Synthesis and Characterization of divalent metal-betaine-bistriflimide complexes: a property comparison with metal bistriflimide salts

Luca Guglielmero^{*a}, Lidia Ciccone,^{b,c} Andrea Mezzetta^b, Felicia D'Andrea^b, Lorenzo Guazzelli^b, Christian Silvio Pomelli^b.

^a Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa.

^b Università di Pisa, Dipartimento di Farmacia, Via Bonanno 33, 56126 Pisa.

^c Centre for Instrumentation Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy.

Supporting information

¹ H-NMR and ¹³ C-NMR spectra of [HBet][Tf ₂ N] and M[Bet] ₂₋₃ [Tf ₂ N] ₂	Pages S2-S7
Crystallographic data for Calcium(II) and Copper(II) complexes	Page S8
ATR-FTIR spectra of $M[Bet]_{2-3}[Tf_2N]_2$, $M[Tf_2N]_2$ and organic precursors	Pages S9-S18
TGA of M[Bet] ₂ [Tf ₂ N] ₂ , M[Bet] ₃ [Tf ₂ N] ₂ and M[Tf ₂ N] ₂ and organic precursors	Pages S19-S28
DSC of M[Bet] ₂ [Tf ₂ N] ₂ , M[Bet] ₃ [Tf ₂ N] and M[Tf ₂ N] ₂	Pages S29-S39
Cyclic voltammetries of $M[Bet]_2[Tf_2N]_2$ and $M[Tf_2N]_2$ and data fitting	Pages S40-S46

Figure S1. ¹H-NMR spectrum of [HBet][Tf₂N] in CD₃OD.

Figure S2. ¹³C-NMR spectrum of [HBet][Tf_2N] in CD₃OD.

Figure S3. ¹H-NMR spectrum of $Mg[Bet]_2[Tf_2N]_2$ in CD_3OD .

Figure S4. ¹³C-NMR spectrum of Mg[Bet]₂[Tf₂N]₂ in CD₃OD.

Figure S5. ¹H-NMR spectrum of $Ca[Bet]_2[Tf_2N]_2$ in CD_3OD .

Figure S6. ¹³C-NMR spectrum of $Ca[Bet]_2[Tf_2N]_2$ in CD_3OD .

Figure S7. ¹H-NMR spectrum of $Zn[Bet]_2[Tf_2N]_2$ in CD₃OD.

Figure S8. ¹³C-NMR spectrum of Zn[Bet]₂[Tf₂N]₂ in CD₃OD.

Figure S9. ¹H-NMR spectrum of $Mg[Bet]_3[Tf_2N]_2$ in CD_3OD .

Figure S10. ¹³C-NMR spectrum of $Mg[Bet]_3[Tf_2N]_2$ in CD₃OD.

Figure S11. ¹H-NMR spectrum of Ca[Bet]₃[Tf₂N]₂ in CD₃OD.

Figure S12. ¹³C-NMR spectrum of $Ca[Bet]_3[Tf_2N]_2$ in CD_3OD .

	Ca[Bet] ₃ [Tf ₂ N] ₂	$Cu_2[Bet]_4[Tf_2N]_4$
Crystal data		
Formula	$C_{19}H_{33}CaF_{12}N_5O_{14}S_4$	$C_{30}H_{52}Cu_2F_{24}N_8O_{26}S_8$
Molecular weight	951.82	1780.38
Size (mm ³)	$0.05\times0.05\times0.250$	0.29 imes 0.24 imes 0.20
Crystal system, space group	Triclinic, P-1 (No. 2)	Orthorhombic, Pccn (No. 56)
<i>a</i> (Å)	9.0322(2)	21.4028(8)
<i>b</i> (Å)	15.1177(4)	22.6225(9)
<i>c</i> (Å)	15.2478(4)	13.9791(6)
α (°)	105.4270(10)	90
β (°)	105.0780(10)	90
γ (°)	101.0740(10)	90
$V(Å^3)$	1860.00(8)	6768.5(5)
Z	2	4
D_{calc} (g cm ⁻³)	1.714	1.747
Data collection and refinement		
Radiation, λ (Å)	ΜοΚα, 0.71073	ΜοΚα, 0.71073
Temperature (K)	100	100
$2\theta_{\max}$ (°)	56.55	60.10
$\mu (\text{mm}^{-1})$	0.519	1.017
Abs corr	multi-scan	multi-scan
<i>F</i> (000)	972.0	3592
no. of measured reflns	52290	107323
no. of unique reflns	9211	9890
no. of obsd reflns $(I_0 > 2\sigma(I_0))$	8259	8676
R _{int}	0.0361	0.0358
R_{σ}	0.025	0.0177
	$-11 \le h \le 12$	$-29 \le h \le 30$
Range of <i>h</i> , <i>k</i> , <i>l</i>	$-20 \le k \le 20$	$-31 \le k \le 31$
	$-20 \le l \le 20$	$-19 \le l \le 19$
GOF on F^2	1.051	1.003
R_1	0.0324	0.0308
R_1 (all data)	0.0362	0.0365
wR_2	0.0801	0.0819
wR_2 (all data)	0.0826	0.0860
Maximum and minimum residual	+0.916	+0.86
peak (<i>e</i> Å ⁻³)	-0.471	-0.57

