Supporting Information

The synthesis and application of o-carborane-based

macrocyclic arenes

Jiayi Liu,^a Meigui Fu,^a Shuai Yuan,^a Caixia Lin,^{*a} and Yaofeng Yuan^{*a}

a Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province

University), Department of Chemistry, Fuzhou University, Fuzhou 350108, China.

Email: lincaixia_fzu@fzu.edu.cn; yaofeng.yuan@fzu.edu.cn.

Table of Contents

1.	NMR Spectra and HR-MS (ESI) of New Compounds	1
2.	Crystal Data and DFT Calculations	10
3.	Fluorescence Properties	21

1. NMR Spectra and HR-MS (ESI) of New Compounds

Figure S2. ¹³C NMR spectrum of 2a (126 MHz, CDCl₃).

Figure S4. HR-MS (ESI) spectra of 2a.

Figure S6. ¹³C NMR spectrum of 3a (126 MHz, CDCl₃).

Figure S8. HR-MS (ESI) spectra of 3a.

Figure S10. ¹³C NMR spectrum of 2b (126 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum of **3b** (126 MHz, CDCl₃).

Figure S15. ¹¹B NMR spectrum of 3b (160 MHz, CDCl₃).

Figure S16. HR-MS (ESI) spectrum of 3b.

Figure S17. ¹H-NMR spectra of 2b and 3b in CDCl₃.

2. Crystal Data and DFT Calculations

Compound	3 a	3b
Empirical formula	$C_{62}H_{72}B_{20}O_8$	$C_{86}H_{120}B_{20}O_8$
Formula weight	1161.40	1498.02
Temperature/K	293(2)	293(2)
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c$	C2/c
a/Å	19.3942(2)	35.4352(3)
b/Å	13.13040(10)	16.80310(10)
c/Å	33.0142(3)	17.1648(2)
α/°	90	90
β/°	96.0910(10)	103.8970(10)
γ/°	90	90
Volume/Å ³	8359.72(13)	9914.43(16)
Z	117	138
$\rho_{calc}g/cm^3$	1.749	1.740
μ/mm ⁻¹	9.344	9.292
F(000)	4329.0	5106.0
Crystal size/mm ³	$0.12 \times 0.11 \times 0.1$	$0.12 \times 0.11 \times 0.1$
Radiation	$CuK\alpha (\lambda = 1.54184)$	$CuK\alpha (\lambda = 1.54184)$
2 O range for data collection/°	4.582 to 153.78	5.854 to 151.948
Reflections collected	58489	48778
Data/restraints/parameters	16746/0/819	10095/152/556
Goodness-of-fit on F ²	1.066	1.044
Final R indexes [1>=2a (D)	$R_1 = 0.0732,$	$R_1 = 0.0597,$
1 mai ix mucaco [17-20 (1)]	$wR_2 = 0.2255$	$wR_2 = 0.1706$
Final R indexes [all data]	$R_1 = 0.0899,$ w $R_2 = 0.2367$	$R_1 = 0.0654,$ $wR_2 = 0.1756$
CCDC number	2284988	2284986

 Table S1. Crystal data and structure refinement for 3a and 3b.

DFT Calculations

Density functional theory (DFT) calculations were performed using Gaussian 16(Revision C.01). Calculations were carried out using the generalized B3LYP and 6-31G(d) basis groups with a single crystal as the starting geometrical configuration. Each structure was optimized to meet standard convergence criteria, and the existence of a local minimum was verified by a normal mode frequency calculation. Negative frequencies were not observed.

