Supplementary Information (SI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2024

Supporting information

Table of contents

1.	Materials and methods	S2
2.	Synthesis	S3
	2.1. Synthesis of the ligands	S3
	2.2. Synthesis of the ruthenium complexes	<u></u> S9
	2.3. Synthesis of Ru(L)Pd and (NPy ₂)Pd complexes	
3.	Detailed NMR studies of the complexes	
4.	Single crystal X-ray analysis	
5.	Electrochemistry	
6.	Photophysical studies	
7.	DFT-studies	
8.	Catalytic studies	
9.	NMR-spectra	
10.	Mass-spectra of the complexes	
11.	Atomic coordinates obtained by DFT computations	
12.	References	

1. Materials and methods

Unless otherwise noted, all chemicals and starting materials were obtained commercially from Acros and Aldrich–Sigma Co and used without further purification. 3-Bromo-1,10phenanthroline was synthesized according to previously reported procedure ¹ from 1,10phenanthroline hydrochloride. 5-Bromo-1,10-phenathroline was obtained from 1,10-phenanthroline by bromination in oleum.² 4,7-Dibromo-1,10-phenanthroline was prepared *via* three–step procedure from *o*-phenylenediamine and Meldrum's acid.³ 4-Bromo-1,10-phenanthroline was synthesized according to the same method from 8-aminoquinoline.^{4, 5} *cis*-[Ru(bpy)₂]Cl₂ was prepared from RuCl₃·H₂O as reported previously.⁶ Complexes [(phen)Ru(bpy)₂](PF₆)₂ (**Ru(phen**))⁷ and [(phendione)Ru(bpy)₂](PF₆)₂ (**Ru[Phen(O)**₂])⁸ were synthesized as reported in the previous works. Preparative column chromatography was carried out using Silica gel 60 (40–63 µm) from Merck Co. Dioxane was distilled successively over NaOH and sodium under argon; CH₂Cl₂ was distilled over CaH₂; DMF was distilled. All reactions were performed in argon. Preparation of Ru(II) complexes was conducted in Monowave 300 Microwave reactor (Anton Paar Co).

¹H and ¹³C NMR spectra were recorded with Bruker Avance-400 spectrometer in CDCl₃ or CD₃CN, using the residual signals of CHCl₃ or CHD₂CN as internal standards. MALDI TOF massspectra were obtained with Bruker Daltonics Autoflex II mass spectrometer in positive ion mode with dithranol matrix and polyethyleneglycols as internal standards. ESI mass measurements were obtained with were performed with a Thermo Scientific Orbitrap Elite high-field orbitrap hybrid mass spectrometer. FTIR spectra were registered on Nicolet iS 5 with iD3 ATR accessory (ZnSe). Elemental analysis was performed with a Thermo Electron Flash EA1112 CHNS analyzer.

UV–vis spectra were registered with a Hitachi U-2900 device in a quartz cuvette (Hellma, l = 1 cm). Emission spectra were recorded in argon-saturated acetonitrile (HPLC grade) with Horiba Jobin Yvon Fluoromax-2 apparatus in a quartz cuvette (Hellma, l = 1 cm), (excitation and emission slits 3 nm). All fluorescence spectra were corrected. Luminescence quantum yields were determined in argon-saturated acetonitrile relative to [Ru(bpy)₃](PF₆)₂ ($\Phi = 9.4\%$ in argon-saturated acetonitrile) as a standard according to a standard procedure ⁹.

$$\boldsymbol{\Phi}_{\mathrm{x}} = \boldsymbol{\Phi}_{\mathrm{st}} \times ((\boldsymbol{F}_{\mathrm{x}} \times \boldsymbol{A}_{\mathrm{st}} \times \boldsymbol{\eta}_{\mathrm{x}}^{2})/(\boldsymbol{F}_{\mathrm{st}} \times \boldsymbol{A}_{\mathrm{x}} \times \boldsymbol{\eta}_{\mathrm{st}}^{2})),$$

where A is the absorbance (in the range of 0.01–0.1 A.U., λ_{ex} =450 nm), F is the area under the emission curve, η is the refractive index of the solvents (at 293 K) used in measurements, and the subscripts *st* and *x* represent the standard and studied compounds, respectively. At least 4 points were used for each sample.

2. Synthesis

2.1. Synthesis of the ligands

*Cu-catalyzed synthesis of Phen-NPy*₂ *ligands. General procedure A.* A glass vial (5 mL) equipped with a magnetic stirrer was charged with corresponding bromo-1,10-phenanthroline (0.4–0.8 mmol), di(pyridin-2-yl)amine (1–2 equiv.), CuSO₄ (10–20 mol%), Cs₂CO₃ (2–4 equiv.), evacuated and backfilled with dry argon for three times. Then the vial was sealed with a plastic screw cap, containing a teflon-lined silicone septum. The reaction mixture was stirred at 210 °C for 24 h. After cooling to room temperature, the mixture was diluted with dichloromethane (50 mL) and washed with a concentrated NH₃(aq.) (3 × 30 mL). Combined water layers were extracted with dichloromethane (3 × 30 mL). Combined organic layers were washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel using a CH₂Cl₂/MeOH mixtures as eluents (gradual elution using pure CH₂Cl₂, CH₂Cl₂ : MeOH, 100:1 to 5:1 v/v). The products were obtained as yellow oils.

Table S1. Cu-catalyze	ed arylation of bis((pyridine-2-yl)amine v	with bromophenanthrolines.
2	2	1 2 7	1

Entry	Substrate	Equiv. of dpa	Catalyst (mol%)	Conditions	Product	Yield ^a , %
1	3-Br-Phen	1	CuSO ₄ (10)	Ι	Phen-3NPy ₂	15
2	3-Br-Phen	1.5	CuSO ₄ (10)	Ι	Phen-3NPy ₂	32
3	3-Br-Phen	1	CuI (10)	Ι	Phen-3NPy ₂	-
4	4-Br-Phen	1	CuSO ₄ (10)	Ι	Phen-4NPy ₂	36
5	4-Br-Phen	1.5	CuSO ₄ (10)	Ι	Phen-4NPy ₂	4
6	4-Br-Phen	1	CuSO ₄ (20)	Ι	Phen-4NPy ₂	61
7	5-Br-Phen	1	CuSO ₄ (10)	Ι	Phen-5NPy ₂	31
8	5-Br-Phen	1	CuI (20)	II	Phen-5NPy ₂	8
9	5-Br-Phen	1	CuI (40)	II	Phen-5NPy ₂	-
10	4,7-diBr-Phen	u 4	$CuSO_{4}(10)$	Ι	Phen-4,7 $(NPy_2)_2$	9

Conditions I: Br-Phen (0.4 mmol), dpa (1–4 equiv.), Cs_2CO_3 (2–4 equiv.), Cu-catalyst (10–20 mol%), 210°C, neat, 24 h. **Conditions II**: Br-Phen (0.5 mmol), dpa (1 equiv.), Cs_2CO_3 (2 equiv.), CuI (20–40 mol%), dry DMF (1 mL), 140°C, 48 h. ^a Preparative yields are given.

N,*N*-*di*(*pyridin*-2-*yl*)-1,10-*phenanthrolin*-3-*amine* (*Phen*-3*NPy*₂) was synthesized according to the general procedure **A** from 3-bromo-1,10-phenanthroline (207 mg, 0.80 mmol), di(pyridin-2-yl)amine (205 mg, 1.2 mmol) in the presence of CuSO₄ (13 mg, 10 mol%) and Cs₂CO₃ (522 mg,

1.6 mmol). Yield: 89 mg (32%); yellow oil; the product was eluted with CH₂Cl₂–MeOH (33:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 9.32 (m, 1H, H9 (Phen)), 9.03 (d, 1H, ⁴*J*=2.4 Hz, H2 (Phen)), 8.42 (d, 1H, ³*J* = 7.8 Hz, H7 (Phen)), 8.38 (dd, 2H, ³*J* = 4.8 Hz, ⁴*J* = 1.7 Hz, H6, H6' (Py)), 8.01 (d, 1H, ⁴*J* = 2.4 Hz, H4 (Phen)), 7.81 (d, 1H, ³*J* = 8.9 Hz, H5 (Phen)), 7.73 (d, 2H, ³*J* = 8.3 Hz, H3, H3'(Py)), 7.67 (dd, 2H, ³*J* = 8.3 Hz, ⁴*J* = 1.7 Hz, H4, H4'(Phen)), 7.15–7.04 (m, 4H, H6, H8 (Phen), H5, H5' (Py)). ¹³C NMR (CDCl₃, 100.6 MHz): δ 156.6 (2C), 149.0 (1C), 148.6 (2C), 148.3 (2C), 141.3 (1C), 138.2 (3C), 129.5 (2C), 129.4 (1C), 127.9 (1C), 126.8 (1C), 126.1 (1C), 122.3 (1C), 119.4 (2C), 117.5 (2C). IR (neat): 3047–2852, 1586, 1465, 1427, 1317, 1271 (C=C, C=N), 1150 (CH, Py), 1050 (CH, Py), 997, 833, 733, 669 cm⁻¹. HRMS (MALDI TOF) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₆N₅ 350.1406; Found 350.1373.

