Supplementary Information

Copper(I) Complexes Bearing the Pyrrole-Bridged S,N and N-Donor Ligands as Catalysts for the Tandem Hydroamination-Alkynylation: Effect of Anions on Product Formation

Munmun Mondal, and Ganesan Mani*

Department of Chemistry, Indian Institute of Technology, Kharagpur, Kharagpur-721302, West Bengal, India.

- 1. X-ray structures and refinement data
- 2. Catalysis studies
- 3. Substrate scope data
- 4. NMR, HRMS and IR Spectra
- 5. References

1. X-ray structures and refinement data

The suitable single crystals of complexes 5-11a were grown from the solvents mentioned in their respective experimental sections. Data collections were performed using a Bruker APEX-II or D8 Venture APEX3 CCD diffractometer with graphite monochromated Mo Ka radiation $(\lambda = 0.71073 \text{ Å})$. The space group for every structure was obtained by XPREP program. The structures were solved by SHELXT¹ which successfully located most of the nonhydrogen atoms. Subsequently, least-squares refinements were carried out on F^2 using SHELXL version 2018/3² to locate the remaining nonhydrogen atoms. Nonhydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to carbon atoms were fixed in calculated positions. For complex 11a·CH₂Cl₂, the lattice CH₂Cl₂ could not be modelled and hence it was squeezed using SQUEEZE/PLATON.³ As a result, its cif file shows mismatch between the calculated and reported formulae. The PF₆⁻ anion, SO₂ and phenyl rings are also disordered and they were successfully resolved using SADI, EADP, DFIX, SIMU, RIGU restraints. The refinement data for all the structures are summarized in Table S1 and Table S2. Crystallographic data were deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. These data can be obtained free of charge upon quoting the depository numbers CCDC 2331548-2331554 and 2349043 from web interface (at http://www.ccdc.cam.ac.uk).

	Complex 5	Complex 6	Complex 7	Complex 8
Empirical	$C_{34}H_{38}Cl_2Cu_2N_6S_2$	$C_{34}H_{38}Br_2Cu_2N_6S_2$	$C_{34}H_{38}Cu_2I_2N_6S_2$	$C_{34}H_{38}Cu_2Cl_2N_6O_4$
formula				\mathbf{S}_2
Formula weight	792.80	881.72	975.70	856.80
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Temperature	296(2)	150(2)	296(2)	296(2)
(K)				
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	рl	рĨ	рĨ	рl
a/Å	7.819(5)	7.7907(9)	7.9902(3)	8.623(2)
b/Å	10.872(6)	10.8092(12)	10.9861(5)	9.240(2)
c/Å	11.705	11.6165(14)	11.7073(5)	12.560(3)
α/degree	70.240(18)	70.825(7)	70.051(2)	88.202(9)
β/degree	72.284(19)	72.813(8)	75.137(2)	71.740(8)
γ/degree	77.609(18)	80.038(8)	82.751(2)	75.243(9)
Volume (Å ³)	885.0(9)	879.58(18)	932.85(7)	917.8(4)
Z	1	1	1	1
$D_{\text{calcd}}, \text{mg m}^{-3}$	1.488	1.665	1.737	1.550
μ/mm^{-1}	1.504	3.633	2.939	1.465
F(000)	408	444	480	440
θ range (degree)	2.330 to 27.239	2.746 to 28.580	2.257 to 33.142	2.282 to 30.087
Data/restr/param	3778 / 0 / 212	4449 / 0 / 212	7012 / 0 / 212	5316 / 0 / 230
s.				
$GOF(F^2)$	1.037	1.028	1.082	1.045
Limiting Indices	-10<=h<=10	-8<=h<=10	-12<=h<=12	-12<=h<=12
	-13<=k<=13	-14<=k<=13	-16<=k<=15	-13<=k<=13
	-12<=1<=14	-15<=1<=15	-18<=1<=17	-17<=1<=17
<i>R1</i> , <i>wR2</i>	0.0805, 0.2088	0.0535, 0.0825	0.0325, 0.0694	0.0533, 0.1292
R indices (all	0.1351, 0.2718	0.1086, 0.1048	0.0480, 0.0775	0.0925, 0.1518
data) R1, wR2				
Largest different	0.957 and -1.025	0.660, -0.703	0.729, -0.853	1.248, -0.866
peak and hole (e				
Å-3)				

 Table S1. Crystallographic data for complexes 5-8.

	Complex 9	Complex 10	Complex 11a ·CH ₂ Cl ₂	$[C_4H_{10}NO]_4^+[Cu_2Cl_6]^{4-}$
Empirical	$C_{34}H_{38}CuBrN_6O_4S_2$	$C_{34}H_{38}CuIN_6O_4S_2$	$C_{35}H_{40}Cl_2CuF_6N_6O_4PS_2$	$C_{16}H_{40}Cl_6Cu_2N_4O_4$
formula				
Formula weight	802.27	849.26	952.26	692.30
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Temperature (K)	296(2)	296(2)	150(2)	120(2)
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	C2/c	рĪ	P2 ₁ /c
a/Å	13.3242(11)	13.3756(11)	12.8983(7)	9.5628(3)
b/Å	11.9239(11)	12.0339(11)	18.2783(11)	17.6110(6)
c/Å	22.9313(17)	23.0349(18)	20.3179(11)	8.4952(2)
a/degree	90	90	74.971(2)	90
β/degree	100.561(4)	100.211(7)	71.551(2)	97.1890(10)
γ/degree	90	90	69.355(2)	90
Volume (Å ³)	3581.5(5)	3649.0(5)	4192.8(4)	1419.43(7)
Z	4	4	4	2
$D_{\text{calcd}}, \text{mg m}^{-3}$	1.488	1.546	1.509	1.620
μ/mm^{-1}	1.888	1.604	0.858	2.092
F(000)	1648	1720	1952	712
θ range (degree)	2.310 to 30.628	2.293 to 29.831	2.143 to 25.000	2.147 to 33.221
Data/restr/param	5486 / 0 / 223	5227 / 0 / 222	14738 / 972 / 1129	5431 / 0 / 161
s.				
$GOF(F^2)$	1.077	1.001	1.034	1.037
Limiting Indices	-18<=h<=18	-17<=h<=18	-15<=h<=14	-14<=h<=14
	-16<=k<=17	-16<=k<=16	-21<=k<=21,	-27<=k<=27
	-32<=1<=32	-32<=l<=32	-24<=1<=24	-13<=1<=12
R1, wR2	0.0498, 0.1365	0.0429, 0.0954	0.0595, 0.1307	0.0344, 0.0796
R indices (all	0.0677, 0.1469	0.1136, 0.1264	0.1010, 0.1492	0.0495, 0.0877
data) R1, wR2				
Largest different	0.806, -0.694	0.817, -0.624	0.530, -0.713	0.501, -0.644
peak and hole (e				
Å-3)				

 Table S2. Crystallographic data for complexes 9-11a and morpholinium copper(I) salt.

