Supporting Information Is Pentavalent Pr(V) Feasible in Solid CsPrF₆?

Lian-Wei Yea, Zi-He Zhanga, Yang Hea, Shi-Ru Weia, Jun-Bo Lub, Han-Shi Hua* and Jun Liab*

^aDepartment of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China

^bFundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

Contents

I. CsPrF₆ Structure and Corresponding Properties

II. Structure and Corresponding Properties of Cs ₂ PrF ₆ , PrF ₃ , CsF and F ₂	S2
III. HSE06 band structure of $CsPr^{II}F_3$, $Cs_3Pr^{III}F_6$, and $Cs_2Pr^{IV}F_6$ crystal	S5
IV. The pDOS analysis of $CsPr^{II}F_3$, $Cs_3Pr^{III}F_6$, and $Cs_2Pr^{IV}F_6$ crystal	S9
V. The spin density analysis of $CsPr^{II}F_3$, $Cs_3Pr^{III}F_6$, $Cs_2Pr^{IV}F_6$, and $CsPr^VF_6$ crystal	S15
VI. The COHP analysis of $CsPr^{II}F_3$, $Cs_3Pr^{III}F_6$, and $Cs_2Pr^{IV}F_6$ crystal	S17
VII. CsPrF ₆ Atom Coordinate Information	S20

I. CsPrF₆ Structure and Corresponding Properties

The crystal structure of $CsPrF_6$ is shown in Figure S1 and corresponding lattice parameters are listed in Table S1.

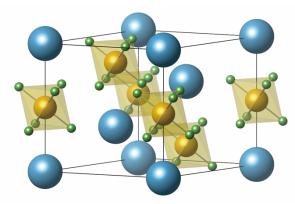


Figure S1. The structure of CsPrF₆ (Color scheme: Blue: Cs; Yellow: Pr; Green: F)

CsPrF ₆ Lattice Parameter				
formula weight (g/ mol)	387.8			
crystal system	Rhombohedral			
space group	<i>R</i> 3(#148)			
a = b (Å)	7.799			
c (Å)	8.079			
$\alpha = \beta$ (°)	90			
γ (°)	120			
Z	3			
volume (Å ³)	421.31			
density, calc (g/ cm ³)	4.585			

The structure can be considered to consist four components as shown in Figure S2: (A) Cs^+ on the vertices of the crystal unit cell, (B) Cs^+ on the body diagonal, (C) $[PrF_6]^-$ octahedra on the medium of the edge, and (D) $[PrF_6]^-$ octahedra within the tetrahedral of Cs^+

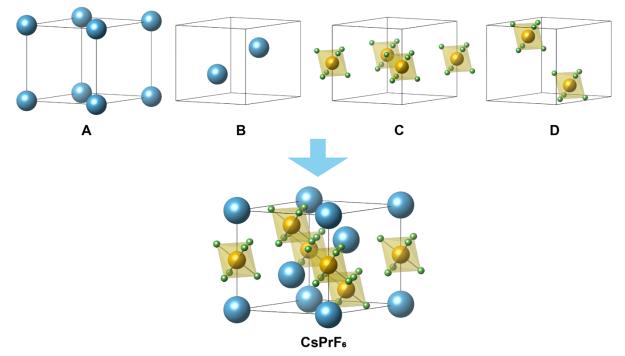


Figure S2. The components of CsPrF₆. (A) Cs⁺ on the vertices, (B) Cs⁺ on the body diagonal, (C) $[PrF_6]^-$ octahedra on the medium of the edge, (D) $[PrF_6]^-$ octahedra within the tetrahedral of Cs⁺ (Color scheme: Blue: Cs; Yellow: Pr; Green: F)

This optimal CsPrF₆ structure has been further confirmed to be stable by phonon spectrum calculations along the high-symmetry lines in the Brillouin zone. The spectrum was evaluated within the harmonic approximation by finite displacement method, and the spectra are constructed by using Phonopy program. A $(3 \times 3 \times 3)$ supercell geometry was employed with a $1 \times 1 \times 1$ k-point grid for the CsPrF₆ cell. The phonon spectrum is shown in Figure S3. Therefore, we can validate the kinetic stability of CsPrF₆. And the thermodynamic free energies data with the entropy and zero-point energies corrected of F₂, CsF, PrF₃ and CsPrF₆ at ambient temperature and pressure (300K, 1 atm) are listed in Table S2.

