Electronic Supplementary Information

Bis-[C(sp³)-chelating] Ti₂ catalysts supported by arylene-1,4-diyl-2,3-X₂ bridges for olefin copolymerisation: X substituents impose conformational cooperative effects

Yufang Li,⁺ Junhui Bao,⁺ Qian Liu, Man-Kit Tse and Michael C. W. Chan*

Department of Chemistry and Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China. Email: mcwchan@cityu.edu.hk

Contents:

- A. Experimental details, procedures for catalyst screening and characterisation data (p. S2–S12)
- B. Selected NMR spectra and data (p. S13–S17)
- C. Determination of comonomer incorporation ratios using ¹³C NMR spectroscopy (p. S18–S24)
- D. Additional ¹H and ¹³C NMR spectra (p. S25–S35)
- E. References (p. S36)

A. Experimental Section

General Methods. All reactions were performed using standard Schlenk techniques under an argon atmosphere or in a Braun dry-box under a nitrogen atmosphere. All solvents were appropriately dried and distilled then degassed prior to use. ¹H, ¹³C (referenced to residual solvent peaks) and ¹⁹F (external trifluoroacetic acid reference) NMR spectra were recorded at 298 K on a Bruker Avance 600 (or 400/300) FT-NMR spectrometer (ppm). Peak assignments were based on combinations of DEPT-135, and 2-D ¹H-¹H, ¹³C-¹H and NOE (plus [¹H,¹⁹F]-COSY for **2**) correlation NMR experiments. The comonomer incorporation % of copolymers were determined by ¹³C inverse-gated NMR experiments in 1,1,2,2-tetrachloroethane-d₂ at 120 °C. The sample was allowed to equilibrate at 120 °C in the probe prior to data collection, and acquisition was conducted with an interval of 10 s between pulses. The ¹H NMR spectra of precursors, ligands and complexes, and the ¹³C and DEPT-135 NMR spectra of complexes, are provided below. Elemental analyses were performed on a Vario EL elemental analyser (Elementar Analysensysteme GmbH).

For polymer analysis, gel permeation chromatographs were obtained on a PL-GPC 220 instrument (at 1.0 mL/min versus polystyrene standards; $2 \times PLgel Olexis (300 \times 7.5 \text{ mm})$ Mixed B columns) at 150 °C in 1,2,4-trichlorobenzene. The polymer melting point was determined using a PerkinElmer STA6000 simultaneous thermal analyser under a nitrogen atmosphere: 1) polymer samples were first equilibrated at 30 °C, then heated to 170 °C at a rate of 10 °C/min, 2) this temperature was maintained for 5 min, then samples were cooled to 30 °C at a rate of 10 °C/min, 3) this temperature was maintained for 5 min, then samples were reheated to 170 °C at a rate of 10 °C/min, 3) this temperature was maintained for 5 min, then samples were reheated to 170 °C at a rate of 10 °C/min, 4) the melting temperature (T_m) was determined from the second heating scan. Molecular structures were optimised using DFT calculations (M06-2X level,¹ using the Gaussian 16 program package²) with the LanL2DZ basis set³ for transition metals and the 6-311G(d,p) basis set for non-metal atoms. The syntheses of **I-1** and complex **4m** were described previously.^{4,5}

Polymerisation Procedures. Schlenk-line ethylene polymerisation tests were carried out under atmospheric pressure in toluene in a 100 mL glass reactor containing a magnetic stir bar, which was equilibrated at the required temperature. The reactor was maintained under 1 atmosphere of continuous ethylene supply for the duration of the experiment. Polymerisation was initiated by adding a toluene solution of the cocatalyst ($[Ph_3C][B(C_6F_5)_4]/^{i}Bu_3Al$) with stirring. After the prescribed

reaction time, 10% HCl in methanol (40 mL) was added to terminate the polymerisation, the ethylene gas feed was stopped, and the resultant mixture was allowed to stir at 80 °C for 1 hour. The polymer was collected by filtration, washed with methanol (20 mL), and dried under vacuum at 80 °C for 12 hours to a constant weight. The same procedure was adopted for ethylene/1-alkene copolymerisation tests, except the 1-alkene substrate was combined with the toluene solution of the cocatalyst before polymerisation. Errors for catalytic activities are estimated to be ± 10 %, based on previous polymerisation tests using the same experimental procedure.

Synthetic Methods. Synthesis of I-2. A mixture of 2,6-dibromopyridine (1.66 g 6.99 mmol), I-1 (3.0 g, 7.68 mmol), Pd(PPh₃)₄ (0.42 g, 0.35 mmol) and potassium phosphate (2.96 g, 14.0 mmol) in toluene (40 mL) was heated at 110 °C for 4 days under a nitrogen atmosphere. The resultant mixture was filtered through a thin layer of celite, and all volatiles were removed under vacuum. The crude product was purified by silica gel flash chromatography using *n*-hexane and Et₂O (3:1) as eluent to give a white solid. Yield: 2.00 g, 83%. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.36–7.46 (m, 3H), 4.61 (s, 2H, OCH₂O), 3.53 (q, *J* = 7.1 Hz, 2H, OCH₂CH₃), 1.46 (s, 9H, *t*-Bu), 1.33 (s, 9H, *t*-Bu), 1.11 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃).

Synthesis of I-3. A mixture of **I-1** (5.00 g, 12.8 mmol), 6-bromopyridine-2-carbaldehyde (2.17 g, 11.7 mmol), Pd(dppf)Cl₂ (0.214 g, 0.293 mmol) and potassium carbonate (8.05 g, 58.3 mmol) was added to dioxane (30 mL) and deionised water (3 mL) in a 100 mL Schlenk flask. The reaction was stirred at 90 °C for 48 hours, after which the mixture was extracted with dichloromethane (50 mL) and washed with brine. The combined organic layers were dried over anhydrous magnesium sulphate. After evaporation of all volatiles by vacuum, and purification by silica gel flash

chromatography using *n*-hexane:ethyl acetate (40:1) as eluent, the product was obtained as a white solid. Yield: 3.49 g, 81%. ¹H NMR (300 MHz, CDCl₃): δ 10.18 (s, 1H), 7.99-7.85 (m, 3H), 7.51-7.45 (m, 2H), 4.59 (s, 2H), 3.48 (q, *J* = 7.1 Hz, 2H), 1.48 (s, 9H), 1.35 (s, 9H), 1.05 (t, *J* = 7.1 Hz, 3H).

Synthesis of I-4. *n*-Butyllithium (2.4 M in *n*-hexane, 0.74 mL, 1.77 mmol) was added dropwise to a solution of I-2 (0.746 g, 1.77 mmol) in diethyl ether (50 mL) at -78 °C under a nitrogen atmosphere. After stirring for five minutes, a solution of naphthalene-1,4-dicarbaldehyde (0.159 g, 0.861 mmol) in diethyl ether (20 mL) was added to the reaction, which was stirred at 20 °C for 12 hours. The resultant mixture was quenched with dilute HCl (1 mL), after which filtration, extraction with diethyl ether (50 mL) and evaporation of all volatiles from the combined organic layers by vacuum gave a brown solid, to which acetic anhydride (4.0 mL) and pyridine (4.0 mL) were added. The mixture was stirred at 50 °C for 12 hours, after which the pyridine was removed by vacuum. The product was obtained as a pale-yellow solid after purification by silica gel flash chromatography using *n*-hexane:ethyl acetate (15:1) as eluent. Yield: 0.385 g, 47%. ¹H NMR (400 MHz, CDCl₃): δ 8.44–8.37 (m, 2H), 7.73–7.67 (m, 4H), 7.67–7.61 (m, 4H), 7.53–7.46 (m, 2H), 7.42 (d, *J* = 2.6 Hz, 2H), 7.35 (d, *J* = 2.6 Hz, 2H), 7.32–7.27 (m, 2H), 4.64–4.54 (m, 4H), 3.55–3.37 (m, 4H), 2.26 (s, 6H), 1.49 (s, 18H), 1.31 (s, 18H), 1.06 (t, *J* = 7.0 Hz, 6H).

Synthesis of I-5. A mixture of **I-4** (1.00 g, 1.05 mmol), Pd/C (5% Pd wt., 0.208 g), triethylamine (0.290 g, 2.87 mmol) and methanol (25 mL) were added to a Schlenk flask, and the reaction was heated at 45 °C under a hydrogen atmosphere for 12 hours. The resultant mixture was filtered through a thin layer of celite. The product was obtained as a pale-yellow oil after purification

by silica gel flash chromatography using *n*-hexane:ethyl acetate (20:1) as eluent. Yield: 0.710 g, 81%. ¹H NMR (400 MHz, CDCl₃): δ 8.30–8.22 (m, 2H), 7.56–7.43 (m, 12H), 6.98–6.92 (m, 2H), 4.74 (s, 4H), 4.65 (s, 4H), 3.50 (q, *J* = 7.0 Hz, 4H), 1.51 (s, 18H), 1.38 (s, 18H), 1.09 (t, *J* = 7.0 Hz, 6H).

Synthesis of H₄L¹. I-5 (0.671 g, 0.803 mmol), concentrated hydrochloric acid (4 mL) and methanol (20 mL) were added to a 100 mL round-bottom flask, and the reaction was stirred at 60 °C for 12 hours. The resultant mixture was extracted with dichloromethane (60 mL) and washed with brine. The combined organic layers were dried over anhydrous magnesium sulphate. The product was obtained as a pale-yellow solid after purification by silica gel flash chromatography using *n*-hexane:dichloromethane (1:1) as eluent. Yield: 0.433 g, 75%. ¹H NMR (400 MHz, CDCl₃): δ 14.63 (s, 2H), 8.03–7.98 (m, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.68–7.61 (m, 4H), 7.46 (s, 2H), 7.45–7.38 (m, 4H), 6.93 (d, *J* = 7.6 Hz, 2H), 4.69 (s, 4H), 1.50 (s, 18H), 1.36 (s, 18H). ¹³C NMR (151 MHz, CDCl₃): δ 158.61, 157.29, 156.94, 139.73, 138.12, 137.61, 134.07, 132.64, 127.85, 126.12, 125.01, 120.90, 120.24, 117.93, 117.26, 41.51, 35.34, 34.36, 31.65, 29.65.

Synthesis of I-6. *n*-Butyllithium (2.4 M in *n*-hexane, 0.62 mL, 1.49 mmol) was added dropwise to a solution of 1,4-dibromo-2,3-difluorobenzene (0.405 g, 1.49 mmol) in THF (50 mL) at -78 °C under a nitrogen atmosphere. After stirring for 15 minutes, a solution of I-3 (0.500 g, 1.35 mmol) in THF (10 mL) was added to this mixture, which was stirred at 20 °C for 12 hours. The resultant mixture was quenched with dilute HCl (1 mL), then extracted with diethyl ether (50 mL) and washed with brine. The combined organic layers were dried over anhydrous magnesium sulphate. After evaporation of all volatiles by vacuum and purification by silica gel flash chromatography using

n-hexane:ethyl acetate (40:1), the product was obtained as a colorless oil. Yield: 0.579 g, 76%. ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.65 (m, 2H),7.52 (d, J = 2.6 Hz, 1H), 7.44 (d, J = 2.5 Hz, 1H), 7.35–7.25 (m, 1H), 7.23–7.16 (m, 2H), 6.17 (s, 1H), 5.88 (s, 1H), 4.65–4.57 (m, 2H), 3.59–3.46 (m, 2H), 1.53 (s, 9H), 1.39 (s, 9H), 1.08 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): δ –130.48 (d, J = 21.3), –139.89 (d, J = 21.3 Hz).

Synthesis of I-7. A mixture of I-19 (0.500 g, 0.889 mmol), acetic anhydride (2.5 mL) and pyridine (2.5 mL) was added to a 50 mL round-bottom flask. The reaction was stirred at 50 °C for 12 hours, after which the pyridine was removed by vacuum. The product was obtained as a white solid after purification by silica gel flash chromatography using *n*-hexane:ethyl acetate (40:1) as eluent. Yield: 0.446 g, 83%. ¹H NMR (400 MHz, CDCl₃): δ 7.78–7.71 (m, 2H), 7.42 (d, *J* = 2.5 Hz, 1H), 7.40 (dd, *J* = 6.6, 1.9 Hz, 1H), 7.36–7.31 (m, 1H), 7.30–7.23 (m, 2H), 7.16 (s, 1H), 4.58 (s, 2H), 3.61–3.47 (m, 2H), 2.25 (s, 3H), 1.48 (s, 9H), 1.31 (s, 9H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃): –130.20 (d, *J* = 21.6 Hz), –137.09 (d, *J* = 21.6 Hz).

Synthesis of H₄L². The procedure for the synthesis of I-6 was adopted using I-7 (1.85 g, 3.06 mmol) to give the crude product. Subsequent esterification, reduction and deprotection reactions following the synthetic methods for I-4, I-5 and H₄L¹ respectively, using crude products from each step, yielded the product as a pale-yellow solid. Yield: 0.259 g, 12 %. ¹H NMR (400 MHz, CDCl₃): δ 14.35 (s, 2H), 7.82–7.69 (m, 4H), 7.63 (d, J = 2.4 Hz, 2H), 7.39 (d, J = 2.4 Hz, 2H), 7.14–7.00 (m, 4H), 4.25 (s, 4H), 1.48 (s, 18H), 1.35 (s, 18H). ¹³C NMR (75 MHz, CDCl₃): δ 158.80, 156.85, 155.47, 149.25 (dd, ¹ $J_{C,F} = 249.3$, 14.8 Hz), 139.79, 138.32, 137.62, 126.45 (dd, ² $J_{C,F} = 7.9$, 5.2 Hz), 126.21,

125.74 (t, ${}^{3}J_{C,F}$ = 3.7 Hz), 120.94, 120.17, 117.87, 117.66, 36.64 (CH₂), 35.36, 34.38, 31.68, 29.65. {}^{19}F NMR (376 MHz, CDCl₃): δ -141.97.

Synthesis of I-8. The procedure for the synthesis of **I-4** was adopted starting from benzene-1,4-dicarbaldehyde. Yield: 0.36 g, 51%. ¹H NMR (300 MHz, CDCl₃): δ 7.67–7.60 (m, 3H), 7.51 (s, 4H), 7.39 (d, *J* = 2.7 Hz, 2H), 7.29–7.33 (m, 3H), 6.93 (s, 2H), 4.55 (s, 4H), 3.54–3.38 (m, 4H), 2.20 (s, 6H), 1.46 (s, 18H), 1.29 (s, 18H), 1.04 (t, *J* = 7.1 Hz, 6H).

Synthesis of I-9. A mixture of I-8 (0.36 g, 0.4 mmol), Pd/C (5% Pd wt., 0.08 g), triethylamine (0.15 mL, 1.07 mmol) in methanol (20 mL) was heated at 45 °C under a hydrogen atmosphere for 12 hours. The resultant mixture was filtered through a thin layer of celite. Evaporation of volatiles gave a pale yellow oil, which was purified by silica gel flash chromatography using dichloromethane as eluent to give a pale yellow oil. Yield: 0.22 g, 70%. ¹H NMR (300 MHz, CDCl₃): δ 7.55–7.60 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.39–7.40 (m, 4H), 7.32 (s, 4H), 7.01 (d, *J* = 7.2 Hz, 2H), 4.58 (s, 4H), 4.22 (s, 4H), 3.49 (q, *J* = 7.0 Hz, 4H), 1.47 (s, 18H), 1.29 (s, 18H), 1.08 (t, *J* = 7.0 Hz, 6H).

Synthesis of H_4L^3 . A mixture of I-9 (0.22 g, 0.28 mmol) in MeOH (20 mL) and concentrated HCl (5 mL) was heated at 80 °C for 12 hours. The resultant mixture was extracted with dichloromethane, washed with brine and water, and dried over magnesium sulphate. Purification by

silica gel flash chromatography using dichloromethane as eluent gave a yellow solid. Yield: 0.14 g, 75%. ¹H NMR (400 MHz, CDCl₃): δ 14.65 (s, 2H), 7.75 (d, J = 8.1 Hz, 2H), 7.70 (t, J = 7.8 Hz, 2H), 7.64 (d, J = 2.3 Hz, 2H), 7.39 (d, J = 2.3 Hz, 2H), 7.26 (s, 4H), 7.00 (d, J = 7.3 Hz, 2H), 4.19 (s, 4H), 1.49 (s, 18H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 158.71, 157.54, 157.01, 139.78, 138.23, 137.67, 137.05, 129.72, 126.19, 120.99, 120.39, 118.03, 117.35, 43.73, 35.44, 34.47, 31.76, 29.75.

Synthesis of H₂L⁴. The procedure for the synthesis of H₄L⁴ was adopted from that for the parent pyridine-2-phenol-6-benzyl ligand.⁵ The protected alcohol (1.10 g, 2.47 mmol) was treated with concentrated hydrochloric acid (5 mL) in methanol (20 mL), according to the synthesis of H₄L³, to give a white solid. Yield: 0.852 g, 89%. ¹H NMR (400 MHz, CDCl₃): δ 14.68 (s, 1H), 7.77–7.67 (m, 2H), 7.66–7.60 (m, 1H), 7.43–7.36 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.00 (d, *J* = 7.3 Hz, 1H), 4.18 (s, 2H), 2.33 (s, 3H), 1.49 (s, 9H), 1.34 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 158.58, 157.74, 156.98, 139.67, 138.11, 137.59, 136.25, 135.58, 129.45, 129.16, 126.10, 120.89, 120.23, 117.95, 117.16, 43.63 (CH₂), 35.37, 34.39, 31.69, 29.66, 21.12 (CH₃).

Synthesis of Complex 1. A solution of *n*-pentane (10 mL) and diethyl ether (1 mL) was slowly added to H₄L¹ (0.100 g, 0.139 mmol) and Ti(CH₂Ph)₄ (0.116 g, 0.282 mmol) at -78 °C under an argon atmosphere. The mixture was stirred at -78 °C for one hour and at 20 °C for 12 hours. The reaction mixture was stored at -78 °C for 12 hours, and the resultant dark red/brown precipitate was collected and dried under vacuum. Yield: 0.088 g, 54%. ¹H NMR (600 MHz, C₆D₆ with 3 drops of d₈-THF, 281 K): δ 8.56–8.44 (m, 4H, H¹⁵ and H²¹), 7.80–7.77 (m, 4H, H⁶ and H³⁴), 7.75 (d, *J* = 2.4 Hz, 4H, H⁴ and

H³²), 7.61–7.58 (m, 4H, H¹⁶ and H²²), 7.39–7.30 (m, 4H, H¹⁰ and H²⁵), 7.29–7.23 (m, 4H, H¹⁷ and H¹⁸), 7.19–7.11 (m, 8H, o- and o'-Ph), 7.10–6.99 (m, 8H, H⁸, H⁹, H²⁶ and H²⁷), 6.98–6.86 (m, 20H, *m*, *m*', *p* and *p*'-Ph), 6.79–6.68 (m, 4H, *p*- and *p*'-Ph), 6.64–6.52 (m, 8H, *o*- and *o*'-Ph), 3.35 (s, 4H, H¹² and H²³), 2.99–2.84 (m, 8H, CH₂), 2.43 (d, *J* = 8.3 Hz, 2H), 2.35 (d, *J* = 8.4 Hz, 2H), 2.11 (d, *J* = 8.3 Hz, 2H), 1.94 (d, J = 8.4 Hz, 2H), 1.57 (s, 17H, 31-t-Bu), 1.56 (s, 19H, 3-t-Bu), 1.43 (s, 36H, 5and 33-*t*-Bu). ¹³C NMR (151 MHz, C₆D₆ with 3 drops of d₈-THF, 281 K): δ 157.36 (C² and C³⁰), 151.70 (C⁷ and C²⁸), 142.11 (C³³), 142.07 (C⁵), 141.76 (C²⁶), 141.61 (C⁹), 136.46 (C³ and C³¹), 130.34 (o- and o'-Ph), 129.85 (m'-Ph), 129.72 (m-Ph), 129.59 (o-Ph), 129.36 (m-Ph), 129.21 (m'-Ph), 129.13 (o'-Ph), 126.55 (C⁴ and C³²), 125.56 (C²²), 125.37 (C¹⁶), 124.92 (C¹⁵), 124.99 (C²¹), 124.84 (p'-Ph), 124.77 (p-Ph), 124.26 (p-Ph), 123.90 (p'-Ph), 122.12 (C³⁴), 122.03 (C⁶), 120.60 (C¹⁰), 120.55 (C²⁵), 119.73 (C¹⁷ and C¹⁸), 112.77 (C²⁷), 112.61 (C⁸), 83.96 (${}^{1}J_{C,H} = 136.0$ Hz, CH₂), 83.57 (${}^{1}J_{C,H} = 136.6$ Hz, CH₂), 78.52 (¹*J*_{C,H} = 134.6 Hz, CH₂), 78.18 (¹*J*_{C,H} = 134.6 Hz, CH₂), 71.25 (¹*J*_{C,H} = 141.9 Hz, C¹² and C²³), 35.47 (3- and 31-CMe₃), 34.41 (5- and 33-CMe₃), 31.48 (5- and 33-CMe₃), 29.92 (31-CMe₃), 29.86 (3-CMe₃); 4° carbons: 161.69, 143.00, 142.95, 140.26, 137.76, 137.44, 131.35, 129.00, 127.28, 126.24, 126.36, 126.24, 125.37. Anal. Calcd for C₇₈H₈₂N₂O₂Ti₂ (1175.3): C, 79.71; H, 7.03; N, 2.38. Found: C, 79.49; H, 7.23; N, 2.16.

Synthesis of Complex 2. The procedure for the synthesis of complex 1 was adopted using H_4L^2 (0.080 g, 0.113 mmol) and Ti(CH₂Ph)₄ (0.095 g, 0.230 mmol). The product was obtained as a dark red solid. Yield: 0.081 g, 62%. ¹H NMR (600 MHz, C₆D₆): δ 7.76–7.70 (m, 8H, H⁴, H⁶, H²⁸ and H³⁰), 7.24–7.16 (m, 18H, *o*-, *o*'-, *m*-, *m*'-Ph and H²¹), 7.12–7.07 (m, 4H, H⁹ and H¹⁰), 7.07–6.99 (m, 10H, H⁸, H²², H²³, *m*- and *m*'-Ph), 6.99–6.93 (m, 8H, *m*- and *m*'-Ph), 6.89–6.82 (m, 10H, H¹⁴, *o*- and *o*'-Ph), 6.77 (d, *J* = 4.2 Hz, 2H, H¹⁷), 6.74–6.68 (m, 4H, *p*- and *p*'-Ph), 3.02–2.95 (m, 6H, H¹², H¹⁹ and CH₂), 2.94–2.89 (m, 4H, CH₂), 2.85 (d, *J* = 9.9 Hz, 2H), 2.45 (d, *J* = 8.4 Hz, 2H, CH₂), 2.35 (d, *J* = 8.6 Hz, 2H, CH₂), 2.26 (d, *J* = 8.4 Hz, 2H, CH₂), 2.07 (d, *J* = 8.6 Hz, 2H, CH₂), 1.57 (s, 36H, 3- and 27-*t*-Bu), 1.42 (s, 36H, 5- and 29-*t*-Bu). ¹³C NMR (151 MHz, C₆D₆): δ 157.52 (C²⁶), 157.46 (C²),

156.30 (C²⁰), 156.16 (C¹¹), 151.78 (C²⁴), 151.73 (C⁷), 147.77 (dd, J = 245.4 Hz, 14.3 Hz, C¹⁵ and C¹⁶), 142.25 (C⁵ and C²⁹), 141.66 (C⁹ and C²²), 136.55 (C³ and C²⁷), 130.80 (*o*-Ph), 130.55 (*o*'-Ph), 130.40 (*m*-Ph), 130.11 (*m*'-Ph), 129.35 (br, C¹³ and C¹⁸), 129.29 (*m*'-Ph), 129.19 (*o*'-Ph), 128.97 (*o*-Ph), 128.93 (*m*-Ph), 126.71 (C⁴ and C²⁸), 126.33 (C¹), 126.24 (C²⁵), 125.69 (*p*-Ph), 125.31 (*p*'-Ph), 124.05 (*p*'-Ph), 123.72 (*p*-Ph), 122.23 (C⁶), 122.16 (C³⁰), 119.31 (C¹⁰), 119.23 (C²¹), 118.90 (br, C¹⁴ and C¹⁷), 113.20 (C⁸), 113.09 (C²³), 84.35 (¹*J*_{C,H} = 138.9 Hz, CH₂), 84.13 (¹*J*_{C,H} = 137.3 Hz, CH₂), 80.94 (¹*J*_{C,H} = 132.3 Hz, CH₂), 80.63 (¹*J*_{C,H} = 135.7 Hz, CH₂), 66.39 (¹*J*_{C,H} = 143.2 Hz, C¹²), 65.85 (¹*J*_{C,H} = 143.4 Hz, C¹⁹), 35.44 (3- and 27-CMe₃), 34.37 (5- and 29-CMe₃), 31.42 (5- and 29-CMe₃), 30.00 (3-CMe₃), 29.96 (27-CMe₃); 4° carbons: 144.17, 143.49, 139.48, 138.63. ¹⁹F NMR (565 MHz, C₆D₆): δ –143.82, -144.45. Anal. Calcd for C₇₄H₇₈F₂N₂O₂Ti₂ (1161.2): C, 76.54; H, 6.77; N, 2.41. Found: C, 76.15; H, 6.68; N 2.26.

Synthesis of Complex 3. A solution of H4L³ (0.08 g, 0.12 mmol) in toluene (5 mL) was added dropwise to Ti(CH₂Ph)₄ (0.11 g, 0.27 mmol) in toluene (3 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 hour and at 20 °C for 18 hours. Filtration and concentration of the resultant mixture, followed by layering with pentane (10 mL), gave a dark red solid at -25 °C after 2 days. The solid was collected and dried under vacuum. Yield: 0.069 g, 51%. ¹H NMR (400 MHz, C₆D₆): δ 7.75 (d, *J* = 2.0 Hz, 4H, H⁴ and H²⁸), 7.73 (d, *J* = 2.0 Hz, 4H, H⁶ and H³⁰), 7.48 (d, *J* = 8.0 Hz, 2H, H²¹), 7.38 (d, *J* = 8.0 Hz, 2H, H¹⁰), 7.19–7.29 (m, 16H, H^{14.16}, H¹⁸ and *m*-Ph), 7.10–7.13 (m, 12H, H⁹, H²² and *m*-Ph), 6.98–7.10 (m, 12H, H⁸, H²³ and *o*-Ph), 6.92–6.98 (m, 4H, *p*-Ph), 6.75–6.80 (m, 8H, *o*-Ph), 6.72 (d, *J* = 7.5 Hz, 4H, *p*-Ph), 3.01 (m, *J* = 9.6 Hz, 4H, CH₂), 2.25 (d, *J* = 8.8 Hz, 2H, CH₂), 2.18 (d, *J* = 8.4 Hz, 2H, CH₂), 2.20 (d, *J* = 8.8 Hz, 2H, CH₂), 1.61 (s, 18H, 27-*t*-Bu), 1.60 (s, 18H, 3*t*-tBu), 1.43 (s, 18H, 29-*t*-Bu), 1.42 (s, 18H, 5-*t*-Bu). ¹³C NMR (101 MHz, C₆D₆): δ 141.71 (*o*-Ph), 130.43 (*o*-Ph), 126.55 (C⁴ and C²⁸), 125.62 and 125.38 (C¹⁴ and C¹⁵), 125.01 (C²²), 124.65 (*p*-Ph), 124.01

(*p*-Ph), 123.74 (*p*-Ph), 122.20 (C⁶ and C³⁰), 119.19 (C¹⁰ and C²¹), 112.04 and 111.95 (C⁸ and C²³), 84.22 (¹*J*_{C,H} = 136.3 Hz, CH₂), 79.54 (¹*J*_{C,H} = 132.3 Hz, CH₂), 79.28 (¹*J*_{C,H} = 141.2 Hz, C¹²/C¹⁹; ¹*J*_{C,H} = 131.1 Hz, CH₂), 79.18 (¹*J*_{C,H} = 142.9 Hz, C¹²/C¹⁹), 35.46 and 34.37 (*C*Me₃), 31.44 (5-*CMe₃* and 29-*CMe₃*), 30.05 (3-*CMe₃* and 27-*CMe₃*); 4° carbons: 157.21, 153.90, 153.56, 152.82, 152.73, 144.49, 143.87, 142.09, 140.30, 139.68, 139.40, 139.23, 137.53, 136.60, 127.80, 127.57, 126.63, 126.61. Anal. Calcd for C₇₄H₈₀N₂O₂Ti₂ (1124.52): C, 78.99; H, 7.17; N, 2.49. Found: C, 78.60; H, 7.12; N, 2.23.

Synthesis of Complex 5m. The procedure for the synthesis of complex **1** was adopted using H_2L^4 (0.100 g, 0.258 mmol) and Ti(CH₂Ph)₄ (0.109 g, 0.263 mmol). The product was obtained as a black-red solid. Yield: 0.0905 g, 57%. ¹H NMR (600 MHz, C₆D₆): δ 7.72 (d, J = 2.4 Hz, 1H, H⁴), 7.70 (d, J = 2.4 Hz, 1H, H⁶), 7.23 (d, J = 8.0 Hz, 1H, H¹⁰), 7.19–7.13 (m, 2H, H¹⁵), 7.13–7.08 (m, 4H, *o*-Ph and H¹⁴), 7.03 (d, J = 18.0 Hz, 1H, H⁹), 7.02–6.98 (m, 2H, *m*-Ph), 6.95 (d, J = 6.0 Hz, 1H, H⁸), 6.94–6.89 (m, 3H, *p*- and *m*-Ph), 6.73 (t, J = 7.3 Hz, 1H, *p*-Ph), 6.56 (d, J = 7.6 Hz, 2H, *o*-Ph), 2.92 (d, J = 9.6 Hz, 1H, CH₂), 2.89 (d, J = 9.6 Hz, 1H, CH₂), 2.65 (s, 1H, H¹²), 2.30 (s, 3H, H¹⁷), 2.14 (d, J = 8.8 Hz, 1H, CH₂), 1.92 (d, J = 8.7 Hz, 1H, CH₂), 1.58 (s, 9H, 3-*t*-Bu), 1.40 (s, 9H, 5-*t*-Bu). ¹³C NMR (151 MHz, C₆D₆): δ 142.09 (C⁹), 130.45 (*o*-Ph), 129.83 (*m*-Ph), 129.71 (C¹⁵), 129.56 (*m*-Ph), 129.38 (*o*-Ph), 126.89 (C⁴), 125.49 (C¹⁴), 124.99 (*p*-Ph), 124.25 (*p*-Ph), 122.50 (C⁶), 119.30 (C¹⁰), 112.37 (C⁸), 84.80 (¹ $J_{C,H} = 135.9$ Hz, CH₂), 79.94 (¹ $J_{C,H} = 133.6$ Hz, CH₂), 78.50 (¹ $J_{C,H} = 141.9$ Hz, C¹²), 35.80 (3-CMe₃), 34.71(5-CMe₃), 31.79 (5-CMe₃), 30.40 (3-CMe₃), 21.43 (C¹⁷); 4° carbons: 157.57, 154.57, 153.00, 144.20, 142.43, 141.56, 140.40, 136.95, 132.36, 126.92. Anal. Calcd for C₄₁H₄₅NOTi (615.7): C, 79.98; H, 7.37; N, 2.28. Found: C, 79.62; H, 7.25; N, 1.98.

Scheme S1. Synthesis of H_4L^{1-3} .

B. Selected NMR Spectra and Data

Figure S1. Full (bottom) and expanded (top) ¹H NMR spectra of complex 1 (600 MHz, C₆D₆ with 3 drops of d₈-THF, 281 K).

Figure S2. Expanded [¹H,¹H]-ROESY spectrum of complex 1 (both diastereomers; 600 MHz, C₆D₆ and d₈-THF, 281 K), indicating that the C¹²–C¹³ and C¹⁹–C²³ bonds do not rotate freely and the depicted conformations are preferred.

Figure S3. Full (bottom) and expanded (top) ¹H NMR spectra of complex 2 (600 MHz, C₆D₆, 298 K).

Figure S4. Expanded [¹H,¹H]-ROESY spectrum of complex **2** (both diastereomers; 600 MHz, C₆D₆, 298 K), tentatively indicating that the depicted conformations are preferred.

Complex	CH ₂ (ppm)	CH ₂ (ppm)	² J _{H,H} (CH ₂) (Hz)	¹ J _{С,Н} (СН ₂) (Hz)	H(methine) (ppm)	C(methine) (ppm)	Ratio of diastereomers
1 ª	1.94, 2.11, 2.35, 2.43 ^e	83.96, 83.57, 78.52, 78.18	8.4, 8.3 ^e	136.0, 136.6, 134.6, 134.6	3.35 (×2)	71.25 (×2)	1.32
2 ^b	2.07, 2.26, 2.35, 2.45, 2.85, 2.91, 2.92, 2.99	84.35, 84.13, 80.94, 80.63	8.6, 8.4, 9.9, 9.9	138.9, 137.3, 132.3, 135.7	2.97, 2.99	66.39, 65.85	1.18
3 ^{b,c}	2.00, 2.18, 2.25, 2.34, 2.93, 3.01 ^e	79.28, 79.54, 84.22, 84.22	8.4, 8.8, 9.6 ^e	136.3, 136.3, 132.3, 131.1	2.76, 2.77	79.18, 79.28	1.13
4m ^{<i>b-d</i>}	1.90, 2.27, 2.85, 2.91	79.46, 85.34	8.8, 9.4	138.9, 136.8	3.29	70.42	-
5m ^b	1.92, 2.14, 2.89, 2.92	84.80, 79.94	8.8, 9.6	135.9, 133.6	2.65	78.50	-

Table S1. Selected NMR data ((600 MHz) for com	plexes 1–3. 4m and 5m
	(000 1111111) 101 0011	

^aC₆D₆ with 3 drops of d₈-THF, 281 K. ^bC₆D₆, 298 K. ^c400 MHz. ^dReference 5. ^eRemaining data obscured by overlapping peaks.

C. Determination of Comonomer Incorporation Ratios using ¹³C NMR Spectroscopy

Catalyst	1-Octene conc. (mol L⁻¹)	Τ _Α	Тв	Tc	Τ _Ε	T⊧	Tg	Тн	1-Octene incorporation (%)
	0.4	0	1.00	0	1.73	9.51	2.50	0	18.3
1	0.8	1.00	2.52	0	6.13	20.72	8.65	0.86	26.0
	1.2	1.00	1.87	0	4.28	8.80	5.44	1.02	40.9
2	0.4	0	1.00	0	1.55	11.63	3.07	0	13.9
	0.8	1.00	4.31	0	8.47	31.47	14.67	2.21	22.4
	1.2	1.00	2.94	0	6.43	17.46	11.31	1.05	27.8
3	0.4	0	1.00	0	1.52	14.41	3.02	0	11.7
4m	0.4	0	1.00	0	2.50	37.52	5.14	0	4.9
5m	0.4	0	1.00	0	1.97	15.05	4.32	0	10.7
	0.8	0	1.00	0	1.96	8.36	3.70	0.57	16.5
	1.2	1.00	4.52	0	6.73	34.07	12.36	1.66	22.0

Table S2. Comonomer incorporation ratios for ethylene-(1-octene) copolymerisations.^a

^a T represents integrals from ¹³C NMR inverse-gated experiments in C₂D₂Cl₄ at 120 °C; copolymers obtained under conditions described in Table 1, entries 6–16.

Calculation Method

The relationships between triads and ¹³C NMR integrals are shown below (T represents integral; O = 1-octene, E = ethylene).⁶

$$\begin{split} &[OOO] = T_A - 0.5T_C \\ &[EOO] = T_C \\ &[EOE] = T_B \\ &[EEE] = 0.5T_F - 0.25T_E - 0.25T_G \\ &[OEO] = T_H \\ &[OEE] = T_G - T_E \\ &Then [O], [E] and 1-octene incorporation ratio are calculated according to: \\ &[O] = [OOO] + [EOO] + [EOE] \\ &[E] = [EEE] + [OEO] + [OEE] \\ &1-Octene mol\% = [O]/([O] + [E]) \times 100\% \end{split}$$

Figure S5. ¹³C NMR spectra (101 MHz, C₂D₂Cl₄, 393 K) of ethylene/1-octene copolymers produced by Ti₂ catalysts **1–3** and mono-Ti controls ([1-octene] = 0.40 mol L⁻¹; Table 1, entries 6–10; **A–J** refer to peak assignments used for calculation of incorporation ratio).

Figure S6. ¹³C NMR spectra (101 MHz, C₂D₂Cl₄, 393 K) of ethylene/1-octene copolymers produced by Ti₂ catalysts **1** and **2** and mono-Ti control **5m** ([1-octene] = 0.80 mol L⁻¹; Table 1, entries 11–13; **A**–**J** refer to peak assignments used for calculation of incorporation ratio).

Figure S7. ¹³C NMR spectra (101 MHz, C₂D₂Cl₄, 393 K) of ethylene/1-octene copolymers produced by Ti₂ catalysts **1** and **2** and mono-Ti control **5m** ([1-octene] = 1.20 mol L⁻¹; Table 1, entries 14–16; **A**–**J** refer to peak assignments used for calculation of incorporation ratio).

Catalyst (µmol)	1-Hexene conc. (mol L ⁻¹)	Yield (g)	Activity ^b	<i>M</i> w (kg mol ^{−1}) <i>°</i>	а	1-Hexene incorp. (%) ^d
1 (1.5)	1.20	0.421	840	214	3.5	16.7 %

Table S3. Ethylene-(1-hexene) copolymerisation in conjunction with [Ph₃C][B(C₆F₅)₄] and ^{*i*}Bu₃Al^{*a*}

^a Conditions: molar ratios of ⁱBu₃Al/[Ph₃C][B(C₆F₅)₄]/metal = 50/2/1, 1 atm pressure of ethylene gas (maintained by continuous supply), 22 °C, 10 min reaction time, 20 mL toluene. ^b Activity = g of polymer (mmol of metal)⁻¹ h⁻¹ (±10%). ^c Determined by GPC at 150 °C in 1,2,4-trichlorobenzene versus polystyrene standards. ^d Determined by ¹³C NMR spectroscopy at 120 °C in C₂D₂Cl₄.

Table S4. Comonomer incorporation ratio for ethylene-(1-hexene) copolymerisation.^a

Cat.	1-Hexene conc. (mol L ⁻¹)	TA	Τ _B	Tc	TD	Τ _Ε	TF	TG	1-Hexene incorp. (%)
1	1.2	1.00	3.48	14.82	30.20	6.19	1.21	6.09	16.7%

^{*a*} T represents integrals from ¹³C inverse-gated NMR experiments in C₂D₂Cl₄ at 120 °C; copolymers obtained under conditions described in Table S3.

Calculation Method

The relationships between triads and ¹³C NMR integrals are shown below (T represents integral; H =

1-hexene, E = ethylene).⁶ [HHH] = $2T_A - T_C + T_E + 2T_F + T_G$ [EHH] = $2T_C - 2T_A - 2T_E - 4T_F - 2T_G$ [EHE] = T_B [EEE] = $0.5T_D - 0.5T_G - 0.25T_E$ [HEH] = T_F [HEE] = T_E Then [H], [E] and 1-hexene incorporation ratio are calculated according to: [H] = [HHH] + [EHH] + [EHE] [E] = [EEE] + [HEH] + [HEE] 1-Hexene mol% = [H]/([H] + [E]) × 100%

Figure S8. ¹³C NMR spectra (101 MHz, C₂D₂Cl₄, 393 K) of ethylene/1-hexene copolymers produced by Ti₂ catalyst 1 ([1-hexene] = $1.20 \text{ mol } L^{-1}$; Table S3; A–H refer to peak assignments used for calculation of incorporation ratio).

Figure S9. Energy-minimised calculated (Gaussian/M06-2X; dispersion-corrected) structure for plausible π (octene)-intermediate of [(*RS*)-1][B(C₆F₅)₄]₂ (polymer chains represented by propylbenzene).

View with borate anions (Ti, magenta ; C, gray [octene highlighted]; N, blue; O, red; F, green; B, orange).

View with borate anions omitted (for clarify): Ti···Ti = 8.380 Å; Ti–C(π) = 2.387 Å; Ti···H(agostic) = 2.333 Å (at terminal C⁸ atom).

D. Additional ¹H and ¹³C NMR Spectra

Figure S12. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of **I-4**.

Figure S13. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of I-5.

Figure S14. ¹H NMR spectrum (CDCl₃, 600 MHz, 298 K) of H₄L¹.

Figure S15. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of I-6.

Figure S16. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of I-7.

Figure S17. ¹H NMR spectrum (CDCl₃, 400 MHz, 298 K) of H₄L².

Figure S19. ¹H NMR spectrum (CDCl₃, 300 MHz, 298 K) of H₂L⁴.

Figure S20. ¹³C (top) and DEPT-135 (bottom) NMR spectra (C₆D₆ with 3 drops of d₈-THF, 151 MHz, 298 K) of complex 1.

Figure S21. ¹³C (top) and DEPT-135 (bottom) NMR spectra (C₆D₆, 151 MHz, 298 K) of complex 2.

Figure S22. ¹H NMR spectrum (C₆D₆, 400 MHz, 298 K) of complex **3**.

Figure S23. ¹³C (expanded; top) and DEPT-135 (bottom) NMR spectra (C₆D₆, 101 MHz, 298 K) of complex 3.

Figure S24. ¹H NMR spectrum (C₆D₆, 600 MHz, 298 K) of 5m.

Figure S25. ¹³C (top) and DEPT-135 (bottom) NMR spectra (C₆D₆, 151 MHz, 298 K) of complex 5m.

E. ESI References

- 1 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.
- 2 M. J. Frisch et al., *Gaussian 16, revision B.01*; Gaussian, Inc., Wallingford, CT, 2016.
- 3 (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 270; (b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 284; (c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 299.
- 4 C.-C. Liu, M. C. W. Chan, P.-K. Lo, K.-C. Lau and S.-M. Yiu, Chem. Commun., 2016, 52, 11056.
- 5 C.-C. Liu, Q. Liu, P.-K. Lo, K.-C. Lau, S.-M. Yiu, and M. C. W. Chan, *ChemCatChem*, 2019, 11, 628.
- 6 J. C. Randall, J. Macromol. Sci., Polym. Rev., 1989, 29, 201.