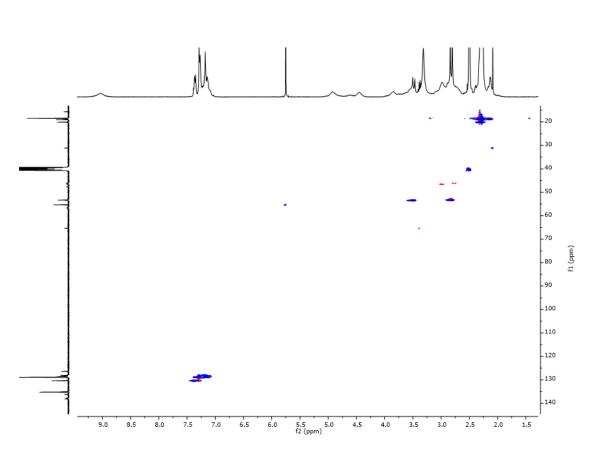



Figure S 67. ¹³C{¹H} NMR (DMSO-d6) of compound 5f, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(Nppze)}].

58.15
57.72

50

60 fl (ppm)

Figure S 68. ³¹P{¹H} NMR (DMSO-*d6*) of compound 5*f*, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(Nppze)}].

żs

70

65

100

25

Figure S 69. ¹H-¹³C{¹H} HSQC NMR (DMSO-*d6*) of compound 5f, [Ni(S₂P(=O)(OMe)(CNXyI){C(NHXyI)(Nppze)}].

25

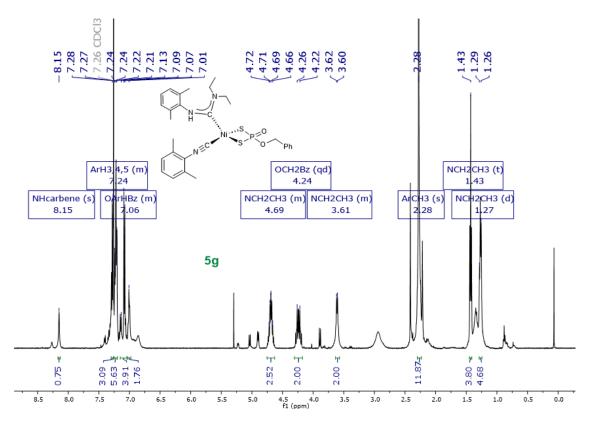


Figure S 70. ¹H NMR (CDCl₃) of compound 5g, [Ni{S₂P(=O)(OBz)}(CNXyI){C(NHXyI)(NEt₂)].

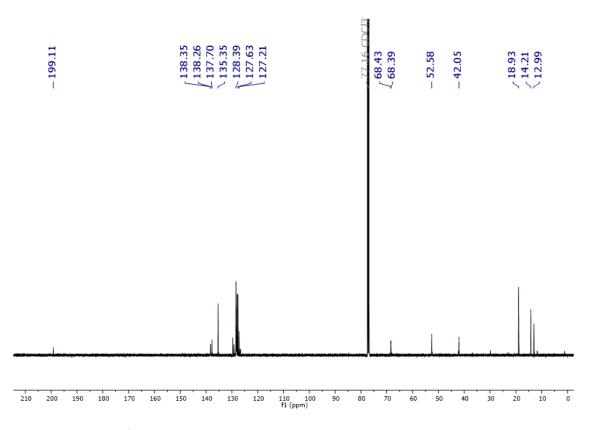


Figure S 71. ¹³C{¹H} NMR (CDCl₃) of compound 5g, [Ni{S₂P(=O)(OBz)}(CNXyI){C(NHXyI)(NEt₂)].

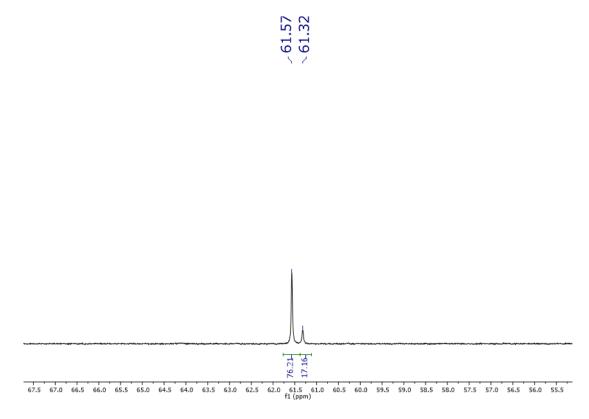


Figure S 72. ${}^{31}P{}^{1}H$ NMR (DMSO-*d6*) of compound 5g, [Ni{S₂P(=O)(OBz)}(CNXyI){C(NHXyI)(NEt₂)].

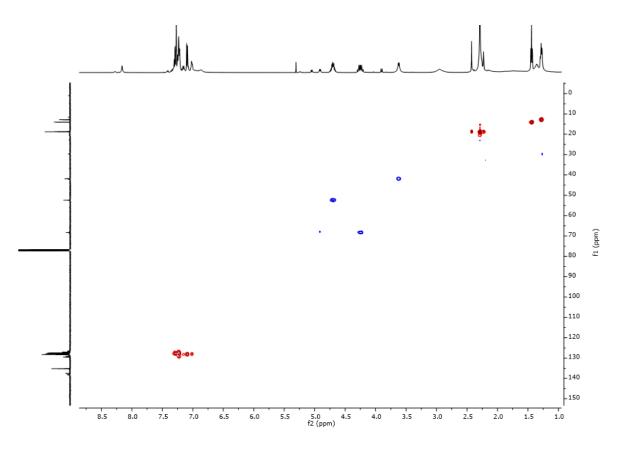


Figure S 73. ¹H-¹³C{¹H} HSQC NMR (DMSO-*d6*) of compound 5g, [Ni{S₂P(=O)(OBz)}(CNXyI){C(NHXyI)(NEt₂)].

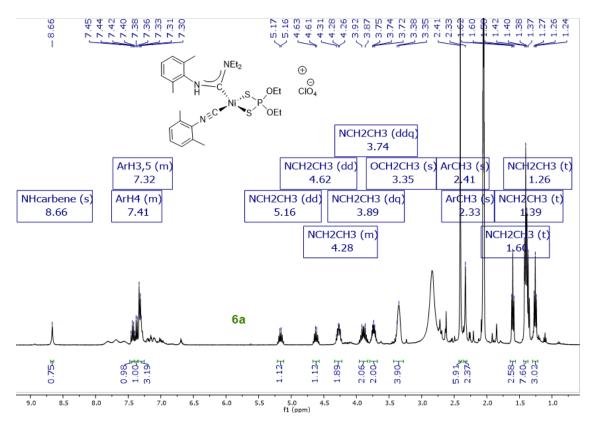


Figure S 74. ¹H NMR (Me₂CO-d6) of compound 6a, [Ni(S₂P(OEt)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

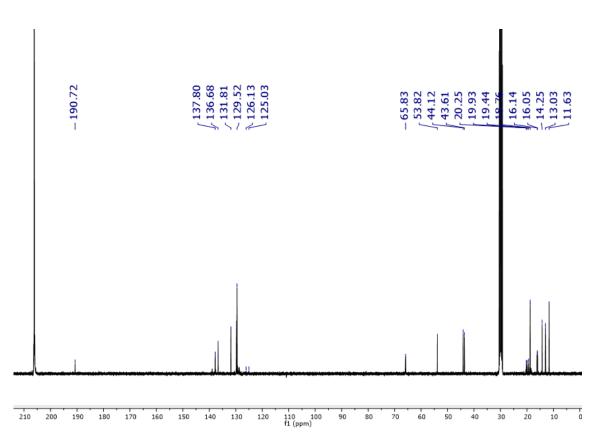


Figure S 75. ¹³C{¹H} NMR (Me₂CO-d6) of compound 6a, [Ni(S₂P(OEt)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

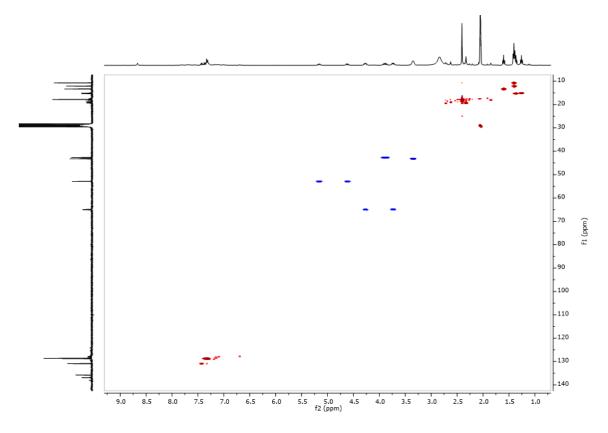


Figure S 76. ¹H-¹³C{¹H} HSQC NMR (Me₂CO-d6) of compound 6a, [Ni(S₂P(OEt)₂(*CNXyl*){C(NHXyl)(NEt₂)}]ClO₄.