N,*N*-*di*(*pyridin*-2-*yl*)-1,10-*phenanthrolin*-4-*amine* (*Phen*-4*NPy*₂) was synthesized according to the general procedure **A** from 4-bromo-1,10-phenanthroline (207 mg, 0.80 mmol), di(pyridin-2-yl)amine (137 mg, 0.80 mmol) in the presence of CuSO₄ (26 mg, 20 mol%) and Cs₂CO₃ (522 mg,

1.6 mmol). Yield: 170 mg (61%); yellow oil; the product was eluted with CH₂Cl₂–MeOH (20:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 9.20 (m, 2H, H2, H9 (Phen)), 8.31 (ddd, 2H, ³J = 4.9 Hz, ⁴J = 2.0 Hz, ⁵J = 0.9 Hz, H6, H6'(Py)), 8.17 (d, 1H, ³J = 7.4 Hz, H7(Phen)), 7.72 (d, 1H, ³J = 9.1 Hz, H5 (Phen)), 7.67–7.51 (m. 4H, H4, H4' (Py), H6, H8 (Phen)), 7.45 (d, 1H, ³J = 4.8 Hz, H3 (Phen)), 7.10–6.81 (m, 4H, H3, H3', H5, H5' (Py)). ¹³C NMR (CDCl₃, 100.6 MHz): δ 157.5 (2C), 150.9 (1C), 150.4 (1C), 148.8 (3C), 147.5 (1C), 145.6 (1C), 138.1 (2C), 135.9 (1C), 128.4 (1C), 126.8 (1C), 126.5 (1C), 123.5 (1C), 122.4 (1C), 122.1 (1C), 119.2 (2C), 116.8 (2C). IR (neat): 3038–2852 (ν_{CH}), 1582, 1564, 1556, 1427, 1318 (ν_{CNC}), 1213 (ν_{CC} , ν_{CN} , Phen), 1150 (δ_{CH} , Py), 1096 (δ_{CH} , Py), 992, 835, 774, 728, 693 cm⁻¹. HRMS (MALDI TOF) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₁₆N₅ 350.1406; Found 350.1451.

N,N-di(pyridin-2-yl)-1,10-phenanthrolin-5-amine (*Phen-5NPy*₂) was synthesized according to the general procedure **A** from 5-bromo-1,10-phenanthroline (130 mg, 0.50 mmol), di(pyridin-2-yl)amine (86 mg, 0.50 mmol) in the presence of CuSO₄ (8 mg, 10 mol%) and Cs₂CO₃ (326 mg, 1.00 mmol).

Yield: 54 mg (31%); yellow oil; the product was eluted with CH₂Cl₂–MeOH (33:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 9.17-9.15 M. (m, 2H, H2, H9 (Phen)), 8.27 (ddd, 2H, ³*J* = 4.9 Hz, ⁴*J* = 2.0 Hz, ⁵*J* = 1.0 Hz, H6, H6'(Py)), 8.20 (d, 1H, ³*J* = 8.3 Hz, H4 (Phen)), 8.15 (d, 1H, *J* = 8.3 Hz, H7 (Phen)), 7.74 (s, 1H, H6 (Phen)), 7.60 (dd, 1H, ³*J* = 8.3 Hz, ³*J* = 4.0 Hz, H3 (Phen)), 7.57–7.51 (m, 2H, H4, H4'(Phen)), 7.48 (dd, 1H, ³*J* = 8.3 Hz, ³*J* = 4.0 Hz, H8 (Phen)), 7.04 (dd, 2H, ³*J* = 8.4 Hz, ⁴*J* = 1.0 Hz, H3, H3'(Py)), 6.96-6.87 (m, 2H, H5, H5'(Py)). ¹³C NMR (CDCl₃, 100.6 MHz): δ 157.9 (1C), 150.6 (1C), 149.0 (1C), 148.9 (1C), 148.6 (1C), 147.8 (1C), 145.9 (1C), 139.9 (1C), 137.9 (1C), 136.1 (1C), 132.7 (1C), 128.9 (1C), 127.9 (1C), 127.1 (1C), 123.4 (1C), 123.3 (1C), 119.9 (1C), 119.7 (1C), 118.4 (1C), 118.3 (1C), 116.2 (1C), 115.9 (1C). IR (neat): 3029 (ν_{CH}), 1586, 1465, 1423, 1320 (ν_{CNC}), 1264 (ν_{CC} , ν_{CN} Phen), 1151 (δ_{CH} , Py), 990, 772, 732 cm⁻¹. HRMS (MALDI TOF) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₆N₅ 350.1406; Found 350.1445.

 N^4, N^4, N^7, N^7 -*tetra*(*pyridin-2-yl*)-1,10-*phenanthroline-4*,7-*diamine* (*Phen-4*,7(*NPy*₂)₂) was synthesized according to the general procedure **A** from 4,7-dibromo-1,10-phenanthroline (270 mg, 0.8 mmol), di(pyridin-2-yl)amine (574 mg, 3.4 mmol) in the presence

of CuSO₄ (26 mg, 20 mol%) and Cs₂CO₃ (1043 mg, 3.2 mmol). Yield: 39 mg (9%); yellow oil; the product was eluted with CH₂Cl₂–MeOH (10:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 9.34 (d, 2H, ³*J* = 5.4 Hz, H2, H9 (Phen)), 8.31 (d, 4H, ³*J* = 4.1 Hz, H6, H6', H6'', H6'''(Py)), 7.74–7.70 (m, 4H, H4, H4'', H4'''(Py)), 7.52 (d, 2H, ³*J* = 5.4 Hz, H3(Phen)), 7.30 (s, 2H, H5, H6 (Phen)), 7.16–7.12 (m, 4H, H3, H'3, H3'', H3'''(Py)), 7.03 (d, 4H, ³*J* = 8.1 Hz, H5, H5', H5'', H5'''(Py)). ¹³C NMR (CDCl₃, 100.6 MHz): δ 157.3 (2C), 152.3 (2C), 149.7 (2C), 149.1 (4C), 138.5 (4C), 126.2 (2C), 122.6 (4C), 122.5 (4C), 119.9 (4C), 117.3 (4C). IR (neat): 3050 (ν_{CH}), 2357, 2342, 1583, 1563, 1507, 1463, 1424, 1350 (ν_{CNC}), 1270 (ν_{CC} , ν_{CN} , Phen), 1150 (δ_{CH} , Py), 1099, 1013, 999, 840, 771, 728, 668, 646 cm⁻¹. HRMS (MALDI TOF) *m/z*: [M+H]⁺ Calcd for C₃₂H₂₃N₈ 519.2046; Found 519.2068.

N-(2-methoxyethyl)-N-(pyridin-2-yl)pyridin-2-amine (NPy_2). A two-neck flask equipped with condenser and magnetic stirrer was charged with Pd(dba)₂ (46 mg, 4 mol%) and *rac*-BINAP (56 mg, 4.5 mol%). The flask was flushed with dry

argon and absolute dioxane (20 mL) was added. The mixture was stirred for 2-3 ÓMe min, then 2-bromopyridine (696 mg, 4.4 mmol), 2-methoxyethylamine (150 mg, 2 mmol) and t-BuONa (769 mg, 8 mmol) were in stream of argon. The reaction mixture was refluxed for 24 h under argon atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂, the solution was filtered, the filtrate evaporated under reduced pressure. The residue was chromatographed on silica gel using a sequence of eluents: CH₂Cl₂, CH₂Cl₂/MeOH 200:1–20:1 v/v. Yield: 266 mg (58%); colorless oil; the product was eluted with CH₂Cl₂-MeOH (100:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 8.32 (dd, 2H, ³J = 4.8 Hz, ⁴J = 1.4 Hz, H6, H6'(Py)), 7.52 (td, 2H, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.9$ Hz, H4, H4'(Py)), 7.15 (d, 2H, J = 8.2 Hz, H3, H3'(Py)), 6.85 (dd, 2H, ${}^{3}J = 7.5$ Hz, ${}^{3}J = 4.8$ Hz, H5, H5'(Py)), 4.39 (t, 2H, ${}^{3}J = 6.0$ Hz, CH₂N), 3.69 (t, 2H, ${}^{3}J$ = 6.0 Hz, CH₂O), 3.30 (s, 3H, OCH₃). ¹³C NMR (CDCl₃, 100.6 MHz): δ 156.5 (2C), 147.2 (2C), 137.3 (2C), 116.9 (2C), 114.9 (2C), 70.3 (1C, CH₂O), 58.5 (1C, CH₃), 48.0 (1C, CH₂N). IR (neat): 3053, 2812 (CH), 1582, 1560, 1467, 1421, 1372 (C=N), 1320, 1273 (C=C, C=N), 1218, 1115 (CH, Py), 1082, 1019, 984, 771, 723, 703 cm⁻¹. HRMS (MALDI TOF) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₆N₃O 230.1293; Found 230.1263.