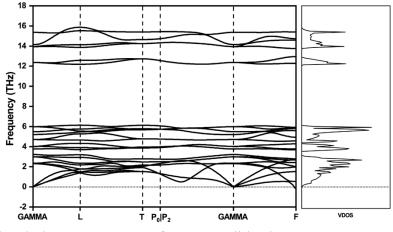


Figure S3. The calculated phonon spectrum of $CsPrF_6$ solid. The Gamma, L, T, P₀, P₂, F represent the k-points of (0, 0, 0), (0.5, 0, 0), (0.5, -0.5, 0.5), (0.403, -0.597, 0.403), (0.403, 0.403, 0.403) and (0.5, -0.5, 0) in the first Brillouin zone

Table S2. The Gibbs free energy with the entropy and zero-point energies (ZPE) corrected of F_2 , CsF, PrF₃, Cs₂PrF₆ and CsPrF₆ at ambient temperature and pressure (300K, 1 atm)

Species	Pr-F Bond Length/ Å	E _{ele} / eV	Correction/ eV	Gibbs Free Energy/ eV
\mathbf{F}_2		- 3.709	-0.476	- 4.186
CsF		- 8.033	-0.144	-8.178
PrF ₃	2.422	- 28.236	0.036	-28.201
Cs ₂ PrF ₆	2.141	- 48.763	4.676	-44.086
CsPrF ₆	2.077	- 43.601	-0.177	-43.778

Plausible methods for synthesizing CsPrF₆ and its reaction energy are outlined in following reaction equation:

$PrF_3(s) + F_2(g) + CsF(s) \rightarrow CsPrF_6(s)$	$\Delta G_{300\mathrm{K}} = -74.1$ kcal/ mol	(1)
$Cs_2PrF_6(s) + \frac{1}{2}F_2(g) \rightarrow CsPrF_6(s) + CsF(s)$	$\Delta G_{300\rm K}$ = -133.2 kcal/ mol	(2)

II. Structure and Corresponding Properties of Cs₂PrF₆, PrF₃, CsF and F₂ Cs₂PrF₆

The structure of Cs_2PrF_6 was obtained by OQMD with a space group (Fm³m). The bond length between Pr and F after optimization is 2.141 Å. The crystal structure of Cs_2PrF_6 is shown in Figure S4 and corresponding lattice parameters are listed in Table S3. The phonon spectrum is shown in Figure S5. The phonon spectrum has no virtual frequency, which indicates the structure is stable.

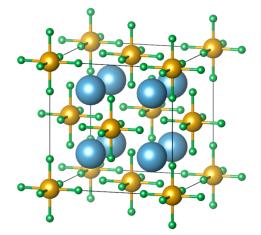


Figure S4. The structure of Cs₂PrF₆ after optimization (Color scheme: Blue: Cs; Yellow: Pr; Green: F)

Table S3. The lattice parameter of Cs₂PrF₆

Smaalag	Space Group –	Lattice Parameters		Bond Length
Species		a/ Å	α / °	r(Pr-F)/ Å
Cs_2PrF_6	225 (Fm3m)	9.184	90	2.141

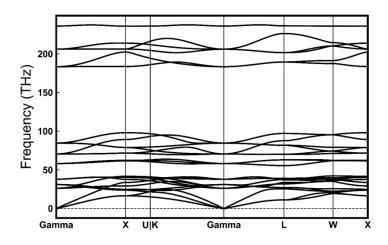


Figure S5. The calculated phonon spectrum of Cs_2PrF_6 solid. The Gamma, X, U, K, L and W represent the k-points of (0, 0, 0), (0.5, 0, 0.5), (0.625, 0.25, 0.625), (0.375, 0.375, 0.75), (0.5, 0.5, 0.5) and (0.5, 0.25, 0.75) in the first Brillouin zone.

PrF₃

The structure of PrF_3 was obtained by ICSD with a space group (P3c1). The bond length between Pr and F after optimization is 2.410 Å. The crystal structure of PrF_3 is shown in Figure S6 and corresponding lattice parameters are listed in Table S4. The phonon spectrum is shown in Figure S7. The phonon spectrum has no virtual frequency, which indicates the structure is stable.