Figure S1. ORTEP diagram of Complex **6** with 50% probability ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Cu1ⁱ-S1 2.3021(14), Cu1-N1 2.028(4), Cu1-Br1ⁱ 2.5389(9), Cu1-Br1 2.4973(8), N1-Cu1-S1ⁱ 105.78(12), N1-Cu1-Br1 124.04(11), S1ⁱ-Cu1-Br1 108.42(4), N1-Cu1-Br1ⁱ 103.24(12), S1ⁱ-Cu1-Br1ⁱ 118.38(4), Br1-Cu1-Br1ⁱ 97.74(3), Cu1-Br1-Cu1ⁱ 82.26(3). Hydrogen bonding: N3--Br1ⁱ 3.517(4), H-- Br1ⁱ 2.82(4), N3-H--Br1ⁱ 155(4). Symmetry transformations used to generate equivalent atoms: (i) -x+1, -y+1, -z.

Figure S2. ORTEP diagram of 7 with 50% probability ellipsoids. Most hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Cu1ⁱ- S1 2.3350(7), Cu1-N1 2.0415(19), Cu1-IIⁱ 2.7128(4), Cu1-II 2.6606(4), N1-Cu1-S1ⁱ 107.04(6), N1-Cu1-II 124.05(6), S1ⁱ-Cu1-II 108.039(19), N1-Cu1-IIⁱ 102.92(6), S1ⁱ-Cu1-IIⁱ 113.71(2), I1-Cu1-IIⁱ 101.084(11), Cu1-I1-Cu1ⁱ 78.916(12). Hydrogen bonding: N3…IIⁱ 3.715(2), H… IIⁱ 2.99(3), N3-H…IIⁱ 163(3). Symmetry transformations used to generate equivalent atoms: (i) -x, -y, -z+2.

Figure S3. ORTEP diagram of **10** with 50% probability ellipsoids. All hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Cu1-N1 1.983(3), Cu1-I1 2.5610(8), O2-S1 1.443(3), O1-S1 1.437(3), N1-Cu1-N1ⁱ 121.59(18), N1-Cu1-I1 119.21(9). Hydrogen bonding: N3···O2ⁱⁱ 3.103(5), H···O2ⁱⁱ 2.31(4), N3-H···O2ⁱⁱ 174(4). Symmetry transformations used to generate equivalent atoms: (i) -x+1, y, -z+1/2, (ii) -x+3/2, -y+1/2, -z.

Figure S4. The intermolecular pyrrole NH...Cl hydrogen bonds in the crystal lattice of structure **8**.

Figure S5. The intermolecular pyrrole $NH...O(SO_2)$ hydrogen bonds in the crystal lattice of structure 9.

Figure S6. The intermolecular pyrrole $NH...O(SO_2)$ hydrogen bonds in the crystal lattice of structure 10.

Figure S7. The intermolecular pyrrole $NH...O(SO_2)$ hydrogen bonds in the crystal lattice of structure 11a.

Figure S8. ORTEP diagram of asymmetric unit of the structure of morpholinium copper(I) salt with 50% probability ellipsoids. Selected bond lengths (Å) and angles (°): Cu1-Cl2 2.2660(4), Cu1-Cl1 2.2670(4), Cu1-Cl3 2.3300(4), Cu1-Cl1ⁱ 2.7605(4), N2-C7 1.491(2), N2-C6 1.4940(19), C6-C5 1.516(2), O2-C5 1.426(2), O2-C8 1.4320(19), C7-C8 1.507(2); Cl2-Cu1-Cl1 128.117(16), Cl2-Cu1-Cl3 111.753(15), Cl1-Cu1-Cl3 114.503(15), Cl2-Cu1-Cl1ⁱ 101.393(15), Cl1-Cu1-Cl1ⁱ 95.042(13), Cl3-Cu1-Cl1ⁱ 97.109(14), Cu1-Cl1-Cu1ⁱ 84.957(13). Symmetry transformations used to generate equivalent atoms: (i) -x+1, -y+1, -z+1.

Table	S3 .	Hydrogen	bonds
-------	-------------	----------	-------

D-HA	d(D-H), Å	d(HA), Å	d(DA), Å	<(DHA), °
N2-H3Cl3	0.87(2)	2.31(2)	3.1591(13)	166.5(18)
N(1)-H(2)Cl3 ⁱⁱ	0.88(2)	2.34(2)	3.1798(13)	160.1(18)

N2-H4Cl1 ⁱⁱⁱ	0.87(2)	2.65(2)	3.2937(13)	131.6(17)
N1-H1Cl2 ^{iv}	0.90(2)	2.27(2)	3.1345(13)	162.4(17)
N2-H4Cl3 ^v	0.87(2)	2.67(2)	3.2853(13)	129.4(17)

Symmetry transformations used to generate equivalent atoms: (i) -x+1,-y+1,-z+1 (ii) x,-y+1/2,z-1/2 (iii) x-1,y,z (iv) -x+1,y-1/2,-z+1/2 (v) -x,-y+1,-z+1

2. Catalysis studies

Table S4. Optimization of the catalytic hydroamination-alkynylation reaction between phenylacetylene and morpholine using the copper(I) chloride complex **8** containing the sulfone ligand **4**.

Entry	Amine	Alkyne	Complex	Temp.	Time	Yield (%) ^{<i>a</i>}		%) <i>a</i>
	(equiv)	(equiv)	(mol%)	(°C)	(h)		1	
		· - /				12a	12b	Diyne
1	1	2	8 (5)	80	14	8	30	-
2	1	2	8 (2)	80	14	9	33	-
3	1	2	8 (1.5)	80	14	4	45	-
4	1	2	8 (1)	80	14	2	45	-
5	1	2	8 (0.5)	80	14	8	27	-
6	1.5	4	8 (1)	80	36	2	63	-
7	3	1	8 (1)	80	14	2	14	-
8	1	6	8 (5)	80	14	19	63	-
9	1	4	8 (5)	80	14	16	62	-
10	1	4	8 (1)	110	2	21	74	-
11	1	4	8 (0.5)	110	12	3	50	-
12	1	4	5 (1)	110	1.5	27	71	-

^{*a*}Isolated yields based on morpholine.