Scheme S1. Alternative attempts of synthesis of Phen-4NPy₂ ligand.

NH₂

1,10-Phenanthrolin-4-amine (*Phen-4N*). The mixture of 4-chloro-1,10phenanthroline (430 mg, 2 mmol) and urea (1.1 g, 18.3 mmol) was finely powdered in mortar and placed into pressure resistant tube with a screw cap (Synthware ®) and magnetic stir bar. The mixture was melted in sealed vessel and

stirred at 230°C in sand bath for 30 min until yellow solid formed in the tube. After cool to room temperature the solid was washed with methanol and dried under reduced pressure. The residue than was refluxed in 25 mL of aqueous HCl (6 M) for 48 h. The mixture was cooled to 0°C in ice bath and cold NaHCO₃ saturated aqueous solution was added to achieve pH 9. The mixture was kept in refrigerator (4 °C) for 2 h. The precipitate was collected, washed with cold distilled water and dried at 80°C under reduced pressure. Yield 273 mg (70%), pale-yellow powder, m.p. >300°. ¹H NMR (DMSO-D6, 400 MHz): δ 8.92 (d, 1H, ³J = 4.4, H9), 8.41–8.38 (m, 2H, H2, H7), 8.18 (d,

1H, ${}^{3}J = 9.2$ Hz, H6), 7.73 (d, 1H, ${}^{3}J = 9.2$ Hz, H5), 7.68 (dd, 1H, ${}^{3}J = 7.9$ Hz, ${}^{3}J = 4.4$ Hz, H8), 6.78 (d, 1H, ${}^{3}J = 5.7$, H4). NH-protons were not assigned because of exchange. ${}^{13}C$ NMR (DMSO-D6, 100.6 MHz): 155.1 (1C), 149.8 (1C), 149.7 (1C), 146.1 (1C), 145.4 (1C), 136.6 (1C), 128.3 (1C), 123.2 (1C), 122.9 (1C), 121.4 (1C), 116.9 (1C), 105.7 (1C). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀N₃ 196.0875; Found 196.0866.

		ar +	$H_2 \qquad \begin{array}{c} Pd(dba)_2/L \\ base \\ dioxane, reflux \end{array}$		- N - N - N - N - N - N - N - N - N - N
				Phen-4NPy	
Entry	L [P	d]/L, mol%	Equiv. of 2-aminopyridine	Base (equiv.)	Yield ^a , %
1	rac-BINAP ^b	4/4.5	1	<i>t</i> -BuONa (1.5)	40 (35 °)
2	rac-BINAP ^b	8/9	2	<i>t</i> -BuONa (1.5)	26 ^c
3	rac-BINAP ^b	2/2.5	1.5	<i>t</i> -BuONa (1.5)	30
4	rac-BINAP ^b	4/4.5	1.5	$Cs_2CO_3(2)$	39
5	JosiPhos ^d	4/4.5	1.5	<i>t</i> -BuONa (1.5)	42 ^c
6	JosiPhos ^d	8/9	2	<i>t</i> -BuONa (1.5)	0
7	JosiPhos ^d	2/2.5	2	<i>t</i> -BuONa (1.5)	31
8 ^e	rac-BINAP ^b	4/4.5	1.5 Cl	$Cs_2CO_3(2)$	37
9 ^e	JosiPhos ^d	4/4.5	1.5 Cl	<i>t</i> -BuONa (1.5)	32

Table S2. Pd-catalyzed arylation of 2-aminopyridine with 4-bromo-1,10-phenanthroline.

Conditions: 4-Bromo-1,10-phenanthroline (0.3 mmol), 2-aminopyridine (1–2 equiv.), base (1–2 equiv.), Pd(dba)₂ (2–8 mol%), L (2.5–8 mol%), dioxane, reflux, 24 h. ^a Determined by ¹H NMR analysis of the reaction mixture. ^b (\pm)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthalene. ^c Preparative yield. ^d (R)-1-[(SP)-2-(Diphenylphosphino)ferrocenyl]ethyldi-tert-butylphosphine (PhPF-*t*Bu). ^e 4-Chloro-1,10-phenanthroline was used instead of 4-bromo-1,10-phenanthroline.

N-(pyridin-2-yl)-1,10-phenanthrolin-4-amine (*Phen-4NPy*). A two-neck flask equipped with condenser and magnetic stirrer was charged with 4-bromo-1,10-phenathroline (78 mg, 0.3 mmol), pyridine-2-amine (67 mg, 0.39 mmol), $Pd(dba)_2$ (7 mg, 4 mol%) and JosiPhos (7.5 mg, 4.5 mol%). The flask was flushed with dry argon and absolute dioxane (3 mL) was added. The mixture

was stirred for 2–3 min, then *t*BuONa (44 mg, 0.45 mmol) was added and the reaction mixture was refluxed for 24 h under argon atmosphere. After cooling to ambient temperature, the reaction mixture was diluted with CH_2Cl_2 , the solution was filtered, the filtrate was evaporated under reduced pressure. The residue was chromatographed on silica gel using a sequence of eluents:

CH₂Cl₂, CH₂Cl₂/MeOH 200:1–3:1 v/v. Yield: 34 mg (42%); pale-yellow oil; the product was eluted with CH₂Cl₂–MeOH (20:1 v/v) mixture. ¹H NMR (CDCl₃, 400 MHz): δ 9.15 (dd, 1H, ³*J* = 4.3 Hz, ⁴*J* = 1.8 Hz, H9 (Phen)), 8.95 (d, 1H, ³*J* = 5.3 Hz, H2 (Phen)), 8.35 (d, 1H, ³*J* = 4.6 Hz, H4 (Py)), 8.21 (d, 1H, ³*J* = 8.1 Hz, H7 (Phen)), 8.08 (d, 1H, ³*J* = 9.1 Hz, H6 (Phen)), 7.99 (d, 1H, ³*J* = 5.3 Hz, H3 (Phen)), 7.76 (d, 1H, ³*J* = 9.1 Hz, H5 (Phen)), 7.71–7.64 (m, 1H, H4 (Py)), 7.61 (dd, 1H, ³*J* = 8.1 Hz, ³*J* = 4.3 Hz, H8 (Phen)), 7.24 (d, 1H, ³*J* = 8.5 Hz, H3 (Py)), 7.04–6.92 (m, 1H, H5 (Py)). ¹³C NMR (CDCl₃, 100.6 MHz): δ 154.7 (1C), 150.9 (1C), 150.6 (1C), 148.9 (1C), 145.3 (1C), 138.6 (1C), 136.3 (1C), 128.8 (1C), 126.0 (1C), 123.6 (2C), 120.4 (1C), 119.6 (2C), 118.1(1C), 112.2 (1C), 109.8 (1C). IR (neat): 3259, 2992, 2362 (CH), 1614, 1576, 1562, 1528, 1465, 1471, 1414, 1350 (C=N), 1273 (C=C, C=N), 1170 (CH, Py), 949, 883, 774, 729 cm⁻¹. HRMS (MALDI TOF) *m*/*z*: [M+H]⁺ Calcd. for C₁₇H₁₃N₄ 273.1140; Found 273.1107.

2.2. Synthesis of the ruthenium complexes

General procedure B. A glass vessel G10 (Anton Paar) equipped with a magnetic stirrer was charged with *cis*-Ru(bpy)₂Cl₂ (1 equiv.), substituted 1,10-phenanthroline ligand (1.1 equiv.) and methanol (to C=0.05 M). The mixture was stirred at 100°C in microwave reactor for 2 h. After cooling to room temperature distilled water (equal volume) and a saturated aqueous solution of NH₄PF₆ (0.5 mL) were added to the reaction mixture. The red-orange precipitate formed was collected by filtration, washed with distilled water twice and dried under reduced pressure at 80°C giving crude product. In case of impurities additional purification by column chromatography was carried out using CH₂Cl₂/MeOH mixtures as eluents (gradual elution using pure CH₂Cl₂, CH₂Cl₂/MeOH, 100:1 to 20:1 v/v). The products were obtained as a red-orange powders.