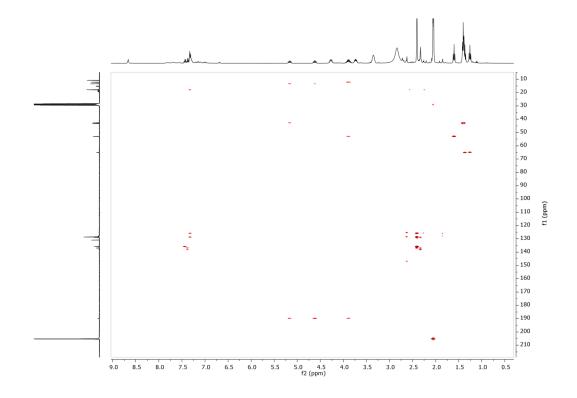


Figure S 77. ¹H-¹³C{¹H} HMBC NMR (Me₂CO-d6) of compound 6a, [Ni(S₂P(OEt)₂(*CNXyl*){C(NHXyl)(NEt₂)}]ClO₄

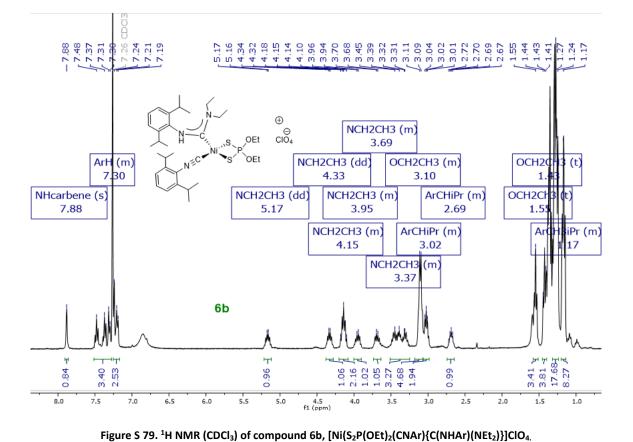
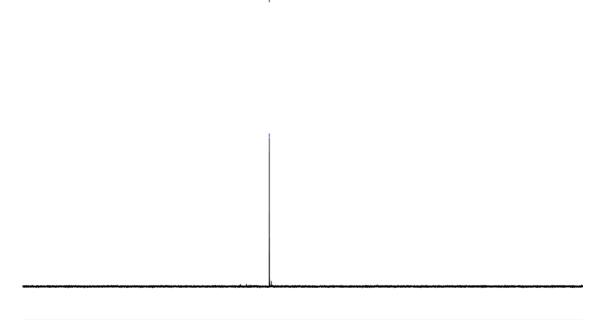



Figure S 78. ³¹P{¹H} NMR (Me₂CO-d6) of compound 6a, [Ni(S₂P(OEt)₂(CNXyl){C(NHXyl)(NEt₂)}]ClO₄.

f1 (ppm)

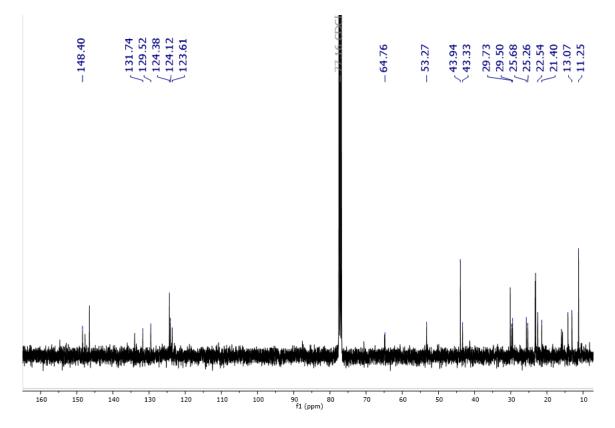


Figure S 80. ¹³C{¹H} NMR (CDCl₃) of compound 6b, [Ni(S₂P(OEt)₂(CNAr){C(NHAr)(NEt₂)}]ClO₄.

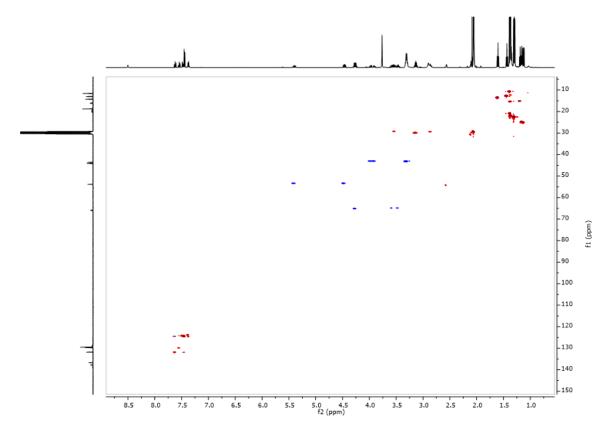


Figure S 81. ¹H-¹³C{¹H} HSQC NMR (Ac-d6) of compound 6b, [Ni(S₂P(OEt)₂(CNAr){C(NHAr)(NEt₂)}]ClO₄.

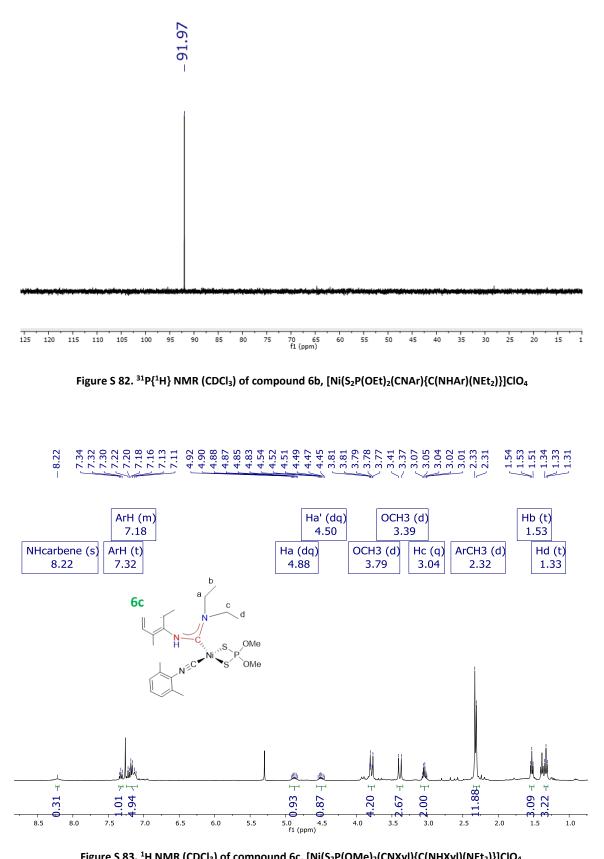


Figure S 83. ¹H NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

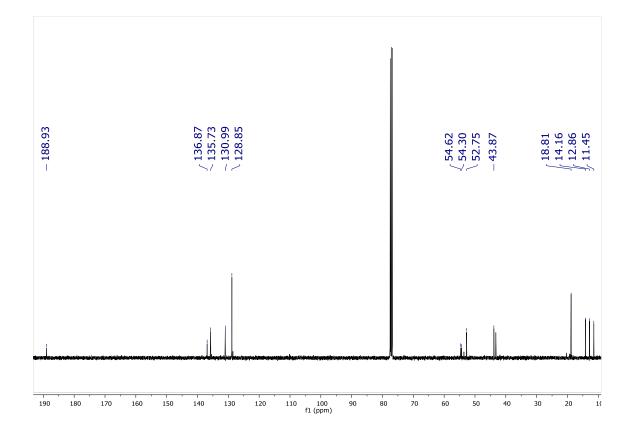


Figure S 84. ¹³C{¹H} NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyl){C(NHXyl)(NEt₂)}]ClO₄.