 Table S1. Crystallographic data for Calcium(II) and Copper(II) complexes

Figure S13. ATR-FTIR spectrum of Mg[Bet]₂[Tf₂N]₂.

Figure S14. ATR-FTIR spectrum of Mg[Bet]₃[Tf₂N]₂.

Figure S15. ATR-FTIR spectrum of Mg[Tf₂N]₂

Figure S16. Comparison of ATR-FTIR spectra of $Mg[Bet]_2[Tf_2N]_2$, $Mg[Tf_2N]_2$ and betaine.

Figure S17. ATR-FTIR spectrum of Ca[Bet]₂[Tf₂N]₂

Figure S18a. ATR-FTIR spectrum of Ca[Bet]₃[Tf₂N]₂ (crystals)

Figure S18b. ATR-FTIR spectrum of Ca[Bet]₃[Tf₂N]₂ (synthetized).

Figure S19. ATR-FTIR spectrum of Ca[Tf₂N]₂

Figure S20. Comparison of ATR-FTIR spectra of $Ca[Bet]_2[Tf_2N]_2$, $Ca[Tf_2N]_2$ and betaine.

Figure S21. ATR-FTIR spectrum of $Zn[Bet]_2[Tf_2N]_2$

Figure S22. ATR-FTIR spectrum of Zn[Tf₂N]₂

Figure S23. Comparison of ATR-FTIR spectra of Zn[Bet]₂[Tf₂N]₂, Zn[Tf₂N]₂ and betaine.

Figure S24. ATR-FTIR spectrum of Cu[Bet]₂[Tf₂N]₂.

Figure S25. ATR-FTIR spectrum of Cu[Tf₂N]₂.

Figure S26. Comparison of ATR-FTIR spectra of $Cu[Bet]_2[Tf_2N]_2$, $Cu[Tf_2N]_2$ and betaine.

Figure S27. ATR-FTIR spectrum of $Ni[Bet]_2[Tf_2N]_2$.

Figure S28. ATR-FTIR spectrum of Ni[Tf₂N]₂.

Figure S29. Comparison of ATR-FTIR spectra of Cu[Bet]₂[Tf₂N]₂, Cu[Tf₂N]₂ and betaine.

Figure S30. ATR-FTIR spectrum of betaine.

Figure S31. ATR-FTIR spectrum of H[Bet][Tf₂N].

Figure S32. Thermogravimetric analysis of Mg[Bet]₂[Tf₂N]₂.

Figure S33. TGA thermogram of $Mg[Bet]_3[Tf_2N]_2$.

Figure S34. Thermogravimetric analysis of Mg[Tf₂N]₂.

Figure S35. Comparison of thermogravimetric analysis of $Mg[Bet]_2[Tf_2N]_2$ and $Mg[Tf_2N]_2$.

Figure S36. Thermogravimetric analysis of $Ca[Bet]_2[Tf_2N]_2$.

Figure S37. TGA thermogram of $Ca[Bet]_3[Tf_2N]_2$ (synthesized).

Figure S38. Thermogravimetric analysis of $Ca[Bet]_3[Tf_2N]_2$ crystals (blue and green curves) compared with the thermogravimetric analysis of $Ca[Bet]_2[Tf_2N]_2$ (violet and black curves).

Figure S39. Thermogravimetric analysis of Ca[Tf₂N]₂.

Figure S40. Comparison of thermogravimetric analysis of $Mg[Bet]_2[Tf_2N]_2$ and $Mg[Tf_2N]_2$.

Figure S41. Thermogravimetric analysis of Zn[Bet]₂[Tf₂N]₂.

Figure S42. Thermogravimetric analysis of Zn[Tf₂N]₂.

Figure S43. Comparison of thermogravimetric analysis of $Zn[Bet]_2[Tf_2N]_2$ and $Zn[Tf_2N]_2$.