Complex [(*bpy*)₂*Ru*(*Phen-3NPy*₂)](*PF*₆)₂ (*Ru*(*Phen-3NPy*₂)) was obtained according to the general procedure **B** from **Phen-3NPy**₂ (0.27 mmol, 94 mg), *cis*-Ru(bpy)₂Cl₂ (0.24 mmol, 118 mg) in methanol (2 mL). Yield: 161 mg (64%); red-orange solid; the product was eluted with CH₂Cl₂/MeOH (33:1 v/v) mixture. ¹H NMR (CD₃CN, 400 MHz): δ 8.54 (dd, 2H, *J* = 8.2 Hz, *J* = 1.3 Hz), 8.53–8.48 (m, 3H), 8.34 (d, 1H, *J* = 8.1 Hz), 8.23 (ddd, 1H, *J* = 4.9 Hz, *J* = 2.0 Hz, *J* = 0.8 Hz), 8.14 (d, 1H, *J* = 2.2 Hz), 8.11 (d,

1H, J = 8.9 Hz), 8.10–8.03 (m, 2H), 8.10 – 8.00 (m, 2H), 7.98 (d, 1H, J = 8.9 Hz), 7.89 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.8 Hz), 7.85 (td, 1H, J = 8.0 Hz, J = 1.1 Hz), 7.77 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.8 Hz), 7.73 (td, 2H, J = 8.0 Hz, J = 2.0 Hz), 7.68 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.65 (dd, 1H, J = 8.1 Hz, J = 5.3 Hz), 7.64 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.62 (d, 1H, J = 2.2 Hz), 7.44 (ddd, 1H, J = 7.0 Hz, J = 5.7 Hz, J = 1.1 Hz), 7.37–7.27 (m, 2H), 7.25

- 7.17 (m, 3H), 7.00 (td, 2H, J = 8.2 Hz, J = 0.9 Hz). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.3, 157.1, 156.9, 156.2, 152.1, 151.9, 149.3, 148.8, 147.6, 143.1, 142.3, 138.9, 137.8, 137.8, 137.7, 137.7, 137.5, 136.73, 131.4, 129.9, 128.2, 127.6, 127.6, 127.4, 127.3, 126.9, 125.2, 124.2, 124.1, 124.0, 121.00, 118.3. IR (neat): 3072 (CH), 1582 (C=C), 1567 (C=C), 1467, 1428, 1349, 1309 (C=N), 1268 (C=C, C=N), 1156, 867, 826, 766, 731, 698, 667, 617 cm⁻¹. HRMS (MALDI TOF) m/z: [M – PF₆]⁺ Calcd for C₄₂H₃₁F₆N₉PRu 908.1377 ; Found 908.1422.

Complex $[(bpy)_2Ru(Phen-4NPy_2)](PF_6)_2$ (*Ru*(*Phen-4NPy_2*)) was obtained according to the general procedure **B** from **Phen-4NPy_2** (0.13 mmol, 45 mg), *cis*-Ru(bpy)_2Cl₂ (0.12 mmol, 59 mg) in methanol (2 mL). Yield 107 mg (84%), red-orange solid, the product was eluted with CH₂Cl₂/MeOH (25:1 v/v) mixture. ¹H NMR (CD₃CN, 400 MHz): δ 8.51 (m, 5H), 8.23 (ddd, 2H, *J* = 4.9 Hz, *J* = 1.9 Hz, *J* = 0.8 Hz), 8.13–8.00 (m, 5H), 7.94 (d, 1H, *J* = 9.1 Hz), 7.93 (d, 1H, *J* = 5.8 Hz), 7.85 (ddd, 1H, *J* = 5.6 Hz, *J* = 1.5 Hz, *J* = 0.7

Hz), 7.82 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.79 (dd, 1H, J = 6.7 Hz, J = 1.9 Hz), 7.77 (dd, 1H, J = 6.7 Hz, J = 1.9 Hz), 7.75 (d, 1H, J = 9.1 Hz), 7.71 (dd, 1H, J = 8.2 Hz, J = 5.3 Hz), 7.67 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.64 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.64 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.47–7.39 (m, 2H), 7.37–7.28 (m, 3H), 7.20 – 7.14 (m, 4H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.5, 157.2, 157.1, 152.6, 152.0, 151.9, 151.7, 151.6, 149.2, 148.7, 147.9, 138.7, 137.8, 137.7, 136.7, 128.2, 127.5, 127.2, 126.2, 124.5, 124.3, 124.2, 124.2, 123.3, 120.6, 118.1. IR (neat): 3100, 2800 (CH), 1706 (C=C), 1586 (C=C), 1446 (C=C), 1428 (C=C), 1316 (C=N), 1222 (C=C, C=N), 1155, 828, 762, 669 cm⁻¹. HRMS (MALDI TOF) m/z: [M–PF₆]⁺ Calcd for C₄₂H₃₁F₆N₉PRu 908.1377 ; Found 908.1402.

Complex [(*bpy*)₂*Ru*(*Phen-5NPy*₂)](*PF*₆)₂ (*Ru*(*Phen-5NPy*₂)) was obtained according to the general procedure **B** from the ligand (**Phen-5NPy**₂) (0.11 mmol, 38 mg), *cis*-Ru(bpy)₂Cl₂ (0.10 mmol, 48 mg) in methanol (2 mL). Yield 81 mg (77%), red-orange solid. ¹H NMR (CD₃CN, 400 MHz): δ 8.57–8.49 (m, 4H), 8.47 (dd, 1H, *J* = 8.5 Hz, *J* = 1.2 Hz), 8.32 (dd, 1H, *J* = 8.5 Hz, *J* = 1.2 Hz), 8.19

(ddd, 2H, J = 4.9 Hz, J = 1.9 Hz, J = 0.9 Hz), 8.14–8.01 (m, 7H), 7.85 (ddd, 2H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.74–7.68 (m, 3H), 7.67 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.61 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.61 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.61 (ddd, 1H, J = 5.6 Hz, J = 5.2 Hz), 7.48–7.44 (m, 2H), 7.34–7.30 (m, 2H), 7.21 (td, 2H, J = 8.3 Γ µ, J = 0.9 Hz), 7.08 (dd, 1H, J = 4.9 Hz, J = 0.9 Hz), 7.07

(dd, 1H, J = 4.9 Hz, J = 0.9 Hz). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.7, 157.3, 157.1, 157.0, 152.7, 152.2, 151.9, 151.9, 151.8, 148.8, 148.3, 146.6, 142.3, 138.2, 137.9, 137.8, 137.7, 136.3, 133.7, 131.0, 130.5, 128.1, 127.6, 127.5, 127.3, 126.2, 125.9, 124.3, 124.2, 119.2, 116.7. IR (neat): 2363 (CH), 2342, 1590 (C=C), 1466 (C=C), 1428 (C=C), 1319 (C=N), 1266 (C=C, C=N), 876, 830, 761, 722, 695 cm⁻¹. HRMS (MALDI TOF) m/z: [M–PF₆]⁺ Calcd for C₄₂H₃₁F₆N₉PRu 908.1377 ; Found 908.1404.

Complex {(*bpy*)₂*Ru*[*Phen-4*,7(*NPy*₂)₂]}(*PF*₆)₂ (*Ru*[*Phen-4*,7(*NPy*₂)₂]) was obtained according to the general procedure **B** from **Phen-4**,7(*NPy*₂)₂ (0.09 mmol, 45 mg), *cis*-Ru(bpy)₂Cl₂ (0.07 mmol, 35 mg) in methanol (2 ml). Yield 57 mg (67%), red-orange solid, the product was eluted with CH₂Cl₂/MeOH (20:1 v/v) mixture. ¹H NMR (CD₃CN, 400 MHz): δ 8.52 (t, 4H, *J* = 6.6 Hz), 8.18 (dd, 4H, *J* = 5.2 Hz, *J* = 2.0 Hz), 8.08 (td, 2H, *J* = 8.01 Hz, *J* = 1.4 Hz), 8.05 (td, 2H, *J* = 8.01 Hz, *J* = 1.4

Hz), 7.91 (d, 2H, J = 6.0 Hz), 7.80 (t, 4H, J = 6.0 Hz), 7.73 (ddd, 4H, J = 8.2 Hz, J = 7.4 Hz, J = 2.0 Hz), 7.45–7.40 (m, 4H), 7.39 (s, 2H), 7.26 (dd, 2H, J = 6.0 Hz), 7.16–7.11 (m, 8H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 158.2, 158.1, 158.0, 153.5, 152.7, 152.6, 152.2, 150.4, 149.5, 139.5, 138.6, 138.5, 128.6, 128.5, 128.4, 125.1, 125.1, 124.5, 124.1, 121.4, 118.9. IR (neat): 2922 (CH), 1706 (C=C), 1590 (C=C), 1567, 1465 (C=C), 1428 (C=C), 1356, 1313 (C=N), 1273, 1221 (C=C, C=N), 1154, 857, 828, 763, 738, 730, 660, 619 cm⁻¹. HRMS (MALDI TOF) m/z: [M–PF₆]⁺ calcd for C₅₂H₃₈F₆N₁₂PRu, 1077.2022; Found 1077.2035.