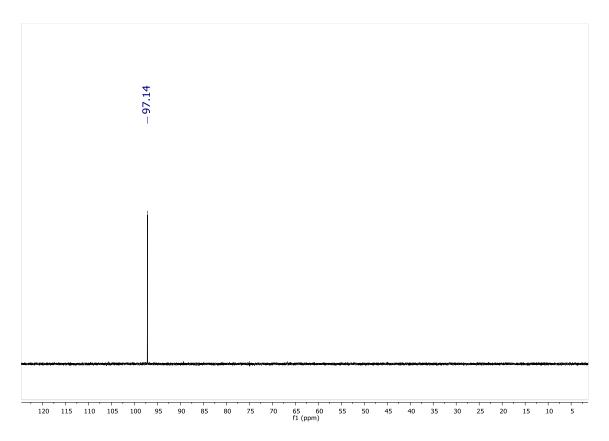


Figure S 85. ³¹P{¹H} NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyl){C(NHXyl)(NEt₂)}]ClO₄.

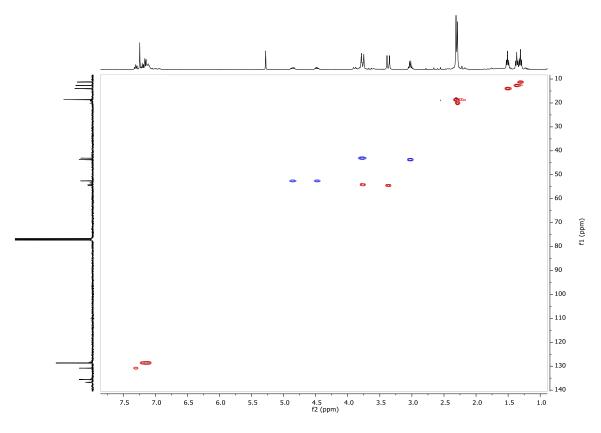


Figure S 86. ¹H-¹³C{¹H} HSQC NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

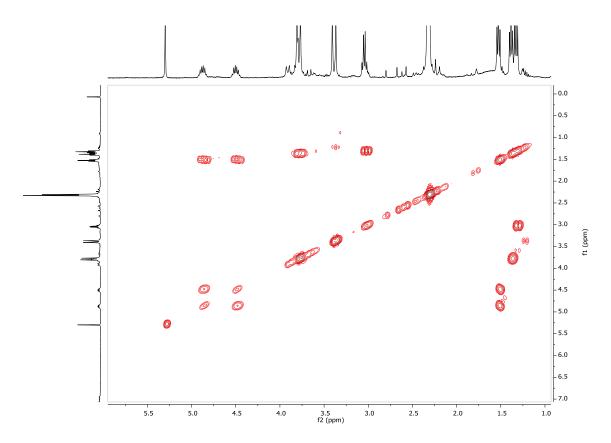


Figure S 87. ¹H-¹H COSY NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

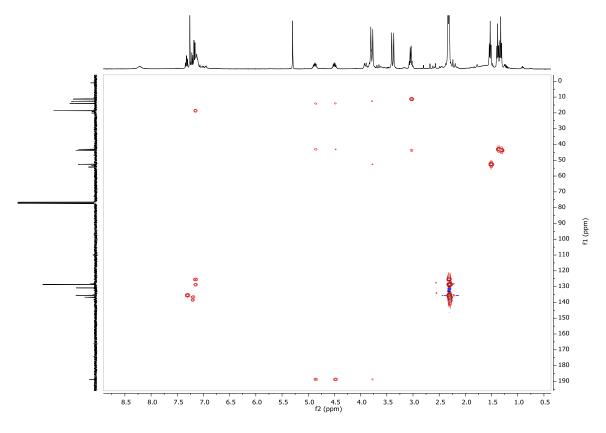


Figure S 88. ¹H-¹³C{¹H} HMBC NMR (CDCl₃) of compound 6c, [Ni(S₂P(OMe)₂(CNXyl){C(NHXyl)(NEt₂)}]ClO₄.

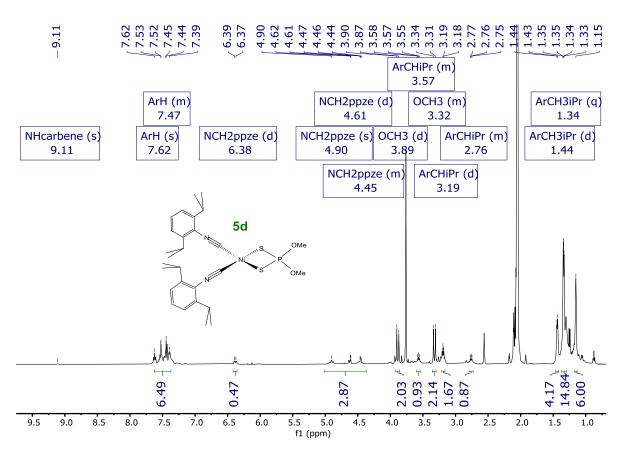
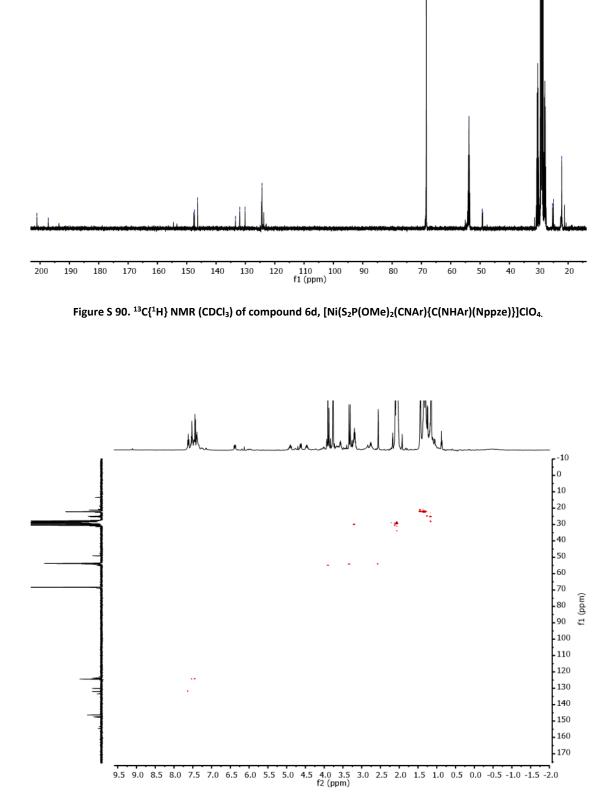



Figure S 89. ¹H NMR (CDCl₃) of compound 6d, [Ni(S₂P(OMe)₂(CNAr){C(NHAr)(Nppze)}]ClO₄. Decomposition products are presented in the crude, preventing a perfect integration of the chemical shift.