Atom	X(Å)	Y(Å)	Z(Å)
0	7.46700000	8.71700000	21.85600000
0	11.53800000	1.59000000	16.92100000
0	8.66600000	11.96100000	18.44600000
0	14.51400000	2.42000000	20.64600000
0	8.80300000	6.23400000	13.77000000
0	16.63700000	10.48900000	19.31300000
0	6.94400000	3.37400000	17.22900000
0	12.95200000	12.62500000	21.64500000
С	8.34300000	9.55200000	21.20800000
С	12.42600000	4.59800000	24.74100000
С	11.84100000	2.09500000	18.16100000
С	9.63600000	9.60400000	21.74200000
С	8.94500000	11.17300000	19.51000000
С	12.40300000	3.49600000	22.14200000
С	10.19400000	5.17200000	15.35100000
С	7.99600000	10.30800000	20.10800000
Н	7.11900000	10.24800000	19.75000000
С	10.31000000	4.36000000	16.46000000
Н	11.17900000	4.21500000	16.81800000
С	13.31500000	2.48600000	20.01500000
С	8.90200000	5.43000000	14.88300000
С	10.24500000	11.24400000	20.03400000
С	10.77400000	2.65900000	18.85000000
С	9.23700000	3.74500000	17.08100000
С	12.40500000	5.18500000	26.10300000
С	13.10600000	2.01100000	18.72200000
Н	13.82600000	1.63500000	18.22900000
С	10.18300000	6.86700000	24.31500000
Н	9.87600000	5.98500000	24.48700000
С	7.78400000	4.84800000	15.50900000
Н	6.90800000	5.03800000	15.19500000
С	11.46700000	3.64300000	24.38300000
Н	10.83000000	3.35100000	25.02200000
С	10.55500000	10.46700000	21,12200000

 Table S2. Atomic coordinates of 3a after geometry optimization.

Н	11.43500000	10.51700000	21.47700000
С	11.41700000	5.63700000	14.65500000
С	11.10500000	7.44600000	25.18100000
С	15.71600000	8.66200000	14.67400000
С	12.67700000	11.77800000	19.47600000
С	11.44500000	3.12500000	23.11100000
Н	10.76600000	2.50100000	22.87800000
С	7.96500000	4.00500000	16.57700000
С	14.53400000	10.67900000	18.30400000
С	10.09000000	8.86900000	22.95500000
С	11.65600000	6.73200000	26.38000000
С	9.70100000	7.53800000	23.21100000
Н	9.10200000	7.10000000	22.61700000
С	9.40600000	2.75700000	18.24500000
Н	8.77100000	3.01300000	18.95800000
Н	9.14500000	1.85800000	17.92600000
С	11.51600000	8.76000000	24.91400000
Н	12.15600000	9.17600000	25.48100000
С	6.14100000	8.60900000	21.32400000
Н	6.18600000	8.27000000	20.40500000
Н	5.71600000	9.49100000	21.32400000
Н	5.61700000	7.99300000	21.87400000
С	11.01400000	3.11600000	20.13100000
Н	10.29800000	3.51700000	20.61000000
С	13.82400000	6.43400000	13.40300000
С	13.22600000	11.13200000	18.37800000
Н	12.66600000	10.99000000	17.62300000
С	15.34500000	10.89900000	19.40800000
С	13.52600000	11.98900000	20.56100000
С	11.56900000	6.92300000	14.12000000
Н	10.85100000	7.54100000	14.18500000
С	13.41300000	4.92100000	23.81500000
Н	14.10400000	5.52400000	24.06400000
С	12.26400000	3.01700000	20.75700000
С	15.00300000	9.98700000	17.07200000
С	7.32300000	12.02000000	17.97800000
Н	7.25300000	12.70200000	17.27700000
Н	6.72700000	12.25100000	18.72100000
Н	7.06700000	11.14900000	17.61300000
С	13.69300000	5.15100000	13.92900000
Н	14.41800000	4.53900000	13.86900000
С	11.00900000	9.44700000	23.85500000
Н	11.28400000	10.34600000	23.71800000