2.3. Synthesis of Ru(L)Pd and (NPy₂)Pd complexes.

Synthesis of Pd-containing complexes. General procedure C. A round bottom flask, equipped with a magnet stirrer, was charged with a ligand (1 equiv.), $Pd(CH_3CN)_2Cl_2$ (1 equiv.) and dichloromethane. The reaction mixture was stirred at room temperature for 2 hours in the dark. After that, the mixture was concentrated under reduced pressure to *ca*. 5 mL in volume and *n*-hexane (*ca*. 5 mL) was added dropwise to the residue solution. The formed precipitate was collected by centrifugation (1500 rpm, 10 min), washed twice with diethyl ether and dried on air giving target product.

CI CI Pd N N *Complex* (*NPy*₂)*PdCl*₂ ((*NPy*₂)*Pd*) was obtained according to the general procedure **C** from **NPy**₂ (0.5 mmol, 119 mg), Pd(CH₃CN)₂Cl₂ (0.5 mmol, 135 mg) in dichloromethane (104 mL). Yield 178 mg (88%), yellow-green solid. ¹H NMR (CD₃CN, 400 MHz): δ 8.93 (d, 2H, *J* = 7.2 Hz, H6, H6'(Py)), 7.89 (t, 2H, *J* = 8.9 Hz, H4, H4' (Py)), 7.30 (d, 2H, *J* = 7.2 Hz, H3, H3' (Py)), 7.18 (t, 2H, *J* = 8.9 Hz,

 $_{OMe}$ HZ, H4, H4 (Fy)), 7.30 (d, 2H, J = 7.2 HZ, H3, H3 (Fy)), 7.18 (t, 2H, J = 8.9 HZ, H5, H5' (Py)), 4.24 (t, 2H, J = 5.7 Hz, CH₂N), 3.79 (t, 2H, J = 5.7 Hz, CH₂O), 3.42 (s, 3H, CH₃). IR (neat): 2916 (CH), 2360, 2332, 1707 (C=C), 1598 (C=C), 1576, 1487 (C=C), 1452 (C=C), 1343 (C=N), 1269, 1247 (C=C, C=N), 1195, 1167, 1151, 1057, 961, 907, 830, 782, 722, 695, 657 cm⁻¹. Anal. (%) calcd for found C₁₂H₁₅N₃OCl₂Pd: C, 38.29; H, 3.74; N, 10.07; found: C, 38.42; H, 3.69; N, 10.34. HRMS (MALDI TOF) *m/z*: [2M–Cl] calcd for C₂₆H₃₀Cl₃N₆O₂Pd₂, 776.9570; Found 776.9515.

Complex $[(bpy)_2Ru(Phen-3NPy_2)PdCl_2](PF_6)_2$ (*Ru*(*Phen-3NPy*_2)*Pd*) was obtained according to the general procedure **C** from **Ru**(**Phen-3NPy**_2) (0.04 mmol, 40 mg), Pd(CH₃CN)_2Cl_2 (0.04 mmol, 10 mg) in dichloromethane (8 mL). Yield 42 mg (85%); red-orange solid. ¹H NMR (CD₃CN, 400 MHz): δ 8.87 (dd, 2H, *J* = 5.8 Hz, *J* = 1.6 Hz), 8.56 (dd, 1H, *J* = 8.3 Hz, *J* = 1.3 Hz), 8.51 (dt,

1H, J = 8.1 Hz, J = 1.1 Hz), 8.46 (d, 1H, J = 5.5 Hz), 8.43 (d, 1H, J = 5.6 Hz), 8.32 (d, 1H, J = 8.2 Hz), 8.16 (d, 1H, J = 9.1 Hz), 8.14 (dd, 1H, J = 7.6 Hz, J = 1.7 Hz), 8.16 (dd, 1H, J = 7.8 Hz, J = 1.5 Hz), 8.08 (td, 1H, J = 8.2 Hz, J = 1.5 Hz), 8.04 (d, 1H, J = 9.1 Hz), 8.01 (dd, 1H, J = 5.3 Hz, J = 1.5 Hz), 8.04 (d, 1H, J = 1.5 Hz), 8.04 (d, 1H, J = 1.5 Hz), 8.04 (d, 1H, J = 1.5 Hz), 8.05 (dd, 1H, J = 1.5 Hz), 8.04 (d, 1H, J = 1.5 Hz), 8.05 (dd, 1H, J = 1.5 1.3 Hz), 8.0 (dd, 1H, J = 8.1 Hz, J = 1.5 Hz), 7.97 (dd, 1H, J = 7.8 Hz, J = 1.3 Hz), 7.96 (d, 1H, J = 2.5 Hz), 7.90 (td, 1H, J = 8.3 Hz, J = 1.5 Hz), 7.83 (ddd, 1H, J = 5.7 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.77 – 7.75 (m, 3H), 7.72 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.69 (ddd, 1H, J = 5.6 Hz, J = 1.5 Hz, J = 0.7 Hz), 7.64 (ddd, 1H, J = 6.0 Hz, J = 1.8 Hz, J = 0.9 Hz), 7.61 (dd, 1H, J = 5.9 Hz, J = 1.5 Hz), 7.8 (dd, 1H, J = 5.8 Hz, J = 1.4 Hz), 7.44 (ddd, 1H, J = 7.7 Hz, J = 5.6 Hz, J = 1.3 Hz), 7.35 (ddd, 1H, J = 7.6 Hz, J = 5.6 Hz, J = 1.3 Hz), 7.28 (ddd, 1H, J = 7.6 Hz, J = 5.6 Hz, J = 1.3Hz), 7.22 (ddd, 1H, J = 7.6 Hz, J = 5.6 Hz, J = 1.3 Hz), 7.11 (d, 1H, J = 2.5 Hz). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.3, 156.9, 156.7, 156.6, 154.3, 152.3, 152.22, 152.0, 151.9, 149.2, 147.6, 143.5, 143.4, 142.9, 139.9, 137.9, 137.8, 137.5, 136.9, 131.2, 130.1, 129.2, 128.0, 127.6, 127.5, 127.4, 125.9, 125.5, 124.6, 124.2, 123.9, 119.4. IR (neat): 2360 (CH), 1582 (C=C), 1563 (C=C), 1470 (C=C), 1435 (C=C), 1350 (C=N), 1265, 1245 (C=C, C=N), 885, 834, 772, 747, 714, 641 cm⁻¹. HRMS (MALDI TOF) m/z: $[M-PF_6]^+$ calcd for $C_{42}H_{31}Cl_2F_6N_9PPdRu$, 1083.9799; Found 1083.9815.

Complex $[(bpy)_2Ru(Phen-4NPy_2)PdCl_2](PF_6)_2$ (*Ru*(*Phen-4NPy_2*)*Pd*) was obtained according to the general procedure **C** from **Ru**(**Phen-4NPy_2**) (0.04 mmol, 45 mg), Pd(CH_3CN)_2Cl_2 (0.04 mmol, 11 mg) in dichloromethane (9 ml). Yield: 45 mg (86 %); red-orange solid; ¹H NMR (CD_3CN, 400 MHz): δ 9.42 (d, 1H, *J*=9.1 Hz), 8.81 (ddd, 2H, *J* = 5.9 Hz, *J* = 1.7 Hz, *J* = 0.5 Hz), 8.63 (dd, 1H, *J* = 8.3

Hz, J = 1.2 Hz), 8.58 (dt, 1H, J = 8.2 Hz, J = 1.0 Hz), 8.54 (d, 2H, J = 8.2 Hz), 8.50 (dt, 1H, J = 8.2 Hz, J = 1.0 Hz), 8.37 (d, 1H, J = 5.74 Hz), 8.38 (d, 1H, J = 9.1 Hz), 8.33 (d, 1H, J = 5.74 Hz), 8.18 (dd, 1H, J = 5.2 Hz, J = 1.3 Hz), 8.14 (td, 1H, J = 7.9 Hz, J = 1.5 Hz), 8.11 (dt, 1H, J = 7.9 Hz, J = 1.5 Hz), 8.05 (td, 1H, J = 7.9 Hz, J = 1.5 Hz), 8.01 (td, 1H, J = 7.9 Hz, J = 1.5 Hz), 7.89 (ddd, 1H, J = 7.1 Hz, J = 5.7 Hz, J = 1.7 Hz, J = 0.7 Hz), 7.86 (dd, 1H, J = 5.7 Hz, J = 1.8 Hz), 7.84 (dd, 1H, J = 7.1 Hz, J = 1.8 Hz), 7.81–7.77 (m, 2H), 7.64 (ddd, 1H, J = 5.7 Hz, J = 1.7 Hz, J = 0.5 Hz), 7.57 (ddd, 1H, J = 5.7 Hz, J = 1.7 Hz, J = 0.5 Hz), 7.52–7.45 (m, 2H), 7.33 (dd, 1H, J = 5.9 Hz, $^4J = 1.2$ Hz), 7.31 (dd, 1H, J = 5.9 Hz, J = 1.2 Hz), 7.29–7.23 (m, 4H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.3, 157.2, 156.9, 156.9, 154.0, 153.4, 152.6, 152.3, 152.2, 151.9, 151.8, 150.7, 147.8, 144.0, 141.5, 138.1, 138.0, 137.9, 137.0, 131.3, 130.0, 129.9, 128.2, 127.7 127.6, 127.6, 127.5, 126.8, 124.3, 124.2, 123.2, 122.1, 118.3 IR (neat): 2400 (CH), 1596 (C=C), 1466 (C=C), 1428 (C=C), 1323 (C=N), 1271, 1239 (C=C, C=N), 1221, 1164, 831, 761, 673 cm⁻¹. HRMS (MALDI TOF) *m*/*z*: [M–PF₆]⁺ calcd for C₄₂H₃₁Cl₂F₆N₉PPdRu, 1083.9799; Found 1083.9821.