 $\begin{pmatrix} 147.61 \\ 147.40 \\ 146.31 \\ 146.31 \\ 133.38 \\ 133.38 \\ 133.38 \\ 124.50 \\ 124.36 \end{pmatrix}$

-- 53.81 -- 49.30 ∠ 24.96
 √ 22.20

\ 201.10 \ 197.23

 $Figure \ S \ 91. \ ^1H^{-13}C\{^1H\} \ HSQC \ NMR \ (CDCl_3) \ of \ compound \ 6d, \ [Ni(S_2P(OMe)_2(CNAr)\{C(NHAr)(Nppze)\}]ClO_{4.} \ Compound \ 6d, \ [Ni(S_2P(OMe)_2(CNAr)(Nppze))]ClO_{4.} \ Compound \ 6d, \ [Ni(S_2P(OMe)_2(CNAr)(Nppze))]ClO_{4.}$

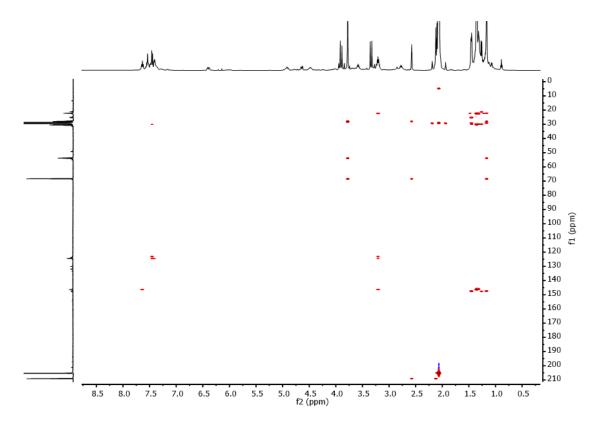
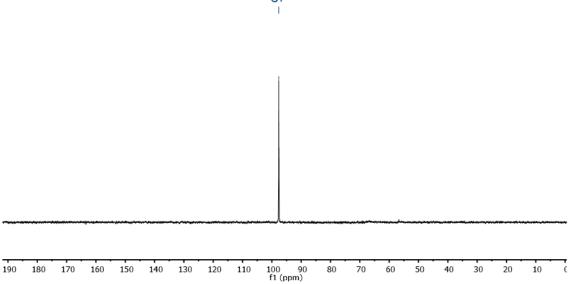



Figure S 92. ¹H-¹³C{¹H} HSQC NMR (CDCl₃) of compound 6d, [Ni(S₂P(OMe)₂(CNAr){C(NHAr)(Nppze)}]ClO₄.

 $Figure \ S \ 93. \ ^{31}P\{^{1}H\} \ NMR \ (CDCl_{3}) \ of \ compound \ 6d, \ [Ni(S_{2}P(OMe)_{2}(CNAr)\{C(NHAr)(Nppze)\}]ClO_{4.}$

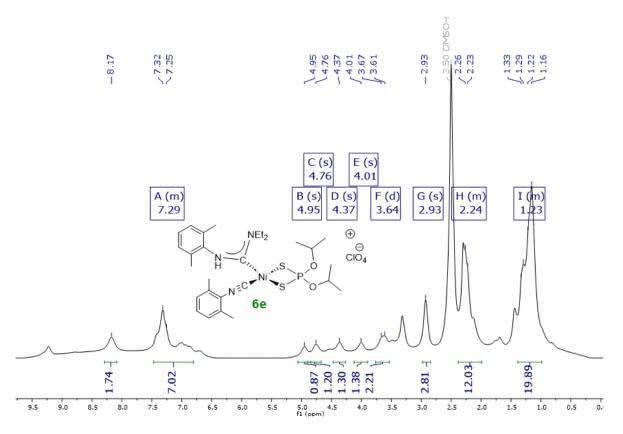


Figure S 94. ¹H NMR (DMSO-d6) of compound 6e, [Ni(S₂P(OⁱPr)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄. Decomposition products are presented in the crude, preventing a perfect integration of the chemical shift.

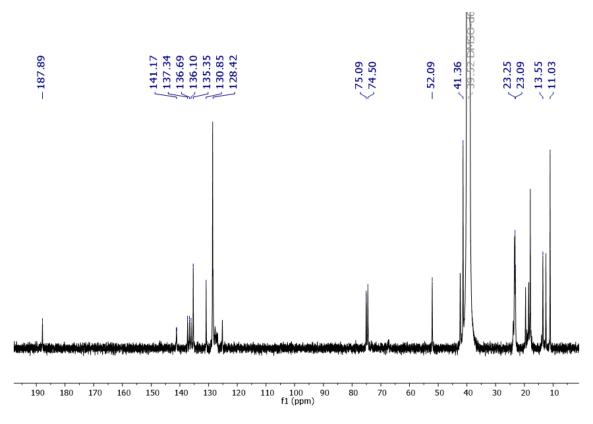


Figure S 95. ¹³C {¹H} NMR (DMSO-d6) of compound 6e, [Ni(S₂P(OⁱPr)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.



Figure S 96. ¹H-¹³C{¹H} HSQC NMR (DMSO-d6) of compound 6e, [Ni(S₂P(OⁱPr)₂(*CNXyl*){C(NHXyl)(NEt₂)}]ClO₄.

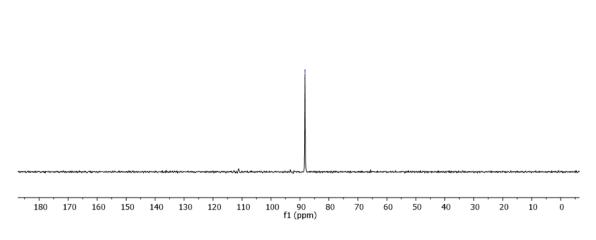


Figure S 97. ³¹P{¹H} NMR (DMSO-d6) of compound 6e, [Ni(S₂P(OⁱPr)₂(CNXyI){C(NHXyI)(NEt₂)}]ClO₄.

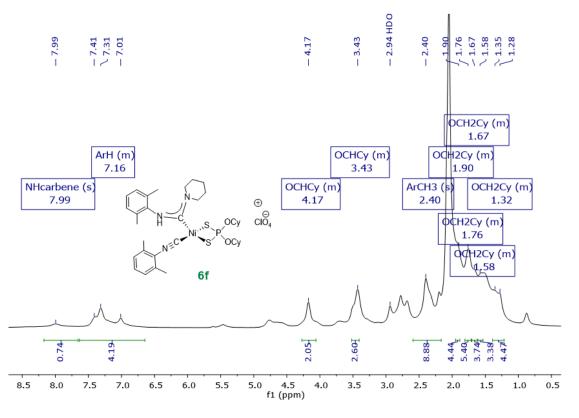


Figure S 98. ¹H NMR (Me₂CO-d6) of compound 6f, [Ni(S₂P(OCy)₂(CNXyI){C(NHXyI)(Npip)}]ClO₄.

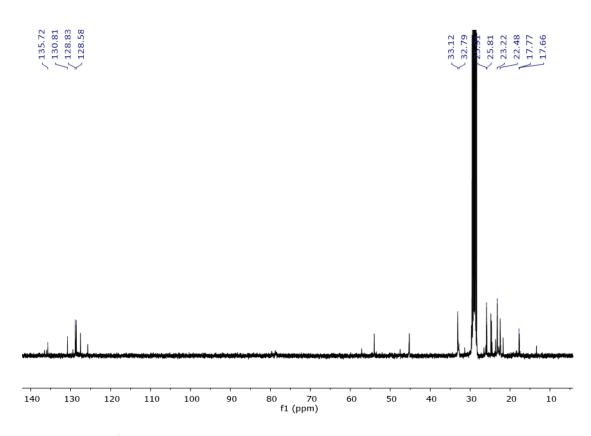


Figure S 99. ¹³C {¹H} NMR (Me₂CO-d6) of compound 6f, [Ni(S₂P(OCy)₂(CNXyI){C(NHXyI)(Npip)}]ClO₄.

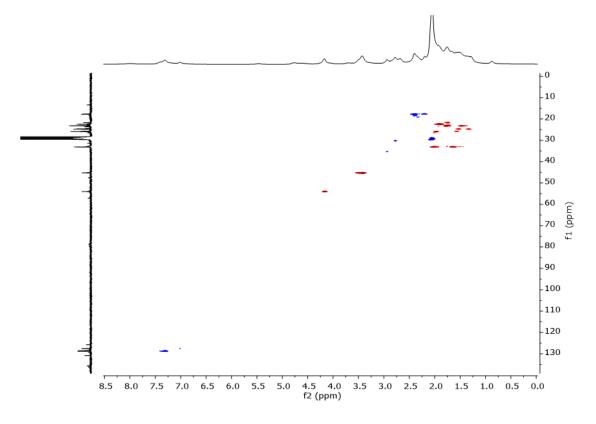


Figure S 100. ¹H-¹³C{¹H} HSQC NMR (Me₂CO-d6) of compound 6f, [Ni(S₂P(OCy)₂(CNXyl){C(NHXyl)(Npip)}]ClO₄.