The catalytic hydroamination-alkynylation reaction between morpholine and phenylacetylene in the presence of complex **8** under different conditions was optimized and summarized in Table S4. The reaction between morpholine and phenylacetylene in the 1:2 molar ratio in the presence of 5 mol% of complex **8** in a pressure tube at 80 °C for 14 h without exogeneous solvent under nitrogen atmosphere yielded a mixture of products from which compound **12a** (8%) and **12b** (30%) were isolated in a pure form by basic alumina column chromatography separation (entry1). When the loading of complex **8** was gradually decreased to 2, 1.5 and then to 1 mol% with other conditions remaining the same, the yield of the trisubstituted propargylamine (**12b**) increased to 45%, whereas the tetrasubstituted propargylamine (**12a**) decreased to 2% yield (entry 2-4). The further decrease in the catalyst loading (0.5 mol%) resulted in the decreased isolated yield of 27% for **12b** (entry 5). When the alkyne/amine mole ratio is high (4:1.5) with 1 mol% of complex, the yield of **12b** is increased to 63% yield and that of **12a** remained almost the same (2%) (entry 6). Conversely, when the alkyne/amine ratio is low (1:3), the yield of **12b** also decreased (14%) with 2% yield of **12a** (entry 7). This is consistent with the structure of the product containing two phenylacetylene moieties. Subsequently, to improve the yield of product, the catalyst loading was increased to 5 mol% with alkyne/amine mole ratio of 6:1 or 4:1 at 80 °C (entry 8 and 9). Yet, the yield of the trisubstituted product did not improve beyond 63%. Remarkably, the yields of both products increased to 74% and 21% when the temperature of the reaction is increased to 110 °C with 1 mol% of catalyst (entry 10). Further, under the same conditions, when the catalyst loading is 0.5 mol%, the yield of the trisubstituted product is decreased to 50% (entry 11). Similar result was obtained with complex **5** (entry 12).

Catalytic hydroamination-alkynylation using [Cu(CH₃CN)₄]BF₄

Under dinitrogen atmosphere, an oven dried teflon-capped pressure tube equipped with a stirring bar was charged with *N*-phenylpiperazine (0.20 mL, 1.26 mmol), phenylacetylene (0.56 mL, 5.09 mmol), and [Cu(CH₃CN)₄]BF₄ (0.0396 g, 0.1258 mmol). After closing the tube with Teflon cap tightly, the bottom of the tube containing the reaction mixture was placed in a preheated oil bath at 110 °C and stirred for 24 h. Under dinitrogen atmosphere, the reaction was monitored by TLC to check if *N*-phenylpiperazine is completely consumed. After cooling down to room temperature, the reaction mixture was loaded onto a basic alumina column and eluted with ethyl acetate/hexane (v/v = 1/99) mixture. The solvent was evaporated from the first fraction using rotary evaporator and then dried under vacuum to obtain the tetrasubstituted propargylamine **17a**, and the second fraction of solvent gave the trisubstituted product **17b**. ¹H and ¹³C NMR spectra were recorded to confirm their purity and structure. For **17a**: 0.402 g, 1.096 mmol, yield = 87%. For **17b**: 0.021 g, 0.057 mmol, yield = 5%.

Catalytic hydroamination-alkynylation using complex 11b

Under dinitrogen atmosphere, an oven dried teflon-capped pressure tube equipped with a stirring bar was charged with *N*-phenylpiperazine (0.20 mL, 1.26 mmol), phenylacetylene (0.56 mL, 5.09 mmol), and copper complex **11b** (0.0102 g, 0.0126 mmol). After closing the tube with Teflon cap tightly, the bottom of the tube containing the reaction mixture was placed in a

preheated oil bath at 110 °C and stirred for 12 h. Under dinitrogen atmosphere, the reaction was monitored by TLC to check if n-phenyl piperazine is completely consumed. After cooling down to room temperature, the reaction mixture was loaded onto a basic alumina column and eluted with ethyl acetate/hexane (v/v = 1/99) mixture. The solvent was evaporated from the first fraction using rotary evaporator and then dried under vacuum to obtain the tetrasubstituted propargylamine **17a**, and the second fraction of solvent gave the trisubstituted product **17b**. ¹H and ¹³C NMR spectra were recorded to confirm their purity and structure. For **17a**: 0.321 g, 0.875 mmol, yield = 70%. For **17b**: 0.082g, 0.223 mmol., yield = 18%.

3. Substrate scope data

4-(2,4-diphenylbut-3-yn-2-yl)morpholine⁴ **12a:** 0.090 g, 0.309 mmol, yield = 27%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.75 (d, *J*(HH) = 10.0, 2H, C₆*H*₅), 7.53 (t, *J*(HH) = 5.0, 2H, C₆*H*₅), 7.34-7.31 (m, 5H, C₆*H*₅), 7.25 (t, *J*(HH) = 5.0, 1H, C₆*H*₅), 3.71 (t, *J*(HH) = 5.0, 4H, morpholine C*H*₂), 2.71 (br s, 2H, morpholine C*H*₂), 2.48 (br s, 2H, morpholine C*H*₂), 1.66 (s, 3H, C*H*₃). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 145.0, 132.0, 128.4, 128.4, 128.3, 127.4, 126.8, 123.3, 88.4, 88.3, 67.6, 63.5, 48.2, 30.6. HRMS (+ ESI): calcd *m/z* for [M+H]⁺ C₂₀H₂₂NO⁺: 292.1696, found: 292.1709.

4-(1,4-diphenylbut-3-yn-2-yl)morpholine⁵ **12b:** 0.240 g, 0.823 mmol, yield = 71%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.43-7.26 (m, 10H, C₆H₅), 3.85-3.75 (m, 5H, morpholine CH₂, CH),

3.13 (dd, $J(HH) = 10.0, 5.0, 1H, CH_2$), 3.04 (dd, $J(HH) = 10.0, 5.0, 1H, CH_2$), 2.87-2.83 (m, 2H, morpholine CH_2), 2.70-2.66 (m, 2H, morpholine CH_2). ¹³C NMR (CDCl₃, 125.7 MHz, ppm) $\delta = 138.5, 131.7, 129.5, 128.3, 128.2, 128.1, 126.5, 123.1, 87.4, 86.4, 67.1, 60.2, 49.9, 39.6. HRMS (+ ESI): calcd$ *m/z*for [M+H]⁺ C₂₀H₂₂NO⁺: 292.1696, found: 292.1697.

1,4-diphenylbuta-1,3-diyne⁶ 12c: 0.170 g, 0.840 mmol, yield = 36%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.54 (d, *J*(HH) = 5.0, 4H, C₆*H*₅), 7.38-7.33 (m, 6H, C₆*H*₅). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 132.7, 129.3, 128.6, 122.0, 81.7, 74.1.