С	14.99400000	9.86300000	14.63500000
Н	14.73600000	10.23200000	13.79800000
С	14.85000000	11.56900000	20.55200000
Н	15.41400000	11.72800000	21.29800000
С	12.74500000	7.31000000	13.50400000
Н	12.81800000	8.18600000	13.14600000
С	13.41200000	4.38400000	22.54800000
Н	14.10300000	4.61700000	21.93900000
С	14.65800000	10.51000000	15.80900000
Н	14.17900000	11.33100000	15.76200000
С	15.76800000	8.82700000	17.08800000
Н	16.07100000	8.47900000	17.91900000
С	12.58300000	0.99200000	16.16400000
Н	12.19900000	0.50100000	15.41000000
Н	13.08800000	0.37500000	16.73300000
Н	13.18400000	1.69000000	15.82700000
С	11.23800000	12.25000000	19.46000000
Н	10.98200000	12.45300000	18.52800000
Н	11.17500000	13.09000000	19.98100000
С	16.09900000	8.16700000	15.90900000
Н	16.59800000	7.36000000	15.95100000
С	12.50900000	4.76700000	14.53700000
Н	12.43600000	3.88600000	14.88600000
С	7.48500000	6.49700000	13.24400000
Н	7.54900000	7.14200000	12.51100000
Н	6.91600000	6.86400000	13.95400000
Н	7.09300000	5.66200000	12.91100000
С	15.10000000	6.79600000	12.67400000
С	16.12100000	7.99300000	13.39700000
С	15.65300000	2.00700000	19.88000000
Н	15.75400000	2.59400000	19.10200000
Н	15.52700000	1.08300000	19.57700000
Н	16.45900000	2.06200000	20.43700000
С	17.53100000	10.80900000	20.34600000
Н	18.43400000	10.52500000	20.09500000
Н	17.26000000	10.34800000	21.16700000
Н	17.52400000	11.77700000	20.49600000
С	5.72800000	3.22000000	16.50800000
Н	5.91700000	2.84200000	15.62500000
Н	5.29600000	4.09400000	16.40400000
Н	5.13000000	2.61700000	17.00000000
В	12.18300000	4.19900000	27.50100000
Н	12.08900000	3.08300000	27.46800000

В	10.88700000	5.29100000	26.91800000
Н	9.93600000	4.91000000	26.46500000
В	13.37600000	6.58200000	26.44200000
Н	14.05900000	7.05200000	25.68900000
В	13.02000000	5.00000000	28.82000000
Н	13.47800000	4.42700000	29.66400000
В	10.92900000	6.75800000	27.94700000
Н	10.00600000	7.33900000	28.20800000
С	13.76000000	12.89100000	22.78300000
Н	14.52300000	13.44500000	22.51900000
Н	14.08400000	12.04500000	23.15800000
Н	13.22900000	13.36400000	23.45800000
В	13.72900000	5.00100000	27.17500000
Н	14.65600000	4.42700000	26.91400000
В	11.24700000	5.16700000	28.64100000
Н	10.52500000	4.68800000	29.35100000
В	12.46700000	7.54600000	27.62100000
Н	12.56400000	8.66000000	27.65700000
В	12.24700000	6.57300000	29.08400000
Н	12.20500000	7.03600000	30.10400000
В	13.77500000	6.47000000	28.16200000
Н	14.74100000	6.86400000	28.56900000
В	16.56900000	6.32400000	13.42600000
Н	16.58900000	5.71700000	14.36800000
В	15.22100000	8.34600000	11.95400000
Н	14.36900000	9.07100000	11.92100000
В	16.06100000	5.60700000	11.89500000
Н	15.77800000	4.52700000	11.80700000
В	16.90600000	8.87100000	12.18800000
Н	17.17300000	9.95300000	12.29200000
В	17.77300000	7.59500000	13.11700000
Н	18.61000000	7.82000000	13.82700000
В	16.38700000	8.16500000	10.63100000
Н	16.32400000	8.78400000	9.69900000
В	15.22000000	6.86700000	10.95700000
Н	14.38300000	6.62600000	10.25000000
В	17.75100000	6.12800000	12.14900000
Н	18.59100000	5.39200000	12.23100000
В	16.90700000	6.45700000	10.60500000
Н	17.19200000	5.93300000	9.65700000
В	17.95300000	7.70600000	11.32800000
Н	18.91600000	8.01800000	10.84900000