Complex $[(bpy)_2Ru(Phen-5NPy_2)PdCl_2](PF_6)_2$ (*Ru*(*Phen-5NPy_2*)*Pd*) was obtained according to the general procedure **C** from **Ru**(**Phen-5NPy_2**) (0.04 mmol, 40 mg), Pd(CH_3CN)_2Cl_2 (0.04 mmol, 10 mg) in dichloromethane (8 ml). Yield: 42 mg (86 %); red-orange solid; ¹H NMR (CD_3CN, 400 MHz): δ 9.91 (d, 1H,

J = 8.8 Hz), 9.01 (s, 1H), 8.91 (ddd, 2H, J = 5.9 Hz, J = 1.8 Hz, J = 0.6 Hz), 8.81 (dd, 1H, J = 8.3 Hz, J = 1.3 Hz), 8.55 (d, 1H, J = 8.2 Hz), 8.54 (d, 1H, J = 8.2 Hz), 8.51 (d, 1H, J = 8.0 Hz), 8.50 (d, 1H, J = 8.0 Hz), 8.24 (dd, 1H, J = 5.3 Hz, J = 1.3 Hz), 8.18 (dd, 1H, J = 5.3 Hz, J = 1.2 Hz), 8.13 (td, 1H, J = 8.0 Hz, J = 1.5 Hz), 8.11 (td, 1H, J = 8.0, J = 1.5 Hz), 8.02 (td, 2H, J = 8.0 Hz, J = 1.5 Hz), 7.89 – 7.81 (m, 6H), 7.63 (dd, 1H, J = 5.6 Hz, J = 0.7 Hz), 7.61 (dd, 1H, J = 5.6 Hz, J = 0.7 Hz), 7.50 – 7.43 (m, 2H), 7.40 (d, 2H, J = 8.6 Hz), 7.32–7.21 (m, 4H). ¹³C NMR (CD₃CN, 100.6 MHz): δ 157.2, 156.9, 156.9, 154.2, 153.6, 152.4, 152.3, 151.9, 151.0, 149.5, 148.0, 141.2, 138.0, 137.9, 137.7, 135.4, 133.5, 132.7, 130.5, 130.0, 127.6, 127.5, 126.9, 126.7, 124.3, 124.2, 121.5. IR (neat): 2360 (CH), 1598 (C=C), 1576, 1487, 1452 (C=C), 1428 (C=C), 1343 (C=N),

1269, 1247 (C=C, C=N), 1195, 1167, 1151, 1119, 1077, 961, 907, 830, 782, 751, 737, 695, 657 cm⁻¹. HRMS (MALDI TOF) m/z: $[M-PF_6]^+$ calcd for $C_{42}H_{31}Cl_2F_6N_9PPdRu$, 1083.9799; Found 1083.9812.

Synthesis of Ru(tpphz)Pd complex

Ru(tpphz)Pd complex was synthesized by known "chemistry on complex" method (Scheme S2). **Ru[Phen(O)₂]** starting complex was prepared from cis-Ru(bpy)₂Cl₂ and **Phen(O)₂** according previously reported procedure ⁸.

Scheme S2.

Synthesis of $[(bpy)_2Ru(tpphz)](PF_6)_2$ complex $(Ru(tpphz))^{10}$. The two-neck flask equipped with condenser and magnetic stirrer was charged with 91.4 mg (0.1 mmol) of **Ru[Phen(O)_2]** and acetonitrile (10 mL). The mixture was heated to boiling and hot solution of 21 mg (0.1 mmol) of 1,10-phenanthroline-5,6-diamine in 5 mL of

methanol was added. The mixture was refluxed for 6 hours and allowed to cool. The solution was gravity filtered and saturated NH₄PF₆ aqueous solution was added. The precipitate was collected, washed with water and dried under reduced pressure. Yield 61 mg (56%), red powder. ¹H NMR (CD₃CN, 400 MHz): δ 9.59 (dd, 2H, *J* = 8.3 Hz, *J* = 0.8 Hz), 9.38 (d, 2H, *J* = 8.2 Hz), 8.61 (d, 2H, *J* = 8.3 Hz), 8.57 (d, 2H, *J* = 7.9 Hz), 8.47–8.50 (m, 2H), 8.29 (dd, 2H, *J* = 8.3 Hz, *J* = 0.8 Hz), 8.14–8.20 (m, 4H), 8.05 (td, 2H, *J* = 7.9 Hz, *J* = 1.3 Hz), 7.94 (dd, 2H, *J* = 5.6 Hz, *J* = 0.8 Hz), 7.88 (dd, 2H, *J* = 8.2 Hz, *J* = 5.5 Hz), 7.80 (dd, 2H, *J* = 8.2 Hz, *J* = 4.4 Hz), 7.50–7.56 (m, 2H), 7.34–7.40 (m, 2H).

[(*bpy*)₂*Ru*(*tpphz*)*PdCl*₂](*PF*₆)₂ (*Ru*(*tpphz*)*Pd*) was obtained according to the general procedure **C** from **Ru**(*tpphz*) (0.012 mmol, 13 mg), Pd(CH₃CN)₂Cl₂ (0.012 mmol, 3 mg) in dichloromethane (4 mL). Yield: 14 mg (92%); red-orange solid; ¹H NMR (CD₃CN, 400 MHz): δ 9.94 (d, 2H, *J* = 8.1

Hz), 9.71 (d, 2H, J = 8.1 Hz), 9.30 (d, 2H J = 5.3 Hz), 8.59 (d, 2H J = 8.2 Hz), 8.55 (d, 2H J = 8.2 Hz), 8.36 (d, 2H, J = 5.3 Hz), 8.21 (dd, 2H, J = 8.2, Hz, J = 5.3 Hz), 8.15 (td, 2H, J = 8.2, Hz, J = 1.3 Hz), 8.1-8.01 (m, 4H), 7.93 (d, 2H, J = 5.5 Hz), 7.89 (d, 2H, J = 5.5 Hz), 7.51 (t, 2H, J = 6.5 Hz), 7.30 (t, 2H, J = 6.5 Hz). HRMS (ESI) m/z: [M–2PF₆]²⁺ calcd for C₄₄H₂₈Cl₂N₁₀PdRu, 486.9971; Found 486.9985.

3. Detailed NMR studies of the complexes

All NMR spectra were recorded with Agilent 400 MR spectrometer in CD_3CN ; the residual signal of CHD_2CN was used as an internal standard. δ , ppm

Figure S1. Comparison of ¹H NMR spectra of (a) $Ru(Phen-3NPy_2)$ and (b) $Ru(Phen-3NPy_2)Pd$ (400 MHz, CD_3CN , 298 K).

Figure S2. Comparison of ¹H NMR spectra of (a) $Ru(Phen-4NPy_2)$ and (b) $Ru(Phen-4NPy_2)Pd$ (400 MHz, CD_3CN , 298 K).

