Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Memristive properties and synaptic plasticity in substituted pyridinium iodobismuthates

G. Abdi,^{1*} T. Mazur,¹ E. Kowalewska,¹ A. Sławek,¹ Mateusz Marzec,¹ K. Szaciłowski^{1,2*}

¹AGH University of Krakow, Academic Centre for Materials and Nanotechnology, al. Mickiewicza 30, 30-059 Kraków, Poland

²Unconventional Computing Lab, University of the West of England, Bristol BS16 1QY, United Kingdom

*corresponding authors: agisya@agh.edu.pl, szacilow@agh.edu.pl, konrad.szacilowski@uwe.ac.uk

KEYWORDS. Lead-free perovskite, neuromorphic electronics, pyridinium-based bismuth complexes, memristors.

Name of the	Thickness	Thickness of	n	k
absorber layer	of	absorber layer		
	Roughness			
4-AmpyBiI3	9.79 nm	202.78 nm	2.13	0.0204
4-MepyBiI3	13.98 nm	150.79 nm	2.33	0.0468
4-DmapyBiI3	20.49 nm	164.06.45 nm	2.1170	0.00068
4-CNpyBiI3	-	169.16	1.5648	0.38812
			$(n_{xy} = 1.6358;$	(k _{xy} =0.3363;
			$n_z = 1.4226$)	$k_z = 0.4917$)

Table S1. Extracted parameters from the fitted experimental data to the introduced model for the fabricated devices from pyridinium-based bismuthates samples as Tauc-Lorentz layer.

Table S2. Effect of the surface area of the electrode on LRS (ON) and HRS (OFF) states.^a

Entry	Surface area/1 mm ²		Surface area	$1/9 \text{ mm}^2$	Ratio	Ratio
	Current	Current	Current	Current	ON ^b /ON ^c	OFF ^b /OFF ^c
	(mA)/ON	(mA)/OFF	(mA)/ON	(mA)/OFF		
4-CNpyBiI ₃	2.58±0.1	1.46 ± 0.1	3.00±0.1	2.03±0.2	1.16	1.39
4-MepyBil ₃	1.92±0.1	1.42 ± 0.07	3.08±0.2	1.84±0.1	1.6	1.29
4-AmpyBiI ₃	2.44±0.1	1.94±0.3	5.53±0.03	3.24±0.4	2.27	1.64

^aThe average amount of 5 different measured devices.

^bsurface area 1mm²; ^csurface area 9mm²

Table S3	. Rectification	factor for devi	ces with different	t surface area	of electrode. ^a
----------	-----------------	-----------------	--------------------	----------------	----------------------------

Entry	Surface area/1 mm ²		Ratio	Surface area/9 mm ²		Ratio
	Current (mA)	Current		Current	Current	
	at +2V	(mA) at		(mA) at	(mA) at	
		-2V		+2V	-2V	
4-CNpyBiI ₃	30.74±1	39.9±0.5	1.3	24.47±1	33.03±0.5	1.35
4-MepyBiI ₃	38.34±0.8	48.02±1	1.25	31.47±0.5	39.05±1	1.24
4-AmpyBiI ₃	78.65±1 ^b	104.24±1.5 °	1.33	75.48±1.5 ^b	83.92±1°	1.11

^aThe average amount of 5 different measured devices.

^bmeasured at +4V; ^cmeasured at -4V

Figure S1. UPS spectra of thin films on ITO glasses a) 4-MetpyBiI₃ b) 4-AmpyBiI₃

Figure S2. 4-CNpyBiI₃/ITO glasses with different metal electrodes as top electrode.

Figure S3. Disappearing Ag electrodes after one day from the surface of thin layers of the Bicomplexes on ITO/glasses.

Figure S4. Scan rates a) Cu/4-CNpyBiI₃/ITO b) Cu/4-MepyBiI₃/ITO c) Cu/4-AmpyBiI₃/ITO. Voltage ranges d) Cu/4-CNpyBiI₃/ITO e) Cu/4-MepyBiI₃/ITO f) Cu/4-AmpyBiI₃/ITO in different voltages range. Device-to-device reproducibility for 5 different batches of samples is also shown in bottom panel.

Time (s)

Figure S5. The Retention measurements of on and off states in 4-CNpyBiI₃ and 4-MepyBiI₃ at ± 2 V as set and reset voltages. Retention measurements of the devices made of 4-AmpyBiI₃, ± 4 V was chosen as the set and rest voltages and the read point was + 0.2 V. The width of all pulse was 0.1 s.

Figure S6. Representation of 0D a) 4-CNpyBiI₃ and b) 4-MepyBiI₃ c) 4-DmapyBiI₃ and 1D d) and 4-AmpyBiI₃ of ionic fragments of Bi-I and void shapes.

Figure S7. Double logarithmic scales of IV values of 4-CNpyBiI₃, 4-MepyBiI₃, 4-DmapyBiI₃ and 4-AmpyBiI₃ in SET process.

Figure S8. LTP and LTD for prepared devices with different pulse sequences with different width (0.001 s or 0.01 s) and amplitude 9between 0.4 V -1.6 V).

Figure S9. Illustration of final pulses shape on memristor devices, depends on time difference.

Figure S10. STDP of 4-CNpyBiI₃ with RT-pulse (#1 and #4) ; pulse amplitude to (\pm 1 V) and pulse amplitude to (\pm 2 V).

Figure S11. STDP of 4-MepyBiI₃ in different pulse polarities with ± 1 V amplitude.

Figure S12. STDP of 4-MepyBiI₃ with RT-pulse (#1 and #4); pulse amplitude to (\pm 1 V) and pulse amplitude to (\pm 2 V).