0	6.55060000	12.10810000	11.60270000
0	11.34530000	8.72390000	9.31870000
0	8.38960000	10.37030000	7.47720000
0	15.95950000	9.74010000	10.35680000
С	9.91700000	12.02170000	10.27580000
Н	10.76520000	12.31120000	10.52070000
С	8.85960000	12.27390000	11.15700000
С	9.08090000	13.05190000	12.39510000
С	9.49700000	14.66350000	14.68860000
С	9.77920000	11.37440000	9.07390000
С	15.69520000	12.31310000	9.20320000
С	14.60380000	11.31030000	9.26700000
С	7.59450000	11.82840000	10.75690000
С	18.72960000	15.38390000	8.82380000
С	17.69640000	14.28810000	9.01350000
С	8.48820000	10.95980000	8.70140000
С	13.34560000	11.64210000	8.73420000
Н	13.23880000	12.47820000	8.34100000
С	12.25700000	10.79110000	8.76350000
С	10.94260000	11.16430000	8.12720000
Н	10.70030000	10.46560000	7.49780000
Н	11.07140000	11.97890000	7.61850000
С	7.41350000	11.16260000	9.55500000
Н	6.56800000	10.85240000	9.32050000
С	12.44570000	9.54190000	9.33770000
С	9.61180000	15.58570000	15.86980000
С	8.69200000	13.53310000	14.73860000
Н	8.28640000	13.29620000	15.54220000
С	10.11010000	14.95270000	13.48320000
Н	10.67330000	15.69070000	13.42290000
С	8.48240000	12.75600000	13.61770000
Н	7.92450000	12.01470000	13.68150000
С	9.90430000	14.17050000	12.37440000
Н	10.33190000	14.39890000	11.58120000
С	15.42120000	13.65580000	9.39460000
Н	14.54740000	13.91660000	9.58260000
C	17.98620000	12.94860000	8.81870000
Н	18.85840000	12.69640000	8.61860000
C	16.40600000	14.61530000	9.31360000
Н	16.18710000	15.50660000	9.46880000
С	14.73040000	10.05650000	9.84120000
С	17.01630000	11.99250000	8.91350000

 Table S3. Atomic coordinates of 3b after geometry optimization.

Н	17.24690000	11.10120000	8.78070000
С	13.65790000	9.18230000	9.87230000
Н	13.76020000	8.34210000	10.26030000
С	7.09070000	9.93550000	7.02180000
Н	6.47820000	10.68710000	6.99080000
Н	6.72880000	9.26750000	7.62710000
С	5.21530000	11.81020000	11.15520000
Н	5.10520000	10.85240000	11.05870000
Н	5.05420000	12.22600000	10.29300000
В	18.67400000	16.68760000	9.94300000
Н	17.92390000	16.75750000	10.74480000
С	11.46330000	7.37580000	9.79120000
Н	11.75230000	7.36730000	10.71720000
Н	12.11210000	6.88840000	9.26010000
В	20.33850000	14.97150000	8.40650000
Н	20.66690000	13.93870000	8.22370000
С	16.17240000	8.44950000	10.97590000
Н	15.96800000	7.73880000	10.34820000
Н	15.59540000	8.35060000	11.75020000
В	9.24030000	17.25340000	15.71630000
Н	8.88400000	17.71020000	14.78170000
В	19.28830000	15.83550000	7.28220000
Н	18.94530000	15.36170000	6.34930000
В	18.25110000	16.89550000	8.21860000
Н	17.22480000	17.12900000	7.89610000
В	8.21880000	16.20360000	16.66300000
Н	7.19070000	15.96840000	16.34920000
В	19.27530000	18.10720000	9.05150000
Н	18.91570000	19.12290000	9.27220000
С	4.26990000	12.32480000	12.13820000
Н	4.38480000	13.28600000	12.21400000
Н	3.36830000	12.15610000	11.82600000
В	20.95430000	16.38770000	7.47880000
Н	21.69630000	16.28710000	6.67350000
В	20.93910000	17.77320000	8.59100000
Н	21.67420000	18.58440000	8.50650000
В	19.66210000	17.55680000	7.38400000
Н	19.56360000	18.22310000	6.51310000
С	10.12580000	6.75380000	9.66540000
Н	10.19950000	5.83350000	9.96200000
Н	9.53020000	7.20540000	10.28440000
С	17.60630000	8.37280000	11.38980000
Н	17.73000000	7.51050000	11.81910000