4-(2,4-di(thiophen-3-yl)but-3-yn-2-yl)morpholine 13a: 0.100 g, 0.330 mmol, yield = 28%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.46 (d, *J*(HH) = 5.0, 1H, thiophene CH), 7.41 (d, *J*(HH) = 5.0, 1H, thiophene CH), 7.27-7.14 (m, 4H, thiophene CH), 3.69 (t, *J*(HH) = 5.0, 4H, morpholine CH₂), 2.68 (t, *J*(HH) = 5.0, 2H, morpholine CH₂), 2.45 (t, *J*(HH) = 5.0, 2H, morpholine CH₂), 1.67 (s, 3H, CH₃). HRMS (+ ESI): calcd *m*/*z* for [M+H]⁺ C₁₆H₁₈NOS₂⁺: 304.0825, found: 304.0819.

4-(1,4-di(thiophen-3-yl)but-3-yn-2-yl)morpholine 13b: 0.200 g, 0.660 mmol, yield = 57%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.40 (d, *J*(HH) = 5.0, 1H, thiophene C*H*), 7.27-7.24 (m, 2H, thiophene C*H*), 7.17 (d, *J*(HH) = 5.0, 1H, thiophene C*H*), 7.10-7.08 (m, 2H, thiophene C*H*), 3.82-3.71 (m, 5H, morpholine C*H*₂ and CH), 3.07 (m, 2H, C*H*₂), 2.82-2.78 (m, 2H, morpholine CH₂), 2.65-2.62 (m, 2H, morpholine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): $\delta = 138.7$, 130.0, 128.9, 128.5, 125.3, 125.1, 122.1, 122.1, 86.1, 82.1, 67.1, 59.4, 49.8, 34.0.

1-(2,4-diphenylbut-3-yn-2-yl)piperidine⁷ **14a:** 0.050 g, 0.173 mmol, yield = 18%. ¹H NMR (CDCl₃, 400 MHz): δ = 7.76 (d, *J*(HH) = 8.0, 2H, C₆*H*₅), 7.53 (d, *J*(HH) = 8.0, 2H, C₆*H*₅), 7.35-7.22 (m, 6H, C₆*H*₅), 2.67 (br s, 2H, piperidine C*H*₂), 2.42 (d, *J*(HH) = 8.0, 2H, piperidine C*H*₂), 1.65 (s, 3H, C*H*₃), 1.61 (br s, 2H, piperidine C*H*₂), 1.56 (br s, 2H, piperidine C*H*₂), 1.45 (d, *J*(HH) = 8.0, 2H, piperidine C*H*₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 146.4, 132.0, 128.4, 128.2, 128.0, 127.0, 126.6, 123.8, 89.6, 87.6, 63.8, 48.9, 31.3, 26.7, 24.9.

1-(1,4-diphenylbut-3-yn-2-yl)piperidine⁵ **14b:** 0.200 g, 0.691 mmol, yield = 71%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.34-7.15 (m, 10H, C₆H₅), 3.67 (q, *J*(HH) = 5.0, 1H, C*H*), 3.01-2.94 (m, 2H, C*H*₂), 2.72 (br s, 2H, piperidine C*H*₂), 2.53 (br s, 2H, piperidine C*H*₂), 1.64-1.57 (m, 4H, piperidine C*H*₂), 1.44-1.42 (m, 2H, piperidine C*H*₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 139.0, 131.6, 129.6, 128.2, 128.1, 127.8, 126.3, 123.5, 87.3, 86.8, 60.8, 50.8, 40.1, 26.2, 24.6.

1-(2,4-diphenylbut-3-yn-2-yl)pyrrolidine⁸ **15a:** 0.100 g, 0.363 mmol, yield = 30%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.78 (d, *J*(HH) = 10.0, 2H, C₆*H*₅), 7.52 (t, *J*(HH) = 5.0, 2H, C₆*H*₅), 7.35-7.30 (m, 5H, C₆*H*₅), 7.25 (t, *J*(HH) = 7.5, 1H, C₆*H*₅), 2.77 (d, *J*(HH) = 5.0, 2H, pyrrolidine

CH₂), 2.62 (q, J(HH) = 5.0, 2H, pyrrolidine CH₂), 1.78 (t, J(HH) = 7.5, 4H, pyrrolidine CH₂), 1.73 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 145.7, 132.0, 128.4, 128.2, 128.1, 127.2, 126.6, 123.6, 89.5, 87.5, 62.9, 48.6, 32.4, 24.0.

1-(1,4-diphenylbut-3-yn-2-yl)pyrrolidine⁵ **15b:** 0.200 g, 0.726 mmol, yield = 61%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.33-7.17 (m, 10H, C₆H₅), 3.90 (q, *J*(HH) = 5.0, 1H, CH), 3.08 (m, 1H, CH₂), 2.93 (t, *J*(HH) = 10.0, 1H, CH₂), 2.80 (d, *J*(HH) = 5.0, 2H, pyrrolidine CH₂), 2.74 (d, *J*(HH) = 10.0, 2H, pyrrolidine CH₂), 1.79 (t, *J*(HH) = 7.5, 4H, pyrrolidine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 138.8, 131.7, 129.5, 128.2, 128.2, 127.9, 126.4, 123.4, 87.5, 86.5, 57.1, 49.8, 41.8, 23.6.

N,N-diallyl-2,4-diphenylbut-3-yn-2-amine 16a: 0.040 g, 0.132 mmol, yield = 16%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.83 (d, *J*(HH) = 10.0, 2H, C₆H₅), 7.55 (d, *J*(HH) = 5.0, 2H, C₆H₅), 7.36 (t, *J*(HH) = 7.5, 5H, C₆H₅), 7.27 (t, *J*(HH) = 5.0, 1H, C₆H₅), 6.00-5.96 (m, 2H, CH), 5.18 (d, *J*(HH) = 15.0, 2H, CH₂), 5.06 (d, *J*(HH) = 10.0, 2H, CH₂), 3.35 (dd, *J*(HH) = 10.0, 15.0, 2H, CH₂), 3.26 (d, *J*(HH) = 15.0, 2H, CH₂), 1.70 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 146.7, 138.0, 131.8, 130.2, 128.5, 128.3, 128.1, 127.2, 126.6, 115.6, 91.1, 86.9, 64.1, 53.5, 32.5.

N,N-diallyl-1,4-diphenylbut-3-yn-2-amine⁵ **16b:** 0.200 g, 0.663 mmol, yield = 82%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.36 (d, *J*(HH) = 5.0, 2H, C₆*H*₅), 7.26 (t, *J*(HH) = 5.0, 7H, C₆*H*₅), 7.19 (q, *J*(HH) = 5.0, 1H, C₆*H*₅), 5.79(q, *J*(HH) = 5.0, 10.0, 2H, C*H*), 5.18 (d, *J*(HH) = 15.0, 2H, C*H*₂), 5.09 (d, *J*(HH) = 10.0, 2H, C*H*₂), 3.95 (t, *J*(HH) = 7.5, 1H, C*H*), 3.38 (q, *J*(HH) = 5.0, 2H, C*H*₂), 3.05 (dd, *J*(HH) = 5.0, 15.0, 2H, C*H*₂), 3.01-2.94 (m, 2H, C*H*₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 138.9, 136.5, 131.8, 129.7, 128.3, 128.2, 128.0, 126.4, 123.6, 117.3, 87.7, 86.2, 55.4, 54.2, 40.6.