$ \begin{array}{c} $							
Assia	nment	Chemica	l shift (ppm)		J (Hz)		
Assig	iment	${}^{1}\mathbf{H}$	¹³ C	H	-H (atom)		
A	2,2'	-	156.16				
Α	3,3'	7.00	118.25	8.1 (4,4')	0.9 (<mark>6,6</mark> ')		
Α	4,4'	7.73	138.90	8.1 (3 , 3 ')	7.7 (5,5')		
Α	5,5'	7.19	121.01	7.7 (5,5')	4.9 (6 , 6 '), 0.9 (3 , 3 ')		
Α	6,6'	8.23	148.78	4.9 (5,5')	2.0 (4 , 4 '), 0.9 (3 , 3 ')		
В	1a	-	131.35				
В	2	7.62	149.30	2.2 (4)			
В	3	-	143.13				
В	4	8.14	126.88	2.2 (2)			
В	4 a	-	142.30				
В	5	7.98	127.55	8.9 (6)			
В	6	8.11	128.18	8.9 (5)			
В	6a	-	129.88				
В	7	8.54	136.73	8.2 (8)	1.3 (9)		
В	8	7.65	125.14	8.2 (7)	5.3 (9)		
В	9	8.01	152.20	5.3 (8)	1.3 (7)		
В	10a	-	147.57				
С	2,2'	-	156.98, 157.28				
С	3,3'	8.49, 8.52	124.12, 124.21	8.4 (4,4')	1.1(5, 5'), 0.8 (6,6')		
С	4,4'	8.08, 8.02	137.70, 137.76	8.4 (3,3')	7.0 (5,5'), 1.5(6,6')		
С	5,5'	7.33, 7.44	127.43, 127.41	7.0 (4,4')	5.6 (6,6'), 1.1 (3,3')		
С	6,6'	7.77, 7.89	151.91, 152.15	5.6 (5,5')	1.5 (4, 4'), 0.8 (3,3')		
D	2,2'	-	157.09, 156.91				
D	3,3'	8.34, 8.50	124.06, 124.04	8.2 (4,4')	1.1 (5,5'), 0.7 (6, 6')		
D	4,4'	7.84, 8.06	137.49, 137.84	8.2 (3,3')	7.0 (5,5'), 1.5 (6, 6')		
D	5,5'	7.21, 7.30	127.28, 127.56	7.0 (4, 4')	5.7 (6, 6'), 1.1(3, 3')		
D	6,6'	7.68, 7.64	151.91, 152.00	5.7 (5, 5')	1.5 (4, 4'), 0.7 (3,3')		

 Table S3. Signal assignment in NMR spectra of Ru(Phen-3NPy2).

Figure S3. (a) ¹H NMR spectrum of **Ru(Phen-3NPy₂)** (400 MHz, CD₃CN, 298 K); (b) PSYCHE ¹H NMR spectrum of **Ru(Phen-3NPy₂)** (400 MHz, CD₃CN, 298 K).

Figure S4. ¹³C{¹H} NMR spectrum of $Ru(Phen-3NPy_2)$ (100.6 MHz, CD₃CN, 298 K).

Figure S5. COSY ¹H spectrum of Ru(Phen-3NPy₂) (400 MHz, CD₃CN, 298 K).

Figure S6. TOCSY ¹H spectrum of $Ru(Phen-3NPy_2)$ (400 MHz, CD₃CN, 298 K, mix. time 150 ms).

Figure S7. gHSQCAD spectrum of Ru(Phen-3NPy₂) (400 MHz, CD₃CN, 298 K).

Figure S8. gHMBCAD spectrum of Ru(Phen-3NPy₂) (400 MHz, CD₃CN, 298 K, J=8 Hz).

Figure S9. ROESY spectrum of Ru(Phen-3NPy₂) (400 MHz, CD₃CN, 298 K).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Accie	nmont	Chemica	ll shift (ppm)		<i>J</i> (Hz)	
Assig	liment	$^{1}\mathrm{H}$	¹³ C	Н	–H (atom)	
Α	2,2'	-	157.48			
Α	3,3'	7.19	118.11	8.3 (4 , 4 ')	0.9 (<mark>6, 6</mark> ')	
Α	4,4'	7.78	138.73	8.3 (<mark>3, 3'</mark>)	7.4(5 , 5 ')	
Α	5,5'	7.18	120.56	7.4 (4, 4')	4.9 (6 , 6 '), 0.9 (3 , 3 ')	
Α	6,6'	8.24	148.72	4.9 (5, 5')	1.9 (4, 4'), 0.9 (3, 3')	
В	1a	-	149.21			
В	2	7.93	152.55	5.9 (3)		
В	3	7.31	123.29	5.9 (2)		
В	4	-	151.55			
В	4a	-	128.18			
В	5	7.94	127.22	9.2 (6)		
В	6	7.75	124.47	9.2 (5)		
В	6a	-	130.73			
В	7	8.52	136.66	8.3 (8)	1.3 (9)	
В	8	7.71	126.21	8.3 (7)	5.3 (9)	
В	9	8.09	152.59	5.3 (8)	1.3 (7)	
В	10a	-	147.88			
C ¹	2,2'	-	157.33, 157.10			
C ¹	3,3'	8.54, 8.53	124.26, 124.22	8.2 (4, 4')	1.3 (5, 5'), 0.8 (6, 6')	
C ¹	4,4'	8.10, 8.06	137.75, 137.72	8.2 (3, 3')	7.6 (5, 5'), 1.5 (6, 6')	
C ¹	5,5'	7.45, 7.31	127.53, 127.51	7.6 (4, 4')	5.6 (6, 6'), 1.3 (3, 3')	
C ¹	6,6'	7.83, 7.64	151.91, 151.91	5.6 (5, 5')	1.5 (4, 4'), 0.8 (3, 3')	
D ¹	2,2'	-	157.21, 157.05			
D ¹	3,3'	8.53, 8.51	124.22, 124.18	8.2 (4, 4')	1.3 (5, 5'), 0.8(6, 6')	
D ¹	4,4'	8.07, 8.03	137.74, 137.70	8.2 (3, 3')	7.7 (5, 5'), 1.5(6, 6')	
D ¹	5,5'	7.43, 7.35	127.49, 127.53	7.7 (4, 4'),	5.7 (6, 6') 1.3(3, 3')	
D ¹	6,6'	7.85, 7.67	151.97, 151.69	5.7 (5, 5')	1.5 (4, 4'), 0.8(3, 3')	

Table S4. Signal assignment in NMR spectra of Ru(Phen-4NPy₂).

¹ Exact assigning the pyridine ring atoms signals to a certain 2,2'-bipyridine ligand is not possible due to the close values of the chemical shifts.

Figure S10. (a) ¹H NMR spectrum of **Ru(Phen-4NPy**₂) (400 MHz, CD₃CN, 298 K); (b) PSYCHE ¹H NMR spectrum of **Ru(Phen-4NPy**₂) (400 MHz, CD₃CN, 298 K).

Figure S11. ¹³C{¹H} NMR spectrum of **Ru(Phen-4NPy₂)** (100.6 MHz, CD₃CN, 298 K).

Figure S12. COSY ¹H spectrum of **Ru(Phen-4NPy₂)** (400 MHz, CD₃CN, 298 K).

Figure S13. TOCSY ¹H spectrum of Ru(Phen-4NPy₂) (400 MHz, CD₃CN, 298 K).

Figure S14. gHSQCAD spectrum of Ru(Phen-4NPy₂) (400 MHz, CD₃CN, 298 K).

Figure S15. gHMBCAD spectrum of Ru(Phen-4NPy₂) (400 MHz, CD₃CN, 298 K, J=8 Hz).

$ \begin{array}{c} $						
A an i au		Chemica	ll shift (ppm)		J (Hz)	
Assig	nment	$^{1}\mathrm{H}$	¹³ C	Н	-H (atom)	
Α	2,2'	-	157.70			
Α	3,3'	7.21	116.67	8.3 (4, 4')	1.9 (5, 5'), 0.8 (6, 6')	
A	4,4'	7.71	138.24	8.3 (3, 3')	7.5 (5, 5'), 1.9 (6, 6')	
A	5,5'	7.07	119.16	7.5 (4, 4')	4.8 (6, 6'), 0.8 (3, 3')	
A	6,6'	8.19	148.26	4.8 (5, 5')	1.9 (4, 4'), 0.8 (3, 3')	
В	1a	-	148.72			
В	2	8.06	152.72	5.2 (3)	1.2 (4)	
В	3	7.56	125.93	8.3 (4)	5.2 (2)	
В	4	8.32	133.72	8.3 (3)	1.2 (2)	
В	4a	-	130.45			
В	5	-	142.38			
В	6	8.07	127.26			
В	6a	-	131.02			
В	7	8.47	136.27	8.3 (8)	1.3 (9)	
В	8	7.70	126.23	8.3 (7)	4.3 (9)	
В	9	8.06	152.21	4.3 (8)	1.3 (7)	
В	10a	-	146.56			
C ¹	2,2'	-	157.27, 157.05			
C ¹	3,3'	8.55, 8.52	124.27, 124.25	8.3 (4, 4')	1.3 (5, 5'), 0.7 (6, 6')	
C ¹	4,4'	8.11, 8.04	137.89, 137,82	8.3 (3, 3')	7.6 (5, 5'), 1.5 (6, 6')	
C ¹	5,5'	7.46, 7.32	127.56, 127.52	7.6 (4, 4')	5.6 (6, 6'), 1.3 (3, 3')	
C ¹	6,6'	7.85, 7.62	151.96, 151.92	5.6 (5, 5')	1.5 (4, 4'), 0.7 (3, 3')	
D ¹	2,2'	-	157.27, 157.08			
D ¹	3,3'	8.54, 8.51	124.27, 124.28	8.2 (4, 4')	1.3 (5, 5'), 0.7 (6, 6')	
D ¹	4,4'	8.10, 8.04	137.87, 137.81	8.2 (3, 3')	7.7 (5, 5'), 1.7 (6, 6')	
D ¹	5,5'	7.46, 7.32	127.54	7.7 (4, 4')	5.6 (6, 6'), 1.3 (3, 3')	
D ¹	6,6'	7.85, 7.67	151.94, 151.91	5.6 (5, 5')	1.7 (4, 4'), 0.7 (3, 3')	

Table S5. Signal assignment in NMR spectra of $Ru(Phen-5NPy_2)$.