Н	18.13200000	8.35740000	10.57580000
С	8.32820000	8.82440000	3.53680000
Н	8.50730000	9.55720000	2.94190000
Н	7.55780000	8.34380000	3.22810000
Н	9.08620000	8.23640000	3.55400000
С	7.26010000	9.36630000	5.68540000
Н	7.06000000	8.42730000	5.82680000
Н	6.49340000	9.71740000	5.20600000
С	9.51730000	6.74700000	8.43410000
Н	10.10340000	6.29020000	7.80990000
Н	9.43770000	7.66550000	8.13230000
С	8.09650000	6.07890000	8.34790000
Н	7.68840000	6.30220000	7.50810000
Н	7.54570000	6.39930000	9.06700000
Н	8.18680000	5.12460000	8.41520000
С	4.42940000	11.75390000	13.38840000
Н	4.33760000	10.79280000	13.29180000
Н	5.33550000	11.92780000	13.68500000
С	18.17890000	9.31350000	12.21750000
Н	17.65100000	9.35610000	13.02970000
Н	18.10300000	10.17750000	11.78290000
С	19.61880000	9.13120000	12.61760000
Н	20.18610000	9.56570000	11.97780000
Н	19.82610000	8.19380000	12.64510000
Н	19.76300000	9.51460000	13.48490000
С	8.08060000	9.32880000	4.86110000
Н	8.83270000	8.96410000	5.35260000
Н	8.29300000	10.26960000	4.75420000
С	3.58250000	12.16120000	14.36270000
Н	2.94130000	12.77130000	13.99360000
Н	4.08090000	12.60090000	15.05590000
Н	3.12840000	11.39950000	14.73000000
0	23.05410000	12.10810000	14.26350000
0	18.25950000	8.72390000	16.54750000
0	21.21510000	10.37030000	18.38900000
0	13.64520000	9.74010000	15.50940000
С	19.68780000	12.02170000	15.59040000
Н	18.83950000	12.31120000	15.34560000
С	20.74520000	12.27390000	14.70930000
С	20.52380000	13.05190000	13.47110000
С	20.10770000	14.66350000	11.17770000
С	19.82560000	11.37440000	16.79240000
С	13.90950000	12.31310000	16.66300000