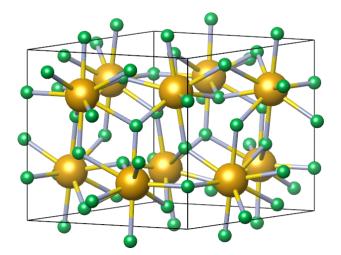


Figure S6. The structure of PrF₃ after optimization (Color scheme: Yellow: Pr; Green: F)

Species	Space Group	Lattice Parameters			Bond Length	
		a/ Å	c/ Å	α / °	γ/ °	r(Pr-F)/ Å
PrF ₃	165 (P3c1)	7.069	7.225	90	120	2.410

Table S4. The lattice parameter of PrF₃

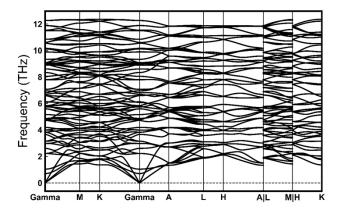


Figure S7. The calculated phonon spectrum of PrF_3 solid. The Gamma, M, K, A, L and H represent the k-points of (0, 0, 0), (0.5, 0, 0), (0.33, 0.33, 0), (0, 0, 0.5), (0.5, 0, 0.5) and (0.33, 0.33, 0.5) in the first Brillouin zone.

CsF

The structure of CsF was obtained by ICSD with a space group $(Fm\Im m)$. The crystal structure of CsF is shown in Figure S8 and corresponding lattice parameters are listed in Table S5. The phonon spectrum is shown in Figure S9. The phonon spectrum has no virtual frequency, which indicates the structure is stable.

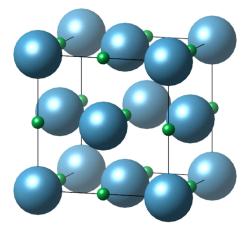


Figure S8. The structure of CsF after optimization (Color scheme: Blue: Cs; Green: F)

Species	Space Crown -	Lattice Parameters		
Species	Space Group —	a/ Å	α/°	
CsF	225 (Fm3m)	6.118	90	
	TL) A UK Ga			

Table S5. The lattice parameter of CsF

Figure S9. The calculated phonon spectrum of CsF solid. The Gamma, X, U, K, L and W represent the k-points of (0, 0, 0), (0.5, 0, 0.5), (0.625, 0.25, 0.625), (0.375, 0.375, 0.75), (0.5, 0.5, 0.5) and (0.5, 0.25, 0.75) in the first Brillouin zone.

$\mathbf{F_2}$

For the free energy calculation of F_2 molecules, a cell of $20\text{\AA} \times 20\text{\AA} \times 20\text{\AA}$ was constructed to obtain F_2 electron energy (Figure S10), and then performed a vibration analysis on it.

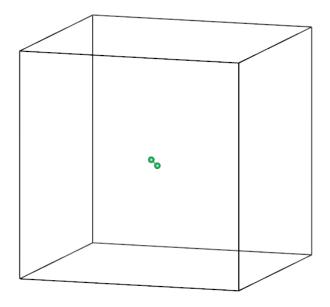


Figure S10. The ideal gas box of F_2 (Color scheme: Green: F)

III. HSE06 band structure of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystal. The band structure of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystal was shown in Figure S11 - S13. CsPrF₃

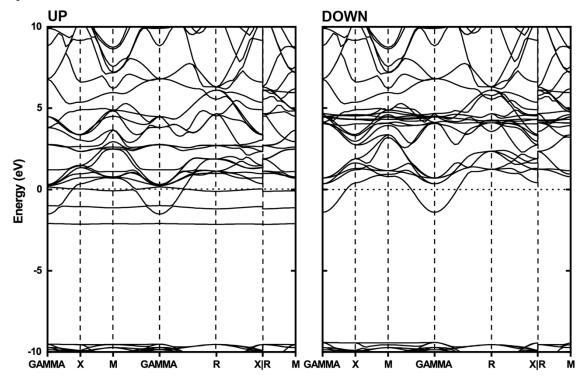


Figure S11. HSE06 band structure of CsPr^{II}F₃. The Fermi level is assigned at 0 eV. The four points of Gamma (0, 0, 0), X (0, 0.5, 0), M (0.5, 0.5, 0), and R (0.5, 0.5, 0.5) refer to high-symmetry points of the first Brillouin zone in reciprocal space.