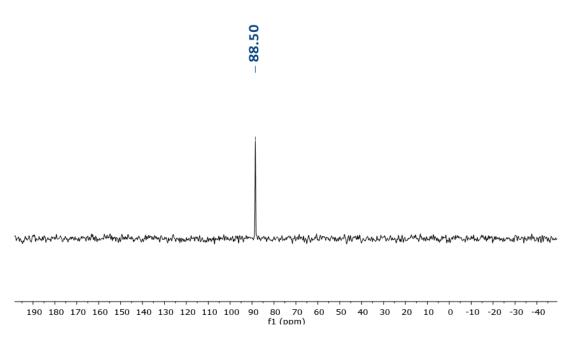


Figure S 101. ³¹P{¹H} NMR (Me₂CO-d6) of compound 6f, [Ni(S₂P(OCy)₂(CNXyI){C(NHXyI)(Npip)}]ClO₄.

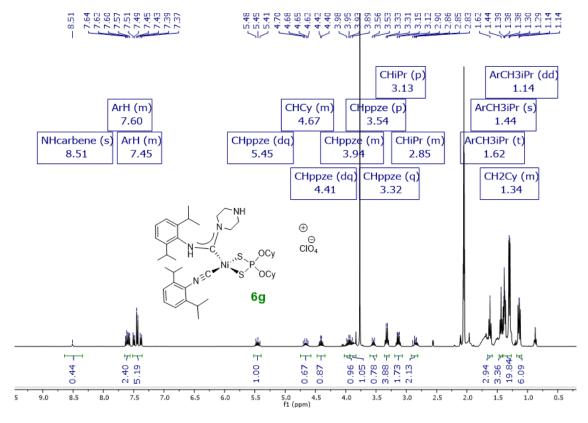


Figure S 102. ¹H NMR (Me₂CO-d6) of compound 6g, [Ni(S₂P(OCy)₂(CNAr){C(NHAr)(NPpze)}]ClO₄.

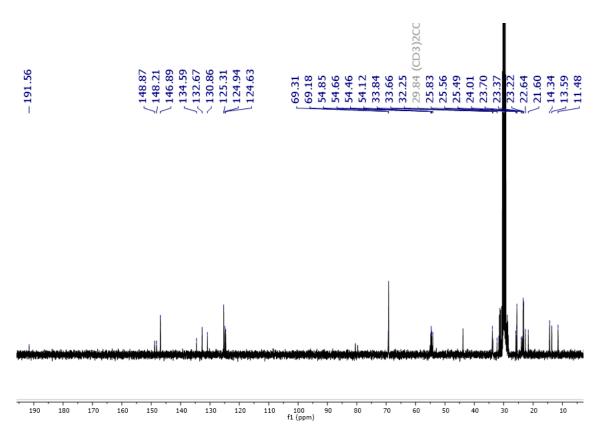


Figure S 103. ¹³C {¹H} NMR (Me₂CO-d6) of compound 6g, [Ni(S₂P(OCy)₂(CNAr){C(NHAr)(NPpze)}]ClO₄.

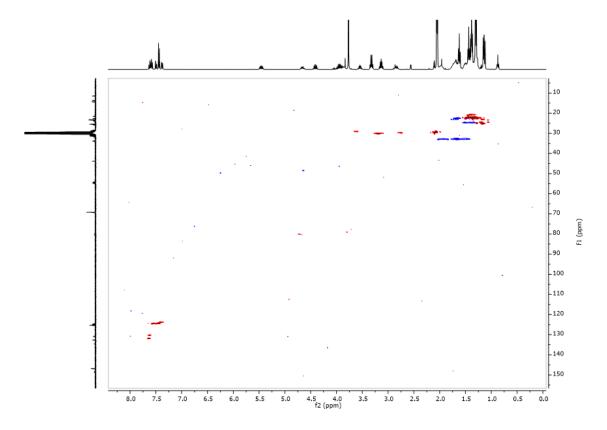
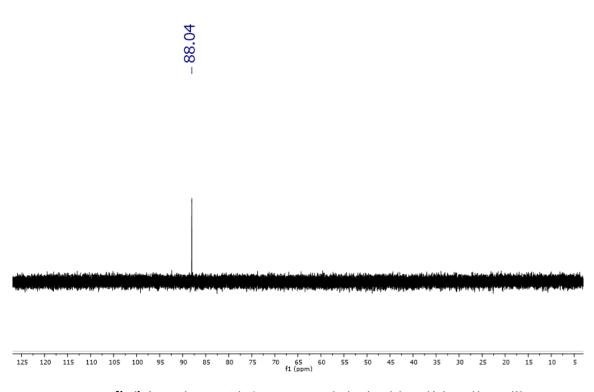



Figure S 104. ¹H-¹³C{¹H} HSQC NMR (Me₂CO-d6) of compound 6g, [Ni(S₂P(OCy)₂(CNAr){C(NHAr)(NPpze)}]ClO₄.

 $Figure \ S \ 105. \ ^{31}P \ \{^{1}H\} \ NMR \ (Me_{2}CO-d6) \ of \ compound \ 6g, \ [Ni(S_{2}P(OCy)_{2}(CNAr)\{C(NHAr)(NPpze)\}]ClO_{4.} \ Compound \ 6g, \ [Ni(S_{2}P(OCy)_{2}(CNAr)(NPpze))]ClO_{4.} \ Compound \ 6g, \ [Ni(S_{2}P(OCy)_{2}(CNAr)(NPpze$

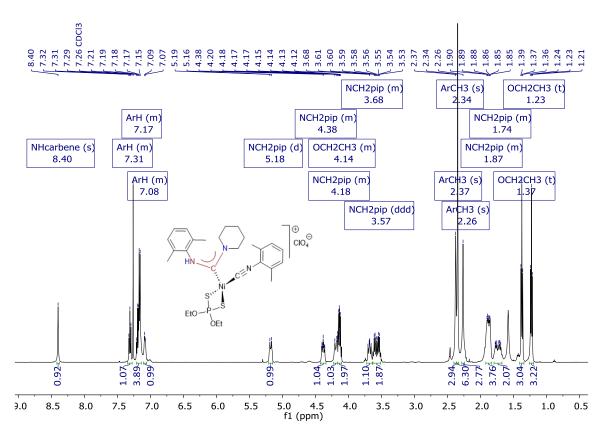


Figure S 106. ¹H NMR (CDCl₃) of compound 6h, [Ni(S₂P(OEt)₂(CNXyl){C(NHXyl)(pip)}]ClO₄.

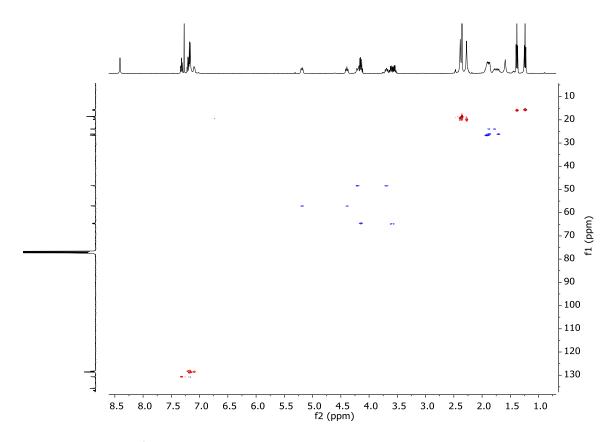


Figure S 107. ¹H-¹³C{¹H} HSQC NMR (CDCl₃) of compound 6h, [Ni(S₂P(OEt)₂(CNXyl){C(NHXyl)(pip)}]ClO₄.