1-(2,4-diphenylbut-3-yn-2-yl)-4-phenylpiperazine 17a: 0.321 g, 0.875 mmol, yield = 70% (using complex **11b**) and 0.402 g, 1.096 mmol, yield 87% (using $[Cu(CH_3CN)_4][BF_4]$) ¹H NMR (CDCl₃, 500 MHz): δ = 7.79 (d, *J*(HH) = 5.5, 2H, C₆H₅), 7.52 (t, *J*(HH) = 5.0, 2H, C₆H₅), 7.34 (t, *J*(HH) = 7.5, 2H, C₆H₅), 7.30-7.21 (m, 6H, C₆H₅), 6.91 (d, *J*(HH) = 10.0, 2H, C₆H₅), 6.82 (t, *J*(HH) = 7.5, 1H, C₆H₅), 3.22-3.15 (m, 4H, piperazine CH₂), 2.90 (br d, *J*(HH) = 5.0, 2H, piperazine CH₂), 2.66 (t, *J*(HH) = 5.0, 2H, piperazine CH₂), 1.72 (s, 3H, CH₃). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 151.5, 145.3, 132.0, 129.2, 128.4, 128.4, 128.2, 127.3, 126.6, 123.3, 119.6, 115.9, 88.5, 88.3, 63.3, 49.6, 47.7, 31.1.

1-(1,4-diphenylbut-3-yn-2-yl)-4-phenylpiperazine 17b: 0.400 g, 1.091 mmol, yield = 87%. ¹H NMR (CDCl₃, 400 MHz): δ = 7.37-7.21 (m, 12H, C₆H₅), 6.95 (d, *J*(HH) = 5.0, 2H, C₆H₅), 6.85 (t, *J*(HH) = 7.5, 1H, C₆H₅), 3.80 (q, *J*(HH) = 5.0, 1H, CH), 3.28-3.23 (m, 4H, piperazine CH₂), 3.12-3.08 (m, 1H, CH₂), 3.03 (s, 1H, CH₂), 3.01-2.96 (m, 2H, piperazine CH₂), 2.81-2.77 (m, 2H, piperazine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 151.6, 138.8, 131.8, 129.7, 129.3, 128.4, 128.2, 126.7, 123.3, 119.9, 116.3, 87.5, 86.6, 60.1, 49.7, 49.5, 40.1.

1,4-bis(1,4-diphenylbut-3-yn-2-yl)piperazine 18: 0.400 g, 0.808 mmol, yield = 70%. ¹H NMR (CDCl₃, 400 MHz): δ = 7.36-7.21 (m, 20H, C₆H₅), 3.77-3.72 (m, 2H, CH), 3.08 (t, *J*(HH) = 4.0, 2H, CH₂), 3.06-2.88 (m, 6H, CH₂), 2.78-2.71 (m, 4H, piperazine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 138.9, 131.9, 129.8, 128.4, 128.1, 126.6, 123.5, 87.4, 86.9, 60.1, 49.6, 40.1.

4-(1,4-bis(2-methoxyphenyl)but-3-yn-2-yl)morpholine 19: 0.368 g, 1.05 mmol, yield = 90%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.33-7.22 (m, 4H, C₆H₅), 6.92-6.83 (m, 4H, C₆H₅), 3.92-3.89 (m, 1H, CH), 3.84 (s, 3H, CH₃), 3.83 (s, 3H, CH₃), 3.80-3.74 (m, 4H, morpholine CH₂), 3.22-3.18 (m, 1H, CH₂), 2.93-2.84 (m, 3H, morpholine CH₂, CH₂), 2.71-2.68 (m, 2H, morpholine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 160.2, 157.9, 133.7, 131.8, 129.4, 127.8, 126.9, 120.5, 120.3, 112.9, 110.9, 110.3, 91.5, 82.9, 67.4, 58.4, 55.9, 55.4, 50.0, 34.0. HRMS (+ ESI): calcd *m/z* for [M+H]⁺ C₂₂H₂₆NO₃⁺: 352.1907, found: 352.1915.

4-(1,8-bis((tetrahydro-2H-pyran-2-yl)oxy)oct-5-yn-4-yl)morpholine 20: 0.300 g, 0.760 mmol, yield = 65%. ¹H NMR (CDCl₃, 400 MHz): δ = 4.63 (s, 1H, *CH*), 4.54 (s, 1H, *CH*), 3.86-3.69 (m, 8H, *CH*₂), 3.51-3.34 (m, 4H, morpholine *CH*₂), 3.23 (d, *J*(HH) = 16.0, 1H, *CH*), 2.60-2.47 (m, 6H, *CH*₂), 1.79-1.50 (m, 16H, *CH*₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 99.1, 98.9, 83.2, 78.2, 67.3, 67.2, 66.2, 62.4, 62.2, 57.7, 52.4, 49.7, 47.8, 47.1, 30.9, 30.7, 29.8, 26.9, 25.6, 25.6, 20.3, 19.7, 19.5. HRMS (+ ESI): calcd *m/z* for [M+Na]⁺ C₂₂H₃₇NO₅Na⁺: 418.2564, found: 418.2559.

4-(5-methylundec-6-yn-5-yl)morpholine⁴ **21:** 0.280 g, 1.11 mmol, yield = 96%. ¹H NMR (CDCl₃, 500 MHz): δ = 3.68 (t, *J*(HH) = 5.0, 4H, morpholine *CH*₂), 2.57-2.54 (m, 4H, morpholine *CH*₂), 2.15 (t, *J*(HH) = 10.0, 2H, *CH*₂), 1.54 (m, 2H, *CH*₂), 1.44 (m, 2H, *CH*₂), 1.39-1.35 (m, 4H, *CH*₂), 1.28-1.25 (m, 2H, CH₂), 1.21 (s, 3H, *CH*₃), 0.87 (t, *J*(HH) = 5.0, 6H, *CH*₃).

4-(7-methylpentadec-8-yn-7-yl)morpholine⁴ **22:** 0.322 g, 1.05 mmol, yield = 90%. ¹H NMR (CDCl₃, 500 MHz): δ = 3.63 (t, *J*(HH) = 5.0, 4H, morpholine *CH*₂), 2.54-2.49 (m, 4H, morpholine *CH*₂), 2.11 (t, *J*(HH) = 5.0, 2H, *CH*₂), 1.51-1.48 (m, 2H, *CH*₂), 1.43-1.39 (m, 2H, CH₂), 1.34-1.31 (m, 4H, CH₂), 1.21 (br s, 10H, *CH*₂), 1.17 (s, 3H, *CH*₃), 0.81 (q, *J*(HH) = 5.0, 6H, *CH*₃).