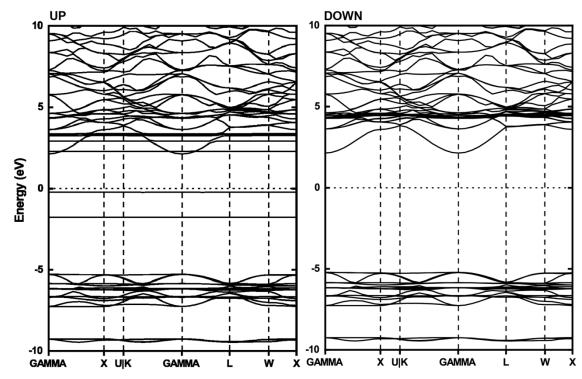


Figure S12. HSE06 band structure of $Cs_3Pr^{III}F_6$. The Fermi level is assigned at 0 eV. The six points of Gamma (0, 0, 0), X (0.5, 0, 0.5), U (0.625, 0.25, 0.625), K (0.375, 0.375, 0.75), L (0.5, 0.5, 0.5), and W (0.5, 0.25, 0.75) refer to high-symmetry points of the first Brillouin zone in reciprocal space.

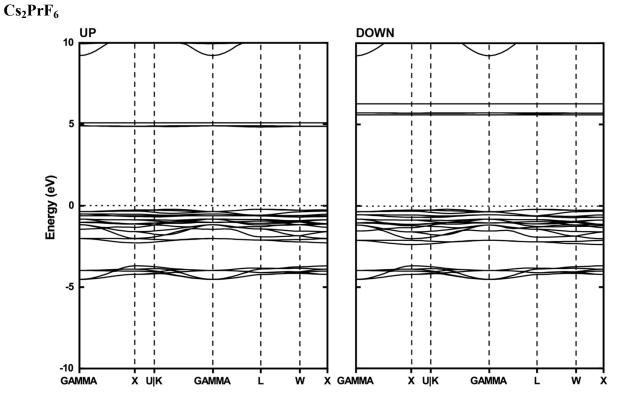


Figure S13. HSE06 band structure of $Cs_2Pr^{IV}F_6$. The Fermi level is assigned at 0 eV. The six points of Gamma (0, 0, 0), X (0.5, 0, 0.5), U (0.625, 0.25, 0.625), K (0.375, 0.375, 0.75), L (0.5, 0.5, 0.5), and W (0.5, 0.25, 0.75) refer to high-symmetry points of the first Brillouin zone in reciprocal space.

IV. The pDOS analysis of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystal. The pDOS data of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystals are shown in Figure S14 - S16. CsPrF₃

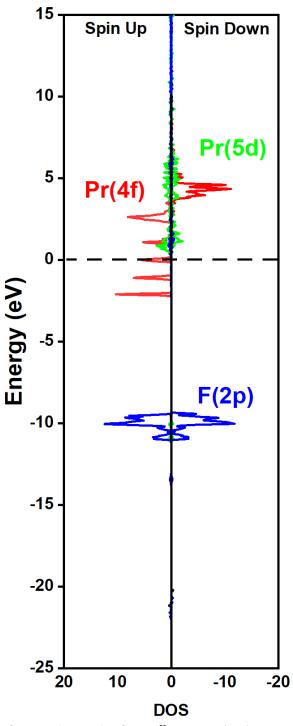


Figure S14. Partial density of states (PDOS) of CsPr^{II}F₃ crystal. The Fermi level is assigned at 0 eV.

Cs₃PrF₆

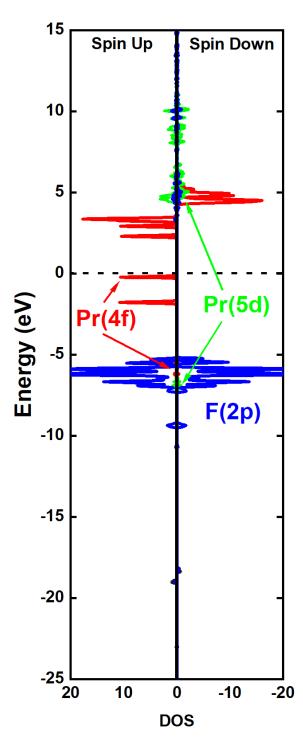


Figure S15. Partial density of states (PDOS) of $Cs_3Pr^{III}F_6$ crystal. The Fermi level is assigned at 0 eV.