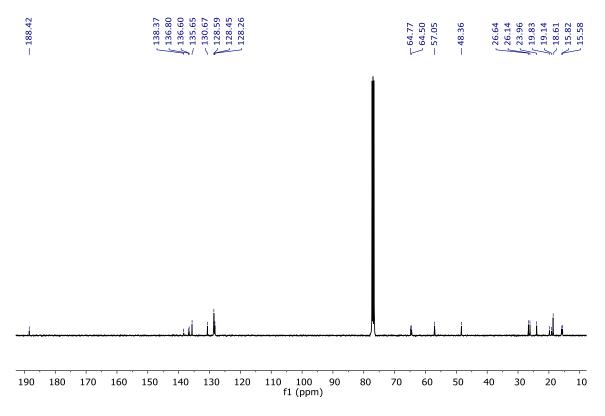
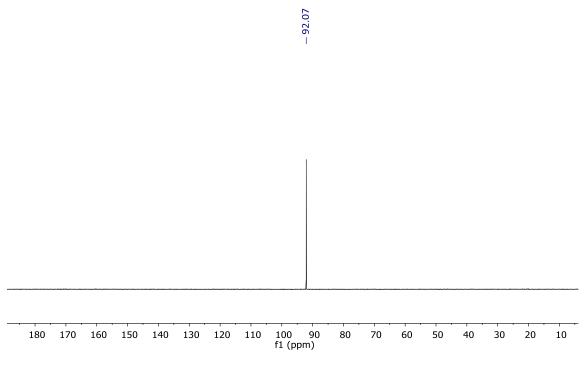



Figure S 108. ${}^{13}C{}^{1}H$ NMR (CDCl₃) of compound 6h, [Ni(S₂P(OEt)₂(CNXyI){C(NHXyI)(pip)}]ClO₄.

 $\label{eq:Figure S 109. $^{31}P{^1H} NMR (CDCl_3) of compound 6h, [Ni(S_2P(OEt)_2(CNXyl){C(NHXyl)(pip)}]ClO_4. $$ Compound 6h, [Ni(S_2P(OEt)_2(CNXyl)]C(NHXyl)(pip)] ClO_4. $$ Compound 6h, [Ni(S_2P(OEt)_2(CNXyl)]C(NXyl)(pip)] ClO_4. $$ Compound 6h, [Ni(S_2P(OEt)_2(CNXyl)]C(NXyl)(pip)$

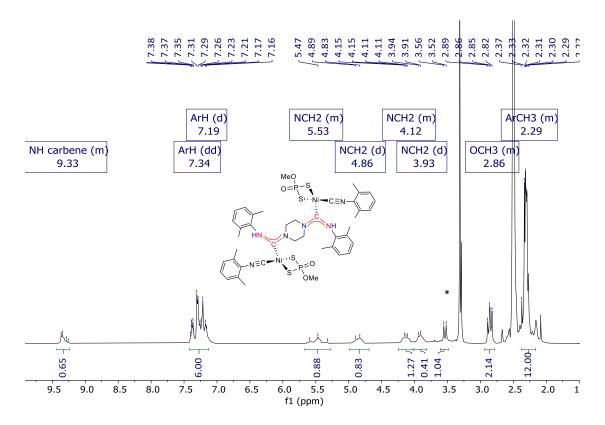


Figure S 110. ¹H NMR (CDCl₃) of compound 7, [{Ni(S₂P(=O)(OMe)(*CNXyl*)₂C(NHXyl)}₂(N₂C₄H₈)}]. *Chemical shift of -*OCH*₃ from the minor product (ratio Z/E, 77:23, see ³¹P{¹H}).

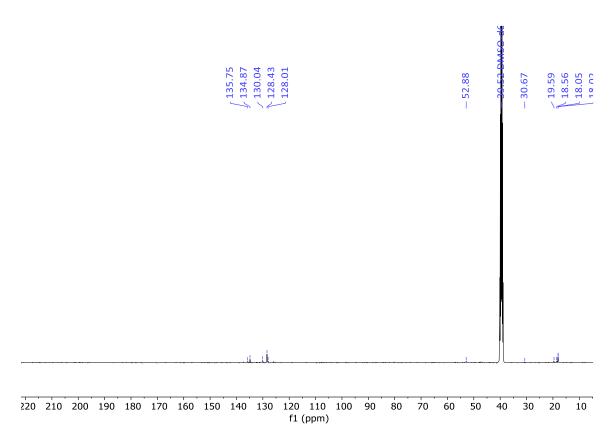


Figure S 111. ¹³C {¹H} NMR (DMSO-d6) of compound 7, [{Ni(S₂P(=O)(OMe)(*CNXyI*)₂C(NHXyI)}₂(N₂C₄H₈)}]. Chemical shift of C carbene is not observed due to the low solubility of the complex (spectrum was recorded with 35000 scans)

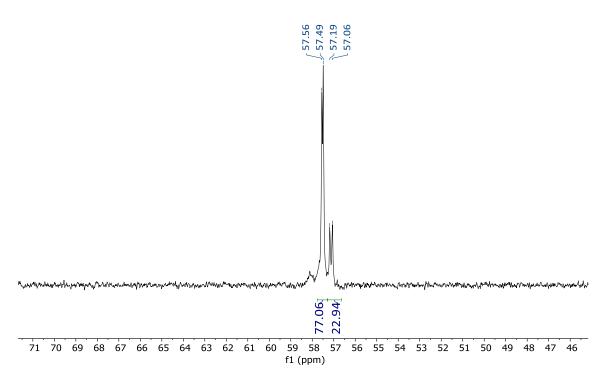
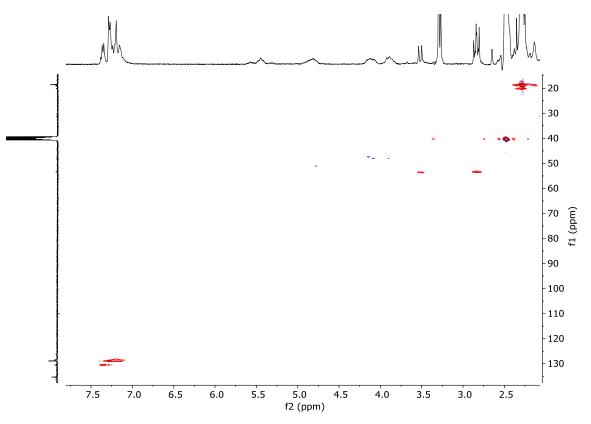



Figure S 112. ³¹P{¹H} NMR (DMSO-d6) of compound 7, [{Ni(S₂P(=O)(OMe)(*CNXyI*)₂C(NHXyI)}₂(N₂C₄H₈)}]. Ratio of isomers Z/E 77:23.

 $\label{eq:Figure S 113. } ^1H^{-13}C\{^1H\} \ HSQC \ NMR \ (DMSO-d6) \ of \ compound \ 7, \ [\{Ni(S_2P(=O)(OMe)(CNXyI)_2C(NHXyI)\}_2(N_2C_4H_8)\}].$

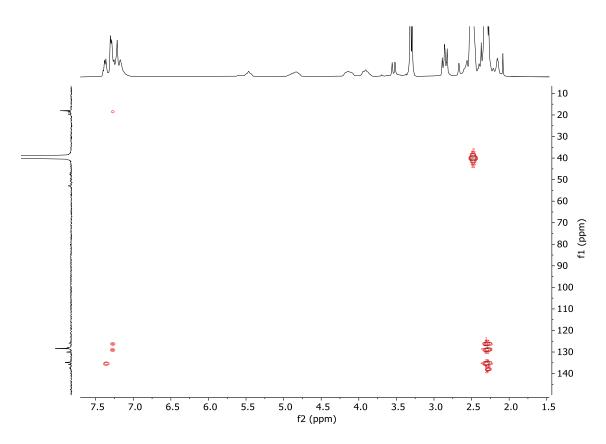
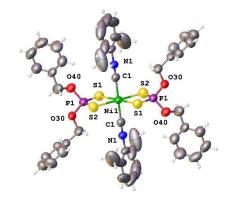
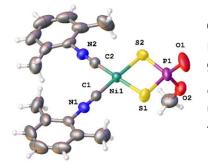
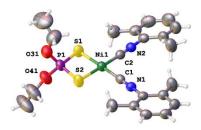




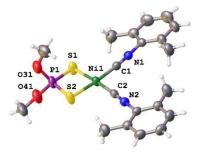
Figure S 114. ¹H-¹³C{¹H} HSQC NMR (DMSO-d6) of compound 7, [{Ni(S₂P(=O)(OMe)(CNXyI)₂C(NHXyI)}₂(N₂C₄H₈)}].