Figure S44. Thermogravimetric analysis of $Cu[Bet]_2[Tf_2N]_2$.

Figure S45. Thermogravimetric analysis of Cu[Tf₂N]₂.

Figure S46. Comparison of thermogravimetric analysis of $Cu[Bet]_2[Tf_2N]_2$ and $Cu[Tf_2N]_2$.

Figure S47. Thermogravimetric analysis of Ni[Bet]₂[Tf₂N]₂.

Figure S48. Thermogravimetric analysis of Ni[Tf₂N]₂.

Figure S49. Comparison of thermogravimetric analysis of $Ni[Bet]_2[Tf_2N]_2$ and $Ni[Tf_2N]_2$.

Figure S50. Thermogravimetric analysis of betaine.

Figure S51. Thermogravimetric analysis of H[Bet][Tf₂N].

Figure S52. Differential scanning calorimetry of Mg[Bet]₂[Tf₂N]₂.

Figure S53. Differential scanning calorimetry of $Mg[Tf_2N]_2$.

Figure S54a. DSC thermogram of Mg[Bet]₃[Tf₂N]₂.

Figure S54b. DSC thermogram of $Mg[Bet]_3[Tf_2N]_2$, ramp to 280 °C.

Figure S55. Differential scanning calorimetry of Ca[Bet]₂[Tf₂N]₂.

Figure S56a. Differential scanning calorimetry of Ca[Bet]₃[Tf₂N]₂ crystals.

Figure S56b. Differential scanning calorimetry of $Ca[Bet]_3[Tf_2N]_2$ crystals after the melting transition at about 280 °C.

Figure S56c. DSC thermogram of Ca[Bet]₃[Tf₂N]₂ (synthetized).

Figure S56d. DSC thermogram of $Ca[Bet]_3[Tf_2N]_2$ (synthetized).

Figure S57a. Differential scanning calorimetry of $Ca[Tf_2N]_2$.

Figure S57b. Differential scanning calorimetry of $Ca[Tf_2N]_2$ above 100 °C.

Figure S58a. Differential scanning calorimetry of $Zn[Bet]_2[Tf_2N]_2$.

Figure S58b. Differential scanning calorimetry of Zn[Bet]₂[Tf₂N]₂, performed at 2 K/min

Figure S59. Differential scanning calorimetry of Zn[Tf₂N]₂.

Figure S60a. Differential scanning calorimetry of $Cu[Bet]_2[Tf_2N]_2$.

Figure S60b. Differential scanning calorimetry of Cu[Bet]₂[Tf₂N]₂, performed at 5 K/min.

Figure S61. Differential scanning calorimetry of Cu[Tf₂N]₂.

Figure S62. Differential scanning calorimetry of $Ni[Bet]_2[Tf_2N]_2$.

Figure S63a. Differential scanning calorimetry of Ni[Tf₂N]₂.

Figure S63b. Differential scanning calorimetry of $Ni[Tf_2N]_2$ performed at 5 K/min.

Figure S64. Differential scanning calorimetry of H[Bet][Tf₂N]

Figure S65. Cyclic voltammogram of $Mg[Bet]_2[Tf_2N]_2 0.1 M$ in MeCN, on a GC working electrode.

Figure S66. Cyclic voltammogram of Ca[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S67. Cyclic voltammogram of $Ca[Bet]_2[Tf_2N]_2 0.1$ M in MeCN, on a GC working electrode.

Figure S68. Cyclic voltammogram of Ca[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S69. Cyclic voltammogram of $Zn[Bet]_2[Tf_2N]_2 0.1$ M in MeCN, on a GC working electrode.

Figure S70. Cyclic voltammogram of Zn[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S71. Cyclic voltammogram of $Cu[Bet]_2[Tf_2N]_2 0.1$ M in MeCN, on a GC working electrode.

Figure S72. Cyclic voltammogram of Cu[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S73. Cyclic voltammogram of Ni[Bet]₂[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S74. Cyclic voltammogram of Ni[Tf₂N]₂ 0.1 M in MeCN, on a GC working electrode.

Figure S75. Cyclic voltammogram of $Cu[Bet]_2[Tf_2N]_2 0.1$ M in MeCN, on a GC working electrode.

Figure S76. Cyclic voltammogram of $Cu[Tf_2N]_2 0.1$ M in MeCN, on a Pt working electrode.

Figure S77. Fitting of data reported in Figure 6b according to Randles-Sevcik method for the determination of *D*.

Figure S78. Fitting of data reported in Figure 6b according to Nicholson method for the determination of k_0 .