Cs₂PrF₆

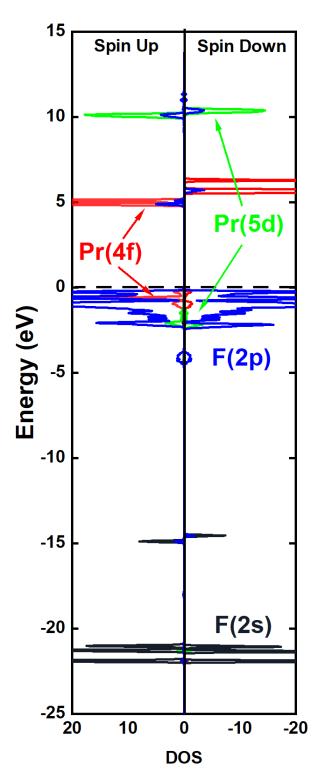


Figure S16. Partial density of states (PDOS) of $Cs_2Pr^{IV}F_6$ crystal. The Fermi level is assigned at 0 eV.

V. The spin density analysis of $CsPr^{II}F_3$, $Cs_3Pr^{III}F_6$, $Cs_2Pr^{IV}F_6$, and $CsPr^VF_6$ crystal.

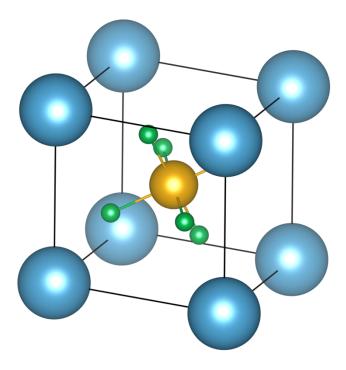


Figure S17. The spin density of primary $CsPr^VF_6$ cell. The isovalue is 0.002 e/Å³.

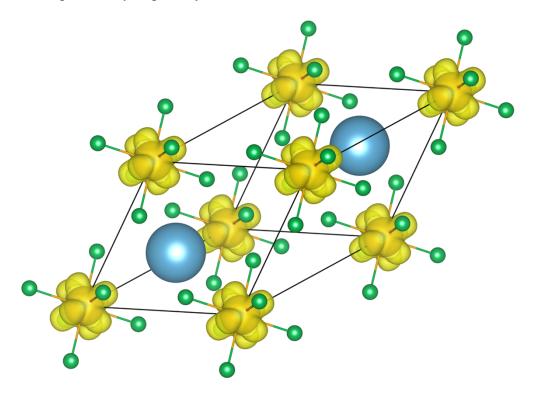


Figure S18. The spin density of primary $Cs_2Pr^{IV}F_6$ cell. The isovalue is 0.002 e/Å³.

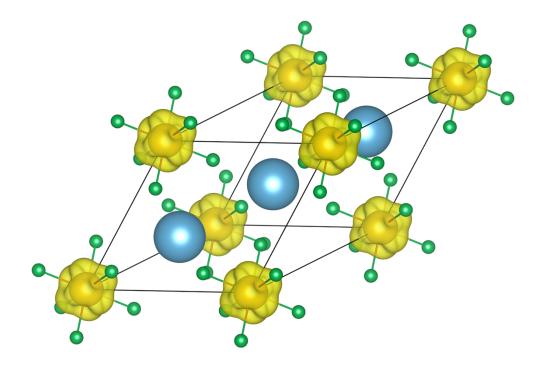


Figure S19. The spin density of primary $Cs_3Pr^{III}F_6$ cell. The isovalue is 0.002 e/Å³.

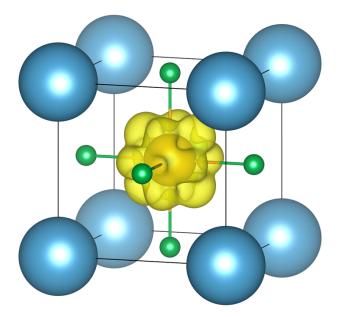


Figure S20. The spin density of primary CsPrIIF3 cell. The isovalue is 0.002 e/Å3.

VI. The COHP analysis of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystal.

The COHP data of CsPr^{II}F₃, Cs₃Pr^{III}F₆, and Cs₂Pr^{IV}F₆ crystal was shown in Figure S17 - S19. CsPrF₃

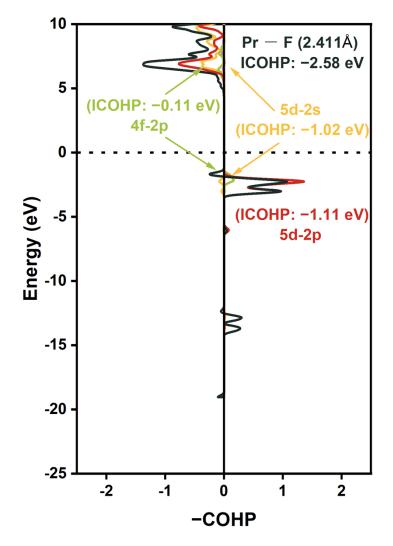


Figure S21. The crystal orbital Hamilton population (COHP) analysis of Pr-F interactions in solidstate CsPr^{II}F₃. Zero line (dotted) represents the Fermi level. The ICOHP values (in eV/bond) are listed here to show the corresponding interactions (black) and main orbital-pair contributions to these (colored).