С	15.00100000	11.31030000	16.59920000
С	22.01020000	11.82840000	15.10930000
С	10.87510000	15.38390000	17.04240000
С	11.90840000	14.28810000	16.85270000
С	21.11650000	10.95980000	17.16480000
С	16.25910000	11.64210000	17.13210000
Н	16.36600000	12.47820000	17.52520000
С	17.34770000	10.79110000	17.10280000
С	18.66220000	11.16430000	17.73910000
Н	18.90450000	10.46560000	18.36850000
Н	18.53330000	11.97890000	18.24780000
С	22.19120000	11.16260000	16.31130000
Н	23.03680000	10.85240000	16.54580000
С	17.15900000	9.54190000	16.52850000
С	19.99290000	15.58570000	9.99640000
С	20.91280000	13.53310000	11.12770000
Н	21.31840000	13.29620000	10.32410000
С	19.49460000	14.95270000	12.38300000
Н	18.93150000	15.69070000	12.44340000
С	21.12230000	12.75600000	12.24850000
Н	21.68020000	12.01470000	12.18470000
С	19.70040000	14.17050000	13.49180000
Н	19.27280000	14.39890000	14.28510000
С	14.18350000	13.65580000	16.47160000
Н	15.05730000	13.91660000	16.28370000
С	11.61860000	12.94860000	17.04760000
Н	10.74640000	12.69640000	17.24760000
С	13.19870000	14.61530000	16.55270000
Н	13.41760000	15.50660000	16.39750000
С	14.87440000	10.05650000	16.02500000
С	12.58840000	11.99250000	16.95270000
Н	12.35780000	11.10120000	17.08550000
С	15.94690000	9.18230000	15.99400000
Н	15.84450000	8.34210000	15.60600000
С	22.51400000	9.93550000	18.84440000
Н	23.12660000	10.68710000	18.87550000
Н	22.87590000	9.26750000	18.23920000
С	24.38950000	11.81020000	14.71100000
Н	24.49950000	10.85240000	14.80760000
Н	24.55050000	12.22600000	15.57320000
В	10.93080000	16.68760000	15.92330000
Н	11.68080000	16.75750000	15.12140000
С	18.14140000	7.37580000	16.07500000

Н	17.85240000	7.36730000	15.14900000
Н	17.49260000	6.88840000	16.60610000
В	9.26620000	14.97150000	17.45970000
Н	8.93780000	13.93870000	17.64250000
С	13.43230000	8.44950000	14.89030000
Н	13.63670000	7.73880000	15.51800000
Н	14.00930000	8.35060000	14.11610000
В	20.36440000	17.25340000	10.14990000
Н	20.72070000	17.71020000	11.08450000
В	10.31640000	15.83550000	18.58400000
Н	10.65940000	15.36170000	19.51690000
В	11.35370000	16.89550000	17.64770000
Н	12.37990000	17.12900000	17.97010000
В	21.38590000	16.20360000	9.20320000
Н	22.41400000	15.96840000	9.51710000
В	10.32940000	18.10720000	16.81480000
Н	10.68910000	19.12290000	16.59410000
С	25.33480000	12.32480000	13.72810000
Н	25.22000000	13.28600000	13.65220000
Н	26.23650000	12.15610000	14.04020000
В	8.65050000	16.38770000	18.38750000
Н	7.90850000	16.28710000	19.19280000
В	8.66570000	17.77320000	17.27520000
Н	7.93050000	18.58440000	17.35970000
В	9.94270000	17.55680000	18.48230000
Н	10.04110000	18.22310000	19.35310000
С	19.47900000	6.75380000	16.20090000
Н	19.40520000	5.83350000	15.90430000
Н	20.07450000	7.20540000	15.58180000
С	11.99850000	8.37280000	14.47650000
Н	11.87470000	7.51050000	14.04710000
Н	11.47270000	8.35740000	15.29040000
С	21.27660000	8.82440000	22.32950000
Н	21.09740000	9.55720000	22.92440000
Н	22.04690000	8.34380000	22.63810000
Н	20.51850000	8.23640000	22.31220000
С	22.34470000	9.36630000	20.18080000
Н	22.54480000	8.42730000	20.03940000
Н	23.11130000	9.71740000	20.66020000
С	20.08740000	6.74700000	17.43210000
Н	19.50130000	6.29020000	18.05640000
Н	20.16710000	7.66550000	17.73390000
С	21.50820000	6.07890000	17.51830000