X-Ray Diffraction structures of neutral and cationic diisocyanide dithiophosphate Ni(II) complexes 2e, 3c, 3d, 3e, 4a, 4c, 4e, 4f, 5b, 5c, 5e, 6c, 6e, 6g, 6h, 7 and 8.

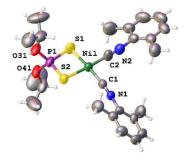
Compound 2e: C₄₆H₄₆N₂NiO₄P₂S₄ (*M* =939.74 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 11.1533(6) Å, *b* = 8.8012(8) Å, *c* = 24.1739(18) Å, *b* = 94.913(6)°, *V* = 2364.3(3) Å³, *Z* = 2, *T* = 293(2) K, μ (MoKα) = 0.697 mm⁻¹, *Dcalc* = 1.320 g/cm³, 12866 reflections measured (5.734° ≤ 2Θ ≤ 59.31°), 5650 unique (*R*_{int} = 0.0543, R_{sigma} = 0.1019) which were used in all calculations. The final *R*₁ was 0.0670 (I > 2σ(I)) and *wR*₂ was 0.1975 (all data).. CCDC: 2308594



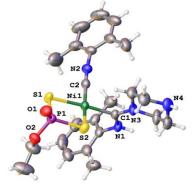
Compound 3c: $C_{19}H_{21}N_2O_2PS_2Ni$ (*M* =463.18 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 9.6257(4) Å, *b* = 22.5461(9) Å, *c* = 9.8951(3) Å, *b* = 95.047(3)°, *V* = 2139.14(14) Å³, *Z* = 4, *T* = 293 K, μ (Mo K α) = 1.193 mm⁻¹, *Dcalc* = 1.438 g/cm³, 11284 reflections measured (4.51° ≤ 20 ≤ 59.13°), 5057 unique (R_{int} = 0.0251, R_{sigma} = 0.0358) which were used in all calculations. The final R_1 was 0.0367 (I > 2 σ (I)) and wR_2 was 0.0946 (all data). CCDC: 2298997

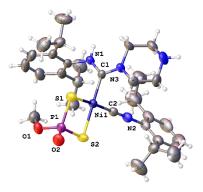

C21 N2 C2 Ni1 P1 O1 O2 C20 Ni1 S2 C20

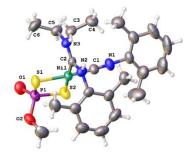
Compound 3d: $C_{27}H_{37}N_2NiO_2PS_2$ (*M* =575.38 g/mol): monoclinic, space group P2₁/n (no. 14), *a*= 13.8109(4) Å, *b*= 10.3758(3)Å, *c*= 21.4053(5)Å, *b*= 91.863(2)°, *V*= 3065.74(15)Å³, *Z*= 4, *T*= 293K, μ (MoK α)= 0.846 mm⁻¹, *Dcalc*= 1.247 g/cm³, 14802 reflections measured (4.362 $\leq 2\Theta \leq 59.586$), 7266 unique (*R*_{int} = 0.0248, R_{sigma} = 0.0396) which were used in all calculations. The final *R*₁ was 0.0443 (I > 2 σ (I)) and *wR*₂ was 0.1101 (all data). CCDC: 2298999

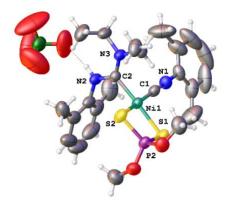

Compound 3e: $C_{25}H_{25}N_2NiO_2PS_2$ (M = 539.27 g/mol): monoclinic, space group P2₁/c (no. 14), a = 14.2683(17) Å, b = 12.6497(7) Å, c = 14.8317(16) Å, $\theta = 94.874(10)^\circ$, V = 2667.3(5) Å³, Z = 4, T = 293(2) K, μ (Mo K α) = 0.967 mm⁻¹, *Dcalc* = 1.343 g/cm³, 10091 reflections measured (4.984° $\leq 2\Theta \leq 49.454°$), 4547 unique ($R_{int} = 0.0543$, $R_{sigma} = 0.1063$) which were used in all calculations. The final R_1 was 0.0579 (I > 2 σ (I)) and wR_2 was 0.1390 (all data).CCDC: 2308595

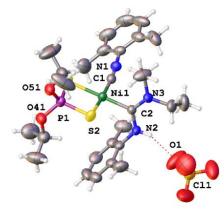
Compound 4a: $C_{22}H_{28}CIN_2NiO_6PS_2$ (M = 605.71 g/mol): triclinic, space group P-1 (no. 2), a = 7.7849(4) Å, b = 9.6864(4) Å, c = 19.6397(10) Å, $a = 100.452(4)^\circ$, $\delta = 100.473(4)^\circ$, $\gamma = 100.035(4)^\circ$, V = 1398.88(12) Å³, Z = 2, T = 293(2) K, μ (MoK α) = 1.033 mm⁻¹, *Dcalc* = 1.438 g/cm³, 11919 reflections measured (4.324° $\leq 2\Theta \leq 59.548^\circ$), 6565 unique ($R_{int} = 0.0203$, $R_{sigma} = 0.0344$) which were used in all calculations. The final R_1 was 0.0697 (I > 2 σ (I)) and wR_2 was 0.2320 (all data). CCDC: 2299006

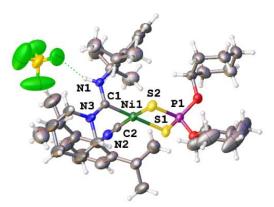

Compound 4c: $C_{20}H_{24}CIN_2NiO_6PS_2$ (M = 577.66 g/mol): triclinic, space group P-1 (no. 2), a = 7.2158(3) Å, b = 10.0031(8) Å, c = 18.9825(10) Å, a = 99.859(5)°, β = 97.908(4)°, γ = 105.106(5)°, V = 1279.16(13) Å³, Z = 2, T = 293 K, μ (MoK α) = 1.126 mm⁻¹, *Dcalc* = 1.500 g/cm³, 9842 reflections measured (4.32° ≤ 2 Θ ≤ 59.608°), 5964 unique (R_{int} = 0.0226, R_{sigma} = 0.0485) which were used in all calculations. The final R_1 was 0.0589 (I > 2 σ (I)) and wR_2 was 0.1815 (all data). CCDC: 2299001

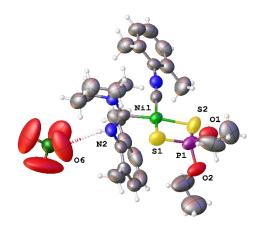

Compound 4e: $C_{24}H_{32}N_2O_6PS_2CINi$ (*M* =633.76 g/mol): triclinic, space group P-1 (no. 2), *a* = 8.6853(3) Å, *b* = 11.9625(5) Å, *c* = 16.6919(6) Å, *a* = 93.616(3)°, *b* = 98.940(3)°, γ = 103.585(3)°, *V* = 1656.28(11) Å³, *Z* = 2, *T* = 293(2) K, μ (Mo K α) = 0.876 mm⁻¹, *Dcalc* = 1.271 g/cm³, 14723 reflections measured (4.516° ≤ 2 Θ ≤ 59.024°), 7756 unique (R_{int} = 0.0251, R_{sigma} = 0.0522) which were used in all calculations. The final R_1 was 0.0654 (I > 2 σ (I)) and *w* R_2 was 0.1977 (all data). CCDC: 2299268


Compound 4f: $C_{30}H_{40}N_2O_6PS_2CINi$ (*M* =713.89 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 17.7071(6) Å, *b* = 10.8206(4) Å, *c* = 21.3047(10) Å, *b* = 110.113(5)°, *V* = 3833.1(3) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.765 mm⁻¹, *Dcalc* = 1.237 g/cm³, 19251 reflections measured (3.964° ≤ 2 Θ ≤ 58.944°), 9105 unique (R_{int} = 0.0371, R_{sigma} = 0.0650) which were used in all calculations. The final R_1 was 0.0601 (I > 2 σ (I)) and wR_2 was 0.1876 (all data). CCDC: 2299269

