Supplementary Information

Construction of Fe_3O_4 (a) Au catalysts via the surface functional group effect of ferric oxide for efficient electrocatalytic nitrite reduction

Wei Zhang^a, Jin Li^a, Cuilian Sun^a, Xiujing Xing^b, Yaokang Lv^c, Wei Xiong^{a,*}, and Hao Li^{d,*}

^a Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China

^b Chemistry Department, University of California, Davis, California 95616, United States

^c College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China

^d Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

Tel/Fax: +86-27-87195001; +81-080-9363-8256

^{*}Corresponding author

E-mail address: xiongwei@wit.edu.cn (W. X.); li.hao.b8@tohoku.ac.jp (H. L.)

Figure S1 (a) UV absorption spectra at different NH_3 concentrations and (b) Ammonia nitrogen standard curve; (c) UV-Vis absorption spectra of different concentrations of N_2H_4 and (d) Standard curve of N_2H_4 .

Figure S2 NH₃ yield and FE of (a) Fe_3O_4 , (b) Fe_3O_4 -NH₂, (c) Fe_3O_4 -COOH and (d) Fe_3O_4 -SH at various voltages.

Figure S3 Performance comparison of different samples.

Figure S4 XRD of Fe₃O₄-COOH@Au_{1.5}/CC, both unelectrolysed (black) and subjected to electrolysis for 24 h (red).

Figure S5 H-Type Electrolysis Cell.

Sample	Test Elements	Relative element content (%)
Fe ₃ O ₄ -COOH@Au _{0.5}	Au	1.38%
Fe ₃ O ₄ -COOH@Au _{1.0}	Au	16.27%
Fe ₃ O ₄ -COOH@Au _{1.5}	Au	45.53%

Table S1 ICP test results for Fe₃O₄-COOH@Au_{0.5}, Fe₃O₄-COOH@Au_{1.0} Fe₃O₄-COOH@Au_{1.5}.

sample	NH ₃ yield ($\mu g h^{-1} m g_{cat}^{-1}$)	FE (%)
Fe ₃ O ₄	682.7	42.0
Fe ₃ O ₄ -NH ₂	1026.5	39.8
Fe ₃ O ₄ -COOH	1053.9	57.0
Fe ₃ O ₄ -SH	851.3	41.2

Table S2 Performance comparison of samples Fe_3O_4 , Fe_3O_4 -NH₂, Fe_3O_4 -COOH and Fe_3O_4 -SH.