4-((1Z,3E)-1,4-diphenylbuta-1,3-dien-1-yl)morpholine⁹ **23:** 0.290 g, 0.995 mmol, yield = 86%. ¹H NMR (CDCl₃, 500 MHz): δ = 7.50-7.45 (m, 5H, C₆H₅), 7.27-7.25 (m, 4H, C₆H₅), 7.15 (t, *J*(HH) = 5.0, 1H, C₆H₅), 6.74 (dd, *J*(HH) = 15.0, 10.0, 1H, CH), 6.47 (d, *J*(HH) = 15.0, 1H, CH), 5.69 (d, *J*(HH) = 10.0, 1H, CH), 3.80 (t, *J*(HH) = 5.0, 4H, morpholine CH₂), 2.98 (t, *J*(HH) = 5.0, 4H, morpholine CH₂). ¹³C{¹H} NMR (CDCl₃, 125.7 MHz): δ = 152.6, 138.8, 137.0, 130.4, 128.6, 128.5, 128.5, 128.0, 126.5, 126.1, 125.7, 106.7, 67.0, 49.6.

4. NMR, HRMS and IR Spectra

Figure S9. ¹H NMR (25 °C, 500 MHz) spectrum of sulfane ligand 2 in CDCl₃.

Figure S10. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the sulfane ligand 2 in CDCl₃.

Figure S11. The ATR spectrum of the sulfane ligand 2.

Figure S12. HRMS (ESI+) spectrum of the sulfane ligand 2.

Figure S13. ¹H NMR (25 °C, 400 MHz) spectrum of the sulfone ligand 4 in CDCl₃.

Figure S14. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the sulfone ligand 4 in CDCl₃.

Figure S15. The ATR spectrum of the sulfone ligand 4.

Figure S16. HRMS (ESI+) spectrum of the sulfone ligand 4.

Species	m/z, Found	m/z, Calculated
$[M+H]^+$	330.1402	330.1271
[M+Na] ⁺	352.1097	352.1090
[M+K] ⁺	368.0829	368.0830

Figure S17. ¹H NMR (25 °C, 400 MHz) spectrum of the sulfoxide 3 in CDCl₃.

Figure S18. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the sulfoxide 3 in CDCl₃.

Figure S19. The ATR spectrum of the sulfoxide 3.

Figure S20. HRMS (ESI+) spectrum of the sulfoxide 3.

Species	m/z, Found	m/z, Calculated
$[M+H]^+$	314.1367	314.1322
[M+Na] ⁺	336.1134	336.1141

Figure S21. ¹H NMR (25 °C, 400 MHz) spectrum of complex **5** [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂ in CD₃CN.

Figure S22. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of complex **5** [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*]₂ in CD₃CN.

Figure S23. The ATR spectrum of complex 5 [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -S,N}]₂.

Figure S24. HRMS (ESI+) spectrum of complex **5** [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -S,N}]₂.

Species	m/z, Found	m/z, Calculated
$[M-CuCl_2]^+$	657.1902	657.1895
$[Cu(ligand 2)_2(MeOH)]^+$	689.1779	689.2158
$[Cu(ligand 2)]^+$	360.0599	360.0596

Figure S25. ¹H NMR (25 °C, 400 MHz) spectrum of complex **6** $[Cu(\mu-Br){C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SPh)-\kappa^2-S,N}]_2$ in CD₃CN.

Figure S26. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of complex 6 [Cu(μ -Br){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂ in DMSO-*d*₆.

Figure S27. The ATR spectrum of complex 6 [Cu(μ -Br){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂.

Figure S28. HRMS (ESI+) spectrum of complex **6** $[Cu(\mu-Br)\{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SPh)-\kappa^2-S,N\}]_2$.

Species	m/z, Found	m/z, Calculated
$[M-CuCl_2]^+$	657.1935	657.1895
$[Cu(ligand 2)_2(MeOH)]^+$	689.1779	689.2158
$[Cu(ligand 2)]^+$	360.0606	360.0596

Figure S29. ¹H NMR (25 °C, 500 MHz) spectrum of complex 7 [Cu(μ -I){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂ in CD₃CN.

Figure S30. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of complex 7 [Cu(μ -I){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*]₂ in DMSO-*d*₆.

Figure S31. The ATR spectrum of complex 7 [Cu(μ -I){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂.

Figure S32. HRMS (ESI+) spectrum of complex 7 [Cu((μ -I){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SPh)- κ^2 -*S*,*N*}]₂.

Species	m/z, Found	m/z, Calculated
$[M-CuCl_2]^+$	657.1930	657.1895
$[Cu(ligand 2)]^+$	360.0606	360.0596

Figure S33. ¹H NMR (25 °C, 400 MHz) spectrum of complex 8 [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}]₂ in CD₃CN.

Figure S34. ¹³C{¹H} NMR (25 °C, 100.6 MHz) spectrum of complex **8** [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}]₂ in DMSO- d_6 .

Figure S35. The ATR spectrum of complex 8 [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}]₂.

Figure S36. HRMS (ESI+) spectrum of complex **8** [Cu(μ -Cl){C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}]₂.

Species	m/z, Found	m/z, Calculated
$\left[Cu \{ C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N\}_2 \right]^+$	721.1713	721.1692
$(Cu(ligand 4)_2^+)$		
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N}]^+$	392.0479	392.0494
$(Cu(ligand 4)^+)$		
$[Cu(CH_{3}OH)_{3} \{C_{4}H_{3}N-2-(CH_{2}Me_{2}pz)-5-$	488.1174	488.1280
$(CH_2SO_2Ph)-\kappa^1-N$] ⁺ (Cu(CH ₃ OH) ₃ (ligand 4) ⁺)		

Figure S37. ¹H NMR (25 °C, 500 MHz) spectrum of complex 9 [CuBr{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}] in CD₃CN.

Figure S38. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of complex 9 [CuBr{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N₂] in DMSO- d_6 .

Figure S39. The ATR spectrum of complex 9 [CuBr{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}₂].

Figure S40. HRMS (ESI+) spectrum of complex **9** [CuBr{ $C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N_2$].

Species	m/z, Found	m/z, Calculated
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N_2]^+$	721.1729	721.1692
(Cu(ligand $4)_2^+$)		
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N}]^+$	392.0482	392.0494
$(Cu(ligand 4)^+)$		
$[Cu(CH_{3}OH)_{3}\{C_{4}H_{3}N-2-(CH_{2}Me_{2}pz)-5-$	488.1176	488.1280
$(CH_2SO_2Ph)-\kappa^1-N$] ⁺ (Cu(CH ₃ OH) ₃ (ligand 4) ⁺)		

Figure S41. ¹H NMR (25 °C, 400 MHz) spectrum of complex **10** [CuI{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂] in CDCl₃.