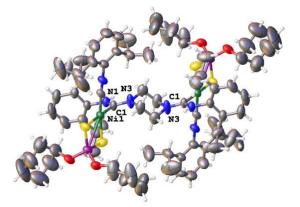

Compound 5b: $C_{25}H_{32}N_4O_2PS_2Ni$ (*M* =574.34 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 14.3103(5) Å, *b* = 15.1738(5) Å, *c* = 14.3126(5) Å, β = 100.034(3)°, *V* = 3060.32(19) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.849 mm⁻¹, *Dcalc* = 1.247 g/cm³, 23465 reflections measured (4.43° ≤ 2 Θ ≤ 59.718°), 7625 unique (R_{int} = 0.0351, R_{sigma} = 0.0439) which were used in all calculations. The final R_1 was 0.0384 (I > 2 σ (I)) and *w* R_2 was 0.0976 (all data). CCDC: 2299273


Compound 5c. $C_{31}H_{47}N_4NiO_2PS_2$ (*M* =661.52 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 17.6491(10) Å, *b* = 21.2342(13) Å, *c* = 17.9976(8) Å, *V* = 6744.8(6) Å³, *Z* = 8, *T* = 293(2) K, μ (Mo K α) = 0.780 mm⁻¹, *Dcalc* = 1.303 g/cm³, 25073 reflections measured (4.526° $\leq 2\Theta \leq 59.478°$), 8204 unique ($R_{int} = 0.0905$, $R_{sigma} = 0.1379$) which were used in all calculations. The final R_1 was 0.0654 (I > 2 σ (I)) and wR_2 was 0.1494 (all data). CCDC: 2299274


Compound 5e: $C_{23}H_{32}N_3NiO_2PS_2$ (*M* =536.31 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 14.1712(3) Å, *b* = 14.4321(4) Å, *c* = 14.8981(3) Å, *b* = 100.956(2)°, *V* = 2991.42(12) Å³, *Z* = 4, *T* = 293 K, μ (MoK α) = 0.863 mm⁻¹, *Dcalc* = 1.191 g/cm³, 16554 reflections measured (4.066° ≤ 2 Θ ≤ 59.51°), 7189 unique (R_{int} = 0.0215, R_{sigma} = 0.0332) which were used in all calculations. The final R_1 was 0.0698 (I > 2 σ (I)) and wR_2 was 0.2585 (all data). CCDC: 2299270


Compound 6c: $C_{24}H_{35}CIN_3NiO_6PS_2$ (*M* =650.80 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 10.8986(2) Å, *b* = 15.6526(3) Å, *c* = 18.4304(3) Å, β = 96.3167(16)°, *V* = 3124.97(9) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.931 mm⁻¹, *Dcalc* = 1.383 g/cm³, 13800 reflections measured (4.448° ≤ 2 Θ ≤ 57.516°), 7138 unique (R_{int} = 0.0234, R_{sigma} = 0.0413) which were used in all calculations. The final R_1 was 0.0503 (I > 2 σ (I)) and *w* R_2 was 0.1517 (all data). CCDC: 2299288

Compound 6e: $C_{28}H_{43}CIN_3NiO_6PS_2$ (*M* =706.90 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 9.2715(2) Å, *b* = 21.9434(4) Å, *c* = 18.2332(4) Å, *b* = 104.038(3)°, *V* = 3598.71(15) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.814 mm⁻¹, *Dcalc* = 1.305 g/cm³, 41217 reflections measured (4.368° ≤ 2 Θ ≤ 59.464°), 9086 unique (*R*_{int} = 0.0351, R_{sigma} = 0.0339) which were used in all calculations. The final *R*₁ was 0.0495 (I > 2 σ (I)) and *wR*₂ was 0.1391 (all data).. CCDC: 2299303



Compound 6g: $C_{43}H_{67}BF_4N_3NiO_2PS_2$ (*M* =898.60 g/mol): triclinic, space group P-1 (no. 2), a = 9.1019(4) Å, b = 14.9066(6) Å, c = 17.7025(10) Å, $a = 82.659(4)^\circ$, $\delta = 89.705(4)^\circ$, $\gamma = 86.302(4)^\circ$, V = 2377.2(2) Å³, Z = 2, T = 293(2) K, μ (Mo K α) = 0.582 mm⁻¹, *Dcalc* = 1.255 g/cm³, 18610 reflections measured (4.484° $\leq 2\Theta \leq 59.212°$), 11088 unique ($R_{int} = 0.0303$, $R_{sigma} = 0.0664$) which were used in all calculations. The final R_1 was 0.0678 (I > 2 σ (I)) and wR_2 was 0.2042 (all data). CCDC: 2299286

Compound 6h: $C_{27}H_{39}CIN_3NiO_6PS_2$ (*M* =690.86 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 12.5858(5) Å, *b* = 19.6057(7) Å, *c* = 14.6622(5) Å, *b* = 112.736(4)°, *V* = 3336.8(2) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.876 mm⁻¹, *Dcalc* = 1.375 g/cm³, 17174 reflections measured (6.806° ≤ 2 Θ ≤ 59.354°), 7904 unique (*R*_{int} = 0.0295, R_{sigma} = 0.0484) which were used in all calculations. The final *R*₁ was 0.0766 (I > 2 σ (I)) and *wR*₂ was 0.2393 (all data). CCDC: 2299289

Compound 7: $C_{42}H_{52}N_6Ni_2O_4P_2S_4$ (*M* =1060.53 g/mol): monoclinic, space group I2/a (no. 15), *a* = 15.8519(11) Å, *b* = 12.9097(15) Å, *c* = 25.918(2) Å, *b* = 102.398(8)°, *V* = 5180.2(8) Å³, *Z* = 4, *T* = 293(2) K, μ (Mo K α) = 0.996 mm⁻¹, *Dcalc* = 1.360 g/cm³, 11394 reflections measured (4.108° ≤ 2 Θ ≤ 49.472°), 4420 unique (*R*_{int} = 0.0762, *R*_{sigma} = 0.1059) which were used in all calculations. The final *R*₁ was 0.0717 (I > 2 σ (I)) and *wR*₂ was 0.2072 (all data). CCDC: 2299483

Compound 8: $C_{80}H_{122}B_2F_8N_6Ni_2O_4P_2S_4$ (*M* =1713.05 g/mol): triclinic, space group P-1 (no. 2), *a* = 13.0354(7) Å, *b* = 13.3201(7) Å, *c* = 14.2399(5) Å, *α* = 90.782(4)°, *β* = 106.703(4)°, *γ* = 96.437(5)°, *V* = 2350.5(2) Å³, *Z* = 1, *T* = 293(2) K, µ(Mo Kα) = 0.585 mm⁻¹, *Dcalc* = 1.210 g/cm³, 22453 reflections measured (4.188° \leq 2Θ \leq 59.13°), 11134 unique (R_{int} = 0.0386, R_{sigma} = 0.0682) which were used in all calculations. The final R_1 was 0.0939 (I > 2σ(I)) and *wR*₂ was 0.3134 (all data). CCDC: 2300163

¹ Coldbery, D. E.; Fernelius, W. C.; Shamma, M.; Dwyer, F. P.; Hogarth, J. W.; Reid, I. K., Chromium(III) O,O'-Diethyl Dithiophosphate. In *Inorg. Synth.*, **1960**, 142-143.

² Boíllos, E.; Miguel, D., Alkyl Transfer Reactivity in the First Octahedral Isocyanide Complex of Nickel(II). *Organometallics* **2004**, *23* (11), 2568-2572.

³ Paasivirta, J.; Simanainen, J.; Vesterinen, R.; Virkki, L., Three nuclei n.m.r. spectroscopy of dimethoate compounds. A large solvent effect on the ³¹P-S-C-¹H vicinal coupling. *Organic Magnetic Resonance* **1977**, *9* (12), 708-711.