Н	21.91640000	6.30220000	18.35810000
Н	22.05910000	6.39930000	16.79930000
Н	21.41790000	5.12460000	17.45110000
С	25.17530000	11.75390000	12.47790000
Н	25.26710000	10.79280000	12.57440000
Н	24.26930000	11.92780000	12.18130000
С	11.42590000	9.31350000	13.64880000
Н	11.95370000	9.35610000	12.83660000
Н	11.50180000	10.17750000	14.08330000
С	9.98590000	9.13120000	13.24870000
Н	9.41860000	9.56570000	13.88840000
Н	9.77860000	8.19380000	13.22110000
Н	9.84180000	9.51460000	12.38130000
С	21.52410000	9.32880000	21.00510000
Н	20.77200000	8.96410000	20.51370000
Н	21.31170000	10.26960000	21.11200000
С	26.02220000	12.16120000	11.50360000
Н	26.66350000	12.77130000	11.87260000
Н	25.52380000	12.60090000	10.81040000
Н	26.47630000	11.39950000	11.13630000

Figure S18. Electrostatic potential maps of 3a(left) and 3b(right).

3. Fluorescence Properties

Figure S19. Structure and the abbreviation of guests

Figure S20. The nonlinear curve-fitting for the quenching constant of (a) **3a** and (b) **3b** with TNP.

Figure S21. The nonlinear curve-fitting for the quenching constant of (a) **3a** and (b) **3b** with *p*-PNP.

Figure S22. UV-vis spectra of 3a, 3b, TNP, *p*-PNP, and mixtures in H₂O/THF (95:5).

Figure S23. UV-vis spectra of 3a, 3b in THF and in H₂O/THF (95:5).

Comp.	$\lambda_{abs}(nm)$	$\lambda_{abs}(nm)$
3a in THF	280	310
3a in H ₂ O/THF =95/5	284	318
3b in THF	282	312
3b in H ₂ O/THF =95/5	287	333

Table S4. UV absorption peak data of **3a**, **3b** in THF and in H₂O/THF (95:5).

Observation of Figure S23 and datas in Table S4 reveals that the H_2O/THF (95:5) solvent caused red shift in the UV absorption, with the most pronounced red shift being the second UV absorption peak.

Figure S24. The TEM images of 3a (a) and 3b (c)in THF solution and 3a (b) and 3b (d)in H₂O/THF (99:1).

Quantum yields determination:

Absolute quantum yields of all compounds in THF/water or in solid state were measured by employing an integrating sphere. The Principle of Absolute Quantum Yield Measurements. The absolute fluorescence quantum yield, η , is, by definition, the ratio of the number of photons emitted to the number of photons absorbed:

There are two different methods for the measurement of the absolute fluorescence quantum yield: "Direct Excitation" measurements and "Direct & Indirect Excitation" measurements. With "Direct Excitation" measurements one records the scatter and the emission of the sample being directly exited by the radiation from the excitation monochromator only, whereas with "Direct and Indirect Excitation" one also records the emission of the sample while it is in a position where it is only indirectly excited by excitation radiation bouncing within the sphere.

"Direct Excitation" Method

This method only requires two experimental setups, see Figure S25. Note that with the "Direct Excitation" method the emission measurement actually contains the information of both direct and indirect excitation, as photons that pass the sample in the direct excitation beam may still be absorbed after scattering in the sphere.

Figure S25. Two different measurement configurations required for Direct Excitation measurements:(A) reference sample (solvent only) in sample position (1); (B) test sample in position 1 (position 2 remains empty for both measurements.)

Figure S26. Spectral scans of the excitation scatter region or S-region (peaks on the left) and the emission region (E-region) of the sample and the solvent.

The indices "A" and "B" refer to the experimental setup illustrated in Figure S25. Note that the quantities S_A , S_B , E_A , and E_B refer to the integral of the scans.

The absolute fluorescence quantum yield, calculated with the "Direct Excitation" method is calculated as follows:

 $E_A(\lambda)$ and $S_A(\lambda)$, as well as $E_B(\lambda)$ and $S_B(\lambda)$ may be measured in four individual scans. However, it is often convenient to measure these spectra in two scans only. For the calculation of the integrals, the selection of the integral regions, and the final calculation of η_{DExc} use the quantum yield wizard that is supplied with the FLS980 software.

If the sphere background, $E_A(\lambda)$, is sufficiently low the measurement of this region may be omitted to save measurement time. In this case the equation degrades to: