ELECTRONIC SUPPORTING INFORMATION (ESI)

A New Family of Heterometallic $[Cu_6M_4]$ (M = Gd, Tb, Dy and Y) Clusters Derived from the Combined use of Selected Pyridyl Poly-alcohol Ligands

Antonis Anastassiades,^a Dimitris I. Alexandropoulos,^{a,‡} Christian D. Buch,^b Stergios Piligkos,*^b A. J. Tasiopoulos*^a

^aDepartment of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus. E-mail: <u>atasio@ucy.ac.cy</u> ^bDepartment of Chemistry, University of Copenhagen, DK-2100, Denmark. E-mail: <u>piligkos@chem.ku.dk</u> [‡]Current Address: Department of Chemistry, University of Patras, 26504 Patras, Greece.

Table of Contents

Single crystal X-Ray crystallography	3
Physical Measurements/Characterization	8
Magnetic measurements	
References	14

Single crystal X-Ray crystallography

Table S1.	Crystal d	lata and	structural	refinement	parameters	for	compounds	1 ·3MeCN,	2 ·3MeCN,
3 ∙4MeCN	and 4 ·4M	eCN.							

Identification code	1-3MeCN	2-3MeCN	3·4MeCN	4·4MeCN
Empirical formula	$C_{74}H_{89}Cu_{6}Gd_{4}N_{19}O_{44}$	$C_{74}H_{89}Cu_{6}Tb_{4}N_{19}O_{44}$	$C_{76}H_{92}Cu_6Dy_4N_{20}O_{44}$	$C_{76}H_{92}Cu_{6}Y_{4}N_{20}O_{44}$
Formula weight	2958.88	2965.56	3020.93	2726.57
Temperature	180(1) K	150(1) K	150(1) K	150(1) K
Wavelength	1.54184 Å	1.54184 Å	1.54184 Å	1.54184 Å
Crystal system	Tetragonal	Tetragonal	Tetragonal	Tetragonal
Space group	P□2₁c	P□2₁c	P□2₁c	P□2 ₁ c
Unit cell dimensions	a = 17.7047(2) Å	a = 17.5805(2) Å	a = 17.4530(2) Å	a = 17.7509(2)Å
	b = 17.7047(2) Å	b = 17.5805(2) Å	b = 17.4530(2) Å	b = 17.7509(2)Å
	c = 16.4257(2) Å	c = 16.5113(2) Å	c = 16.6568(2) Å	c = 16.2759(2) Å
	α= 90°	α= 90°	α= 90°	α= 90°
	β= 90°	β= 90°	β= 90°	β= 90°
	γ = 90°	γ = 90°	γ = 90°	γ = 90°
Volume	5148.74(9) ų	5103.21(7) ų	5073.78(7) ų	5128.45(9) Å ³
Z	2	2	2	2
Density (calculated)	1.909 gcm ⁻³	1.930 gcm ⁻³	1.977 g cm ⁻³	1.766 gcm ⁻³
Absorption coefficient	18.497 mm ⁻¹	15.480 mm ⁻¹	17.634 mm ⁻¹	5.060 mm ⁻¹
F(000)	2896	2904	2956	2740
Crystal size (max x mid	0.255 x 0.201 x 0.05 mm ³	0.17 x 0.16 x 0.16 mm ³	0.18 x 0.15 x 0.11 mm ³	0.439 x 0.242 x 0.106 mm ³
x min) Theta range for data	7.06 to 153.522°	7.11 to 134.054°	7.162 to 134.158°	7.042 to 134.158°
Index ranges	-21<=h<=22	-21<=h<=21	-19<=h<=20	-21<=h<=20
	-22<=k<=20	-19<=k<=21	-20<=k<=20	-21<=k<=21
Reflections collected	-20<=I<=20 35749	-19<=I<=16 35230	-19<=I<=18 36897	-19<=I<=19 35166
Independent	5354	4546	4526	4579
reflections	R(int) = 0.0487	R(int) = 0.0262	R(int) = 0.0316	R(int) = 0.0234
Completeness to theta	99.9 %	100 %	100 %	99.9 %
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical from
Refinement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares
Data / restraints /	on F ² 5354 / 42 / 343	on F ² 4546 / 18 / 331	on F ² 4526 / 82 / 369	on F ² 4579 / 3 / 343
parameters	3334/42/343	4940/10/331	45207 827 505	437373737343
Goodness-of-fit on F2	1.041	1.039	1.070	1.067
Final R indices	$R_1 = 0.0439$	$R_1 = 0.0320$	R ₁ = 0.0239	R ₁ = 0.0215
[I>2sigma(I)]	$wR_2 = 0.1126$	$wR_2 = 0.0829$	$wR_2 = 0.0656$	$wR_2 = 0.0594$
R indices (all data)	$R_1^a = 0.0456$ $w R_2^b = 0.1142$	$R_1 = 0.0322$ wR_ = 0.0830	$R_1 = 0.0243$ wB ₂ = 0.0658	$R_1 = 0.0217$ wR_ = 0.0595
Extinction coefficient	n/a	n/a	n/a	n/a
Largest diff. peak and	0.88 and -0.92 e.Å ⁻³	0.67 and -0.85 e.Å ⁻³	0.58 and -0.62 e.Å ⁻³	0.36 and -0.51 e.Å ⁻³

 $\frac{1}{a}R_1 = \sum(||F_o| - |F_c||)/\sum |F_o| \cdot b wR_2 = [\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)^2]^{1/2}, w = 1/[\sigma^2(F_o^2) + [(ap)^2 + bp]], where p = [\max(F_o^2, 0) + 2F_c^2]/3.$

Complex	1·3MeCN	2·3MeCN	3·4MeCN	4 ·4MeCN
Polyhedron ^a	Gd1	Tb1	Dy1	Y1
OP-8	34.73	35.06	35.06	34.88
HPY-8	21.75	21.67	21.81	22.07
HBPY-8	15.22	15.46	15.85	15.45
CU-8	11.50	11.81	12.30	11.97
SAPR-8	4.83	4.77	4.85	4.69
TDD-8	2.87	2.73	2.61	2.57
JGBF-8	12.54	12.59	12.65	12.39
JETBPY-8	26.85	26.96	27.31	27.12
JBTPR-8	4.57	4.52	4.54	4.27
BTPR-8	3.94	3.89	3.93	3.67
JSD-8	4.64	4.52	4.43	4.28
TT-8	12.28	12.59	13.06	12.71
ETBPY-8	23.19	23.15	23.44	23.46

Table S2. Shape measures of the 8-coordinate M1 (M = Gd, Tb, Dy, Y) coordination polyhedra in 1.3MeCN, 2.3MeCN, 3.4MeCN and 4.4MeCN, respectively.

^{*a*} Abbreviations: OP-8, octagon; HPY-8, heptagonal pyramid; HBPY-8, hexagonal bipyramid; CU-8, cube; SAPR-8, square antiprism; TDD-8, triangular dodecahedron; JGBF-8, Johnson gyrobifastigium; JETBPY-8, Johnson elongated triangular bipyramid; JBTPR-8, Johnson biaugmented trigonal prism; BTPR-8, biaugmented trigonal prism; JSD-8, Johnson snub diphenoid; TT-8, triakis tetrahedron; ETBPY-8, elongated trigonal bipyramid. The values in boldface indicate the closest polyhedron according to the Continuous Shape Measures.

	1·3MeCN	2 ·3MeCN	3·4MeCN	4 ∙4MeCN	Assignment
01	2.08	2.05	2.05	2.05	(µ-OR)⁻
02	1.88	1.89	1.89	1.89	(µ-OR)⁻
03	1.90	1.89	1.92	1.94	(µ-OR)⁻
04	1.88	1.86	1.86	1.85	(μ-OR)⁻
05	1.04	1.08	1.07	1.07	ROH

Table S3. Bond valence sum (BVS) calculations for O atoms of 1.3MeCN, 2.3MeCN, 3.4MeCN and 4.4MeCN, respectively, along with the assignment of the corresponding groups.¹

Table S4. Selected interatomic distances (Å) and angles (°) for **1**·3MeCN, **2**·3MeCN, **3**·4MeCN and **4**·4MeCN.

1·3MeCN						
	Bond	lengths				
Gd(1)-O(1) 2.260(6) Cu(1)-O(1) 1.894						
Gd(1)-O(3)' ^c	2.273(6)	Cu(1)-O(2)	1.918(6)			
Gd(1)-O(2)''' a	2.328(6)	Cu(1)-O(2)''' ^a	1.918(6)			
Gd(1)-O(4)' ^c	2.319(6)	Cu(2)-O(3)	1.946(7)			
Gd(1)-O(6)	2.481(7)	Cu(2)-O(4)	1.925(7)			
Gd(1)-O(7)	2.498(8)	Cu(2)-N(1)	2.002(8)			
Gd(1)-O(9)	2.484(9)	Cu(2)-N(2)	2.017(8)			
Gd(1)-O(10)	2.522(9)	Cu(2)-O(5)	2.397(9)			
Cu(1)-O(1) ^{''' a} 1.893(6)						
	Bond	angles				
Cu(1)-O(1)-Gd(1)	104.1(3)	Cu(1)-O(2)-Gd(1)''' a	100.8(2)			
Cu(2)-O(3)-Gd(1)'' ^b	103.6(3)	Cu(2)-O(4)-Gd(1)'' ^b	102.6(3)			
2 ·3MeCN						
	Bond	lengths				

Tb(1)-O(1)	2.244(5)	Cu(1)-O(1)''' ^a	1.888(5)
Tb(1)-O(3)' ^c	2.259(5)	Cu(1)-O(2)	1.912(5)
Tb(1)-O(4)' ^c	2.302(5)	Cu(1)-O(2)''' ^a	1.912(5)
Tb(1)-O(2)''' ^a	2.325(5)	Cu(2)-O(3)	1.935(6)
Tb(1)-O(6)	2.475(5)	Cu(2)-O(4)	1.925(6)
Tb(1)-O(7)	2.489(6)	Cu(2)-N(1)	2.004(6)
Tb(1)-O(9)	2.481(7)	Cu(2)-N(2)	2.007(6)
Tb(1)-O(10)	2.511(7)	Cu(2)-O(5)	2.417(7)
Cu(1)-O(1)	1.888(5)		
	Bonc	langles	
Cu(1)-O(1)-Tb(1)	104.1(2)	Cu(1)-O(2)-Tb(1)''' ^a	100.4(2)
Cu(2)-O(3)-Tb(1)'' ^b	103.8(2)	Cu(2)-O(4)-Tb(1)'' ^b	102.6(2)
	3 ·4	MeCN	
	Bond	lengths	
Dy(1)-O(1)	2.227(4)	Cu(1)-O(1)''' ^a	1.887(4)
Dy(1)-O(3)'' ^b	2.249(4)	Cu(1)-O(2)	1.916(4)
Dy(1)-O(2)''' ^a	2.302(4)	Cu(1)-O(2)''' ^a	1.916(4)
Dy(1)-O(9)	2.465(4)	Cu(2)-O(3)	1.937(4)
Dy(1)-O(4)′′ ^b	2.291(4)	Cu(2)-O(4)	1.933(4)
Dy(1)-O(10)	2.469(4)	Cu(2)-N(1)	1.999(5)
Dy(1)-O(7)	2.496(5)	Cu(2)-N(2)	1.997(5)
Dy(1)-O(6)	2.459(5)	Cu(2)-O(5)	2.452(6)
Cu(1)-O(1)	1.887(4)		
	Bonc	langles	
Cu(1)-O(1)-Dy(1)	104.2(2)	Cu(1)-O(2)-Dy(1)''' a	100.5(2)
Cu(2)-O(3)-Dy(1)' ^c	103.8(2)	Cu(2)-O(4)-Dy(1)' ^c	102.4(2)
	4 ·4	MeCN	
	Bond	lengths	
V(1)_∩(1)	2.215(3)	Cu(1)-O(1)''' a	1.887(2)
1(1) 0(1)	. ,		
Y(1)-O(2)''' a	2.297(3)	Cu(1)-O(2)	1.920(2)

Y(1)-O(4)" ^b 2.290	$\gamma(2) = c_{1}(2) \circ c_{2}$	1.0.1.6(0)
	U(3) = Cu(2) - U(3)) 1.946(3)
Y(1)-O(9) 2.452	1(3) Cu(2)-O(4) 1.933(3)
Y(1)-O(6) 2.439	9(3) Cu(2)-N(1)) 2.001(3)
Y(1)-O(10) 2.454	4(3) Cu(2)-N(2)) 2.009(3)
Y(1)-O(7) 2.490	D(3) Cu(2)-O(5) 2.396(3)
Cu(1)-O(1) 1.887	7(2)	
	Bond angles	
Cu(1)-O(1)-Y(1) 104.6	6(2) Cu(2)-O(3)-Y(1)' ^c 103.4(2)
Cu(1)-O(2)-Y(1) ^{''' a} 100.5	5(2) Cu(2)-O(4)-Y(1)' ^c 102.0(2)

a ''' = 1- x, 1-y, +z; ^b '' = 1-x, +y, 1-z; ^c ' = +x, 1-y, 1-z.

Table S5. Crystallographically characterized compounds containing the ligand 2-methyl-2-(2-pyridyl)-1,3-propane-diol.

Compound	Reference
$[Mn_3Na(L)_4(MeCO_2)(MeOH)_2](ClO_4)_2 \cdot 3H_2O^a$	2
$[Mn_{3}Na(L)_{4}(MeCO_{2})(MeOH)_{2}](ClO_{4})_{2} \cdot 2MeOH \cdot H_{2}O^{a}$	2
[Cu ₃ (LH) ₄]Cl ₂ ^a	3
$[Cu_{3}(LH)_{4}](CF_{3}SO_{3})_{2}^{a}$	3
$[Cu_2(LH)_2Cl_2]^a$	3
[Cu ₂ (LH) ₂ Cl ₂ (MeOH) ₂] ^a	3
[Cu(LH ₂) ₂](CuCl ₄) ^a	3
$[Cu(LH_2)_2](CF_3SO_3)_2^a$	3

^a H₂L =2-methyl-2-(2-

pyridyl)-1,3-propane-diol

Physical Measurements/Characterization

Figure S1. IR spectra of compounds 1 - 4.

Figure S2. Powder X-ray diffraction patterns of compounds **1** - **4**, along with the simulated pattern from the single crystal data.

Figure S3. TGA graphs of compounds 1 - 4.

Table S6. Calculated values for percentage mass loss of solvent removal and ligandcombustion along with the experimental values obtained from TGA analysis of compounds 1- 4, respectively.

Removal of Lattice Solvents			Ligand Combustion		Residual Oxide(s)			
Compound	Temperature	Experimental	xH ₂ O	Temperature	Experimental	Temperature	Experimental	Formula
	(°C)	(Calculated)		(°C)	(Calculated)	(°C)	(Calculated)	
		(%)			(%)		(%)	
1	r.t240	5.9 (6.0)	x=10	240-400	54.3 (54.1)	600	39.8 (39.9)	$6CuO/2Gd_2O_3$
2	r.t240	8.0 (8.1)	x=14	240-400	53.2 (52.3)	600	38.8 (39.6)	6CuO/Tb ₄ O ₇
3	r.t240	8.7 (8.6)	x=15	240-400	52.3 (52.3)	600	39.0 (39.1)	6CuO/2Dy ₂ O ₃
4	r.t240	6.6 (6.6)	x=10	240-400	59.4 (59.5)	600	34.0 (33.9)	6CuO/2Y ₂ O ₃

Magnetic measurements

Figure S4. Magnetization (*M*) vs. temperature (*T*) plot for **2**.

Figure S5. Magnetization (*M*) vs. temperature (*T*) plot for **3**.

Figure S6. Plot of the out-of-phase (χ''_M) signal as χ''_M vs. v in a 3.5 G ac field at the indicated applied dc fields for **1** at 2 K.

Figure S7. Plot of the out-of-phase (χ''_M) signal as χ''_M vs. v in a 3.5 G ac field at the indicated applied dc fields for **2** at 2 K.

Figure S8. Plot of the out-of-phase (χ''_M) signal as χ''_M vs. v in a 3.5 G ac field at the indicated applied dc fields for **3** at 2 K.

Figure S9. Plot of the out-of-phase (χ''_M) signal as χ''_M vs. v in a 3.5 G ac field at the indicated applied dc fields for **4** at 2 K.

Figure S10. Plot of the in-phase (χ'_M) signal as χ'_M vs. v, in the presence of a 0.2 T dc field, for

1.

References

- 1. I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database, *Acta Crystallogr., Sect. B*, 1985, **41**, 244-247.
- S. Mukherjee, Y. P. Patil, P. S. Mukherjee, Two Novel Heterometallic Chains Featuring Mn^{II} and Na^I Ions in Trigonal-Prismatic Geometries Alternately Linked to Octahedral Mn^{IV} Ions: Synthesis, Structures, and Magnetic Behavior, *Inorg. Chem.*, 2012, **51**, 4888-4890.
- 3. L. Yang, D. R. Powell, R. P. Houser, Copper(II) coordination chemistry of 2-methyl-2-(2-pyridyl)-1,3-propan-diol: Syntheses and structures of mono-, di-, and tricopper complexes, *Polyhedron*, 2010, **29**, 1946-1955.