Figure S42. ¹H NMR (25 °C, 500 MHz) spectrum of complex **10** [CuI {C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂] in CD₃CN.

Figure S43. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of complex **10** [CuI{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- $\kappa^{1}-N$ }] in DMSO- d_{6} .

Figure S44. The ATR spectrum of complex 10 [CuI{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}₂].

Figure S45. HRMS (ESI+) spectrum of complex 10 [CuI{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}2].

Species	m/z, Found	m/z, Calculated
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N_2]^+$	721.1683	721.1692
(Cu(ligand $4)_2^+$)		

Figure S46. ¹H NMR (25 °C, 500 MHz) spectrum of complex **11a** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂]PF₆ in CD₃CN.

Figure S47. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the complex **11a** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}₂]PF₆ in CD₃CN.

Figure S48. ¹⁹F NMR (25 °C, 470.59 MHz) spectrum of complex **11a** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂]PF₆ in CD₃CN.

Figure S49. ³¹P{¹H} NMR (25 °C, 202.46 MHz) spectrum of complex **11a** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂]PF₆ in CD₃CN.

Figure S50. The ATR spectrum of complex 11a [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}₂]PF₆.

Figure S51. HRMS (ESI+) spectrum of complex 11a [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}₂]PF₆.

Species	m/z, Found	m/z, Calculated
$\left[Cu \{ C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N \}_2 \right]^+$	721.1814	721.1692
$(Cu(ligand 4)_2^+)$		
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N}]^+$	392.0497	392.0494
$(Cu(ligand 4)^+)$		
$[Cu(CH_3OH)_3 \{C_4H_3N-2-(CH_2Me_2pz)-5-$	488.1163	488.1280
$(CH_2SO_2Ph)-\kappa^1-N$] ⁺ (Cu(CH ₃ OH) ₃ (ligand 4) ⁺)		

Figure S53. ¹³C{¹H} NMR (25 °C, 100.6 MHz) spectrum of the complex **11b** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ ¹-N}₂]BF₄ in DMSO- d_6 .

Figure S54. ¹¹B NMR (25 °C, 160.46 MHz) spectrum of complex **11b** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N}₂]BF₄ in CD₃CN.

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 f1 (ppm)

Figure S55. ¹⁹F NMR (25 °C, 470.59 MHz) spectrum of complex **11b** [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^{1} -N₂]BF₄ in CD₃CN.

Figure S56. The ATR spectrum of complex 11b.

Figure S57. HRMS (ESI+) spectrum of complex 11b.

Species	m/z, Found	m/z, Calculated
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N_2]^+$	721.1773	721.1692
$(Cu(ligand 4)_2^+)$		
$[Cu{C_4H_3N-2-(CH_2Me_2pz)-5-(CH_2SO_2Ph)-\kappa^1-N}]^+$	392.0511	392.0494
$(Cu(ligand 4)^+)$		
$[Cu(CH_{3}OH)_{3} \{C_{4}H_{3}N-2-(CH_{2}Me_{2}pz)-5-$	488.1200	488.1280
$(CH_2SO_2Ph)-\kappa^1-N$] ⁺ (Cu(CH_3OH) ₃ (ligand 4) ⁺)		

Figure S58. ¹H NMR (25 °C, 500 MHz) spectrum of tetrasubstituted propargylamine **12a** in CDCl₃.

Figure S59. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of tetrasubstituted propargylamine **12a** in CDCl₃.

Figure S60. ¹³C{¹H}DEPT NMR (25 °C, 125.7 MHz) spectrum of tetrasubstituted propargylamine **12a** in CDCl₃.

Figure S61. The ATR spectrum of tetra-substituted propargylamine 12a.

Figure S62. HRMS (ESI+) spectrum of tetrasubstituted propargylamine **12a**. [M+H]⁺: Calc. 292.1696, found: 292.1709.

Figure S63. ¹H NMR (25 °C, 500 MHz) spectrum of trisubstituted propargylamine **12b** in CDCl₃.

Figure S65. The ATR spectrum of trisubstituted propargylamine 12b.

Figure S66. HRMS (ESI+) spectrum of trisubstituted propargylamine **12b**. [M+H]⁺: Calc. 292.1696, found: 292.1697.

Figure S67. ¹H NMR (25 °C, 500 MHz) spectrum of phenylacetylene dimer 12c in CDCl₃.

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

Figure S68. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of phenylacetylene dimer **12c** in CDCl₃.

Figure S69. The ATR spectrum of phenylacetylene dimer 12c.

Figure S70. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **13a** from 3-ethynylthiophene in CDCl₃.

Figure S71. HRMS (+ESI) spectrum of the tetrasubstituted product from 3-ethynylthiophene **13a.** calcd m/z for [M+H]⁺ C₁₆H₁₈NOS₂⁺: 304.0825, found: 304.0819.

Figure S72. ¹H NMR (25 °C, 500 MHz) spectrum of the trisubstituted product **13b** from 3-ethynylthiophene in CDCl₃.

Figure S73. ¹³C $\{^{1}H\}$ NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **13b** from 3-ethynylthiophene in CDCl₃.

Figure S74. ¹H NMR (25 °C, 400 MHz) spectrum of the tetrasubstituted product **14a** from piperidine in CDCl₃.

Figure S75. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the tetrasubstituted product **14a** from piperidine in CDCl₃.

Figure S76. ¹H NMR (25 °C, 400 MHz) spectrum the trisubstituted product **14b** from piperidine CDCl₃.

Figure S77. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **14b** from piperidine CDCl₃.

Figure S78. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **15a** from pyrrolidine in CDCl₃.

Figure S79. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the tetrasubstituted product **15a** from pyrrolidine in CDCl₃.

Figure S80. ¹H NMR (25 °C, 500 MHz) spectrum of the trisubstituted product **15b** from pyrrolidine in CDCl₃.

Figure S81. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **15b** from pyrrolidine in CDCl₃.

Figure S82. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **16a** from diallylamine in CDCl₃.

Figure S83. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the tetrasubstituted product **16a** from diallylamine in CDCl₃.

Figure S84. ¹H NMR (25 °C, 500 MHz) spectrum of the trisubstituted product **16b** from diallylamine in CDCl₃.

Figure S85. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **16b** from diallylamine in CDCl₃.

Figure S86. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **17a** from *N*-phenylpiperazine in CDCl₃.

Figure S87. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the tetrasubstituted product **17a** from *N*-phenylpiperazine in CDCl₃.