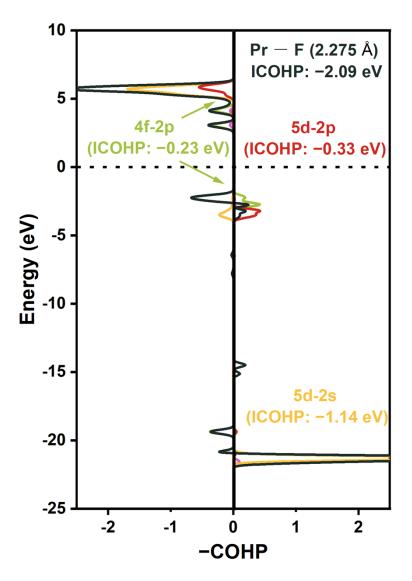


Figure S22. The crystal orbital Hamilton population (COHP) analysis of Pr-F interactions in solidstate $Cs_3Pr^{III}F_6$. Zero line (dotted) represents the Fermi level. The ICOHP values (in eV/bond) are listed here to show the corresponding interactions (black) and main orbital-pair contributions to these (colored).

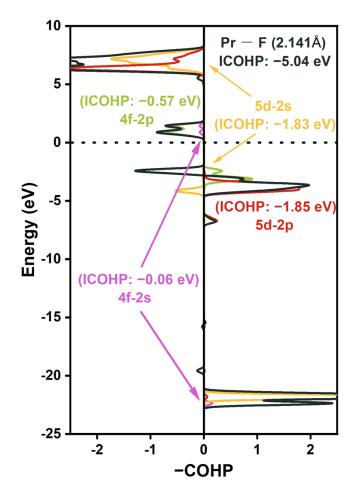


Figure S23. The crystal orbital Hamilton population (COHP) analysis of Pr–F interactions in solidstate $Cs_2Pr^{IV}F_6$. Zero line (dotted) represents the Fermi level. The ICOHP values (in eV/bond) are listed here to show the corresponding interactions (black) and main orbital-pair contributions to these (colored).

VII. CsPrF₆ Atom Coordinate Information

CsPrF₆

F	0.5635899899999970	0.7093999980000021	0.0098699930000024
F	0.436410010000030	0.2906000019999979	0.9901300069999976
F	0.2906000019999979	0.8541899920000020	0.0098699930000024
F	0.7093999980000021	0.1458100079999980	0.9901300069999976
F	0.1458100079999980	0.436410010000030	0.0098699930000024
F	0.8541899920000020	0.5635899899999970	0.9901300069999976
F	0.2302566620000022	0.0427333299999972	0.3432033360000020
F	0.1030766740000004	0.6239333150000022	0.3234633510000009
F	0.9572666879999971	0.1875233199999968	0.3432033360000020
F	0.3760666550000025	0.4791433509999976	0.3234633510000009
F	0.8124766950000009	0.7697433230000001	0.3432033360000020
F	0.5208566780000012	0.8969233039999978	0.3234633510000009
F	0.8969233039999978	0.3760666550000025	0.6765366790000016
F	0.7697433230000001	0.9572666879999971	0.6567966940000005
F	0.6239333150000022	0.5208566780000012	0.6765366790000016
F	0.0427333299999972	0.8124766950000009	0.6567966940000005
F	0.4791433509999976	0.1030766740000004	0.6765366790000016
F	0.1875233199999968	0.2302566620000022	0.6567966940000005
С	s 0.6666666870000029	0.3333333429999996	0.3333333730000021
С	s 0.3333333129999971	0.66666666269999979	0.66666666669999979
С	s 0.00000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000000000000000
P	r 0.000000000000000000	0.000000000000000000	0.50000000000000000
P	r 0.6666666870000029	0.3333333429999996	0.8333333129999971
P	r 0.3333333429999996	0.66666666870000029	0.16666666719999981