Figure S88. ¹H NMR (25 °C, 500 MHz) spectrum of the trisubstituted product **17b** from *N*-phenylpiperazine in CDCl₃.

Figure S89. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **17b** from *N*-phenylpiperazine in CDCl₃.

Figure S90. ¹³C{¹H} DEPT NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product 17b from *N*-phenylpiperazine in CDCl₃.

Figure S91. ¹H NMR (25 °C, 400 MHz) spectrum of the trisubstituted product **18** from piperazine in CDCl₃.

Figure S92. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **18** from piperazine in CDCl₃.

Figure S93. ¹H NMR (25 °C, 400 MHz) spectrum of the trisubstituted product **19** from 2-ethynylanisole in CDCl₃.

Figure S94. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **19** from 2-ethynylanisole in CDCl₃.

Figure S95. HRMS (+ESI) spectrum of the trisubstituted product from 2-ethynylanisole 19. calcd m/z for [M+H]⁺ C₂₂H₂₆NO₃⁺: 352.1907, found: 352.1915.

Figure S96. ¹H NMR (25 °C, 400 MHz) spectrum of the trisubstituted product **20** from (butynyloxy)tetrahydropyran in CDCl₃.

Figure S97. ¹³C{¹H} NMR (25 °C, 125.7 MHz) spectrum of the trisubstituted product **20** from (butynyloxy)tetrahydropyran in CDCl₃.

Figure S98. HRMS (+ESI) spectrum of the trisubstituted product **20** from (butynyloxy)tetrahydropyran. calcd m/z for [M+Na]⁺ C₂₂H₃₇NO₅Na⁺: 418.2564, found: 418.2559.

-7.26

Figure S99. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **21** from 1-hexyne in CDCl₃.

Figure S100. ¹H NMR (25 °C, 500 MHz) spectrum of the tetrasubstituted product **22** from 1-octyne in CDCl₃.

Figure S101. ¹H NMR (25 °C, 500 MHz) spectrum of 1-aminodiene 23 in CDCl₃.

Figure S102. ${}^{13}C{}^{1}H$ NMR (25 °C, 125.7 MHz) spectrum of 1-aminodiene 23 in CDCl₃.

Mechanistic evidence

Figure S103. HRMS (ESI+) spectrum of the reaction mixture of copper(I) chloride complex **8**, morpholine and phenylacetylene (1:1:4 equiv.) in 1 mL toluene at 110 °C for 1h. The peak at m/z 392.0485 (calc. 392.0489) shows the formation of [Cu{C₄H₃N-2-(CH₂Me₂pz)-5-(CH₂SO₂Ph)- κ^1 -N}]⁺; it can be the active catalyst as proposed in the mechanism. The peak at m/z 292.1697 represents the product of the reaction.

Figure S104. HRMS(ESI+) spectrum of the reaction mixture of bis(allyl)amine and pent-4yn-1-ol (1:1) catalyzed by complex **5** (1 mol%) at 70 °C for 2 h under nitrogen atmosphere.

Figure S105. Partial HRMS(ESI+) spectrum of the reaction mixture of bis(allyl)amine and pent-4-yn-1-ol (1:1) catalyzed by complex 5 (1 mol%) at 70 °C for 2 h under nitrogen atmosphere.

Figure S106. HRMS(ESI+) spectrum of the reaction mixture of bis(allyl)amine and 3ethynylthiophene (1:1) catalyzed by complex 5 (1 mol%) at 70 °C for 2 h under nitrogen atmosphere.

Figure S107. Target screening HRMS(ESI+) spectrum of the reaction mixture of bis(allyl)amine and 3-ethynylthiophene (1:1) catalyzed by complex **5** (1 mol%) at 70 °C for 2 h under nitrogen atmosphere.

Figure S108. ATR spectrum of the morpholinium copper(I) salt [C₄H₁₀NO]₄⁺[Cu₂Cl₆]⁴⁻.

Figure S109. The ¹H NMR (25 °C, 500 MHz) spectrum of the catalytic reaction mixture obtained after the reaction between *N*-phenylpiperazine and PhCCH in the presence of $[Cu(CH_3CN)_4]BF_4$ (10 mo%) at 110 °C for 24 h. 1,1,2,2-Tetrachloroethane was used as an internal standard (δ 5.77 ppm). The yield of tetrasubstituted propargylamine **17a** is 92%.

Figure S110. The ¹H NMR (25 °C, 500 MHz) spectrum of the catalytic reaction mixture obtained after the reaction between *N*-phenylpiperazine and PhCCH in the presence of complex **11b** (1 mo%) at 110 °C for 12 h. 1,1,2,2-Tetrachloroethane was used as an internal standard (δ 5.77 ppm). The yield of tetrasubstituted propargylamine **17a** is 82%.

5. References

2. Sheldrick, G. M. Acta Cryst. Sect. C: Struct. Chem., 2015, 71, 3.

3. van der Sluis, P.; Spek, A. L. BYPASS: an Effective Method for the Refinement of Crystal Structures Containing Disordered Solvent Regions. *Acta Cryst. A* **1990**, *46*, 194–201.

4. Pierce, C. J.; Yoo, H.; Larsen, C. H. A Unique Route to Tetrasubstituted Propargylic Amines by Catalytic Markovnikov Hydroamination–Alkynylation. *Adv. Synth. Catal.* **2013**,

355, 3586–3590.

 Zhou, L.; Bohle, D. S.; Jiang, H. F.; Li, C. J. Synthesis of Propargylamines by a Copper-Catalyzed Tandem Anti-Markovnikov Hydroamination and Alkyne Addition. *Synlett.* 2009, *6*, 937-940.

6. Liu, Q.; Burton, D. J. A Facile Synthesis of Diynes. *Tetrahedron Lett.* **1997**, *38*, 4371-4374.

7. Aliaga, M. J.; Ramón, D. J.; Yus, M. Impregnated copper on magnetite: an efficient and green catalyst for the multicomponent preparation of propargylamines under solvent free conditions. *Org. Biomol. Chem.* **2010**, *8*, 43-46.

8. Cai, Y.; Tang, X.; Ma, S. Identifying a Highly Active Copper Catalyst for KA² Reaction of Aromatic Ketones. *Chem. Eur. J.* **2016**, *22*, 2266–2269.

9. Palchak, Z. L.; Lussier, D. J.; Pierce, C. J.; Yoo, H.; Larsen, C. H. Catalytic Tandem Markovnikov Hydroamination–Alkynylation and Markovnikov Hydroamination– Hydrovinylation. *Adv. Synth. Catal.* **2015**, *357*, 539-548.

^{1.} Sheldrick, G. M. Acta Cryst. Sect. A: Found. Crystallogr., 2015, 71, 3.