¹ Exact assigning the pyridine ring atoms signals to a certain 2,2'-bipyridine ligand is not possible due to the close values of the chemical shifts.

Figure S16. (a) ¹H NMR spectrum of **Ru(Phen-5NPy**₂) (400 MHz, CD₃CN, 298 K); (b) PSYCHE ¹H NMR spectrum of **Ru(Phen-5NPy**₂) (400 MHz, CD₃CN, 298 K).

Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum of **Ru(Phen-5NPy**₂) (100.6 MHz, CD₃CN, 298 K).

Figure S18. TOCSY ¹H spectrum of **Ru(Phen-5NPy₂)** (400 MHz, CD₃CN, 298 K).

Figure S19. gHSQCAD spectrum of Ru(Phen-5NPy₂) (400 MHz, CD₃CN, 298 K).

Figure S20. gHMBCAD spectrum of Ru(Phen-5NPy₂) (400 MHz, CD₃CN, 298 K, J=8 Hz).

$ \begin{array}{c} $						
Assig	nment	Chemica	ll shift (ppm)		J (Hz)	
		⁴ H	¹⁵ C	H	-H (atom)	
A	2,2'	-	149.33	$9 \in (4, 4^2)$	10(66)	
A	3,3	/./0	142.387	8.6 (4,4)	1.0 (6,6)	
	4,4	0.13 7.60	145.38	78(44')	(3,3)	
	5,5	8.87	123.93	7.8 (4,4) 5.9 (5.5')	17(44') 10(33')	
R	19	0.07	1/2 89	5.9 (5,5)	1.7 (4,4), 1.0 (3,5)	
B	1a 2	7 10	139.98	2 5 (4)		
B	3	-	143 51	2.5 (4)		
B	4	7.96	119.33	2.5(2)		
B		-	131.25			
B	5	8.04	127.38	9.1 (6)		
B	6	8.16	129.19	9.1 (5)		
В	6a	_	130.06			
В	7	8.56	136.89	8.3 (8)	1.5 (9)	
В	8	7.69	125.54	8.3(7)	6.8 (9)	
В	9	8.01	152.31	6.8 (8)	1.5 (7)	
В	10a	-	147.57			
С	2,2'	-	156.94, 156.66			
С	3,3'	8.32, 8.44	123.92, 124.57	8.1 (4,4')	1.3 (5, 5'), 0.7 (6, 6')	
С	4,4'	7.90, 8.02	137.90, 137.84	8.1 (3,3')	7.5 (5, 5'), 1.5 (6, 6')	
С	5,5'	7.23, 7.28	127.48, 127.57	7.6 (4,4'),	5.6 (6, 6') 1.3 (3, 3')	
С	6,6'	7.72, 7.64	152.25, 151.92	5.6 (5,5')	1.5 (4, 4'), 0.7 (3, 3')	
D	2,2'	-	156.56, 157.26			
D	3,3'	8.45, 8.51	123.98, 124.18	8.2 (4,4')	1.5 (5, 5'), 0.9 (6, 6')	
D	4,4'	7.97, 8.08	137.51, 137.84	8.2 (3,3')	7.6 (5, 5'), 1.8 (6, 6')	
D	5,5'	7.35, 7.44	128.00, 127.39	7.5 (4,4'),	5.6 (6, 6') 1.5 (3, 3')	
D	6,6'	7.76, 7.83	152.34, 151.98	5.6 (5,5')	1.8 (4, 4'), 0.9 (3, 3')	

Table S6. Signal assignment in NMR spectra of Ru(Phen-3NPy₂)Pd.

Figure S21. (a) ¹H NMR spectrum of **Ru(Phen-3NPy₂)Pd** (400 MHz, CD₃CN, 298 K); (b) PSYCHE ¹H NMR spectrum of **Ru(Phen-3NPy₂)Pd** (400 MHz, CD₃CN, 298 K).

Figure S22. ¹³C{¹H} NMR spectrum of **Ru(Phen-3NPy₂)Pd** (100.6 MHz, CD₃CN, 298 K).

Figure S23. COSY ¹H spectrum of Ru(Phen-3NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S24. TOCSY ¹H spectrum of Ru(Phen-3NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S25. gHSQCAD spectrum of Ru(Phen-3NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S26. gHMBCAD spectrum of Ru(Phen-3NPy₂)Pd (400 MHz, CD₃CN, 298 K, J=8 Hz).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Assig	nment	Chemica	ll shift (ppm)		J (Hz)	
0	1	$^{1}\mathbf{H}$	¹³ C	Н	-H (atom)	
Α	2,2'	-	151.98			
A	3,3'	7.27	118.26	8.4 (4,4')	0.5 (<mark>6,6'</mark>)	
A	4,4'	7.87	141.45	8.4 (3,3')	7.6 (5 , 5 ')	
Α	5,5'	7.32	122.05	7.6 (4,4')	5.9 (6 , 6 '), 0.5 (3 , 3 ')	
Α	6,6'	8.91	152.64	5.9 (5 , 5 ')	1.6 (4,4'), 0.5 (3,3')	
B	1a	-	144.00			
В	2	8.37	154.02	5.7 (3)		
В	3	8.33	128.09	5.7 (2)		
В	4	-	150.68			
В	4a	-	129.85			
В	5	9.42	123.22	9.1 (6)		
В	6	8.38	130.04	9.1 (5)		
В	6a	-	131.25			
В	7	8.63	137.00	8.3 (8)	1.2 (9)	
В	8	7.79	126.77	8.3 (7)	5.4 (9)	
В	9	8.18	153.39	5.4 (8)	1.2 (7)	
В	10a	-	147.76			
C ¹	2,2'	-	157.30, 156.93			
C ¹	3,3'	8.58, 8.54	124.31, 124.22	9.5 (4, 4')	1.3 (5, 5'), 0.7 (6, 6')	
C ¹	4,4'	8.14, 8.04	138.15, 137.94	9.5 (3, 3')	7.9 (5, 5'), 1.4 (6, 6')	
C ¹	5,5'	7.50, 7.29	127.68, 127.60	7.9 (4, 4')	6.0 (6, 6'), 1.2 (3, 3')	
C ¹	6,6'	7.89, 7.57	151.99, 152.35	6.0 (5, 5')	1.4 (4, 4'), 0.7 (3, 3')	
D ¹	2,2'	-	157.17, 156.86			
D ¹	3,3'	8.55, 8.50	124.31, 124.27	8.9 (4, 4')	1.4 (5, 5'), 0.8 (6, 6')	
\mathbf{D}^{1}	4,4'	8.11, 8.01	138.04, 137.92	8.9 (3, 3')	7.8 (5, 5'), 1.5 (6, 6')	
D ¹	5,5'	7.47, 7.25	127.65, 127.55	7.8 (4, 4'),	5.9 (6, 6') 1.4 (3, 3')	
D ¹	6,6'	7.80, 7.64	151.79, 152.24	5.9 (5, 5')	1.5 (4, 4'), 0.8 (3, 3')	

Table S7. Signal assignment in NMR spectra of Ru(Phen-4NPy₂)Pd.

Figure S27. (a) ¹H NMR spectrum of $Ru(Phen-4NPy_2)Pd$ (400 MHz, CD_3CN , 298 K); (b) PSYCHE ¹H NMR spectrum of $Ru(Phen-4NPy_2)Pd$ (400 MHz, CD_3CN , 298 K).

Figure S28. ¹³C{¹H} NMR spectrum of **Ru(Phen-4NPy₂)Pd** (100.6 MHz, CD₃CN, 298 K).

Figure S29. COSY ¹H spectrum of Ru(Phen-4NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S30. TOCSY ¹H spectrum of Ru(Phen-4NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S31. gHSQCAD spectrum of Ru(Phen-4NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S32. gHMBCAD spectrum of Ru(Phen-4NPy₂)Pd (400 MHz, CD₃CN, 298 K, J=8 Hz).

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
Acsia		Chemica	l shift (ppm)		J (Hz)	
Assig	nment	¹ H	¹³ C	H	-H (atom)	
Α	2,2'	-	150.96			
Α	3,3'	7.40	117.31	8.3 (4,4')	0.5 (6,6')	
A	4,4'	7.84	141.23	8.3 (<mark>3,3</mark> ')	7.5 (5,5'), 1.8 (6,6')	
A	5,5'	7.29	121.49	7.5 (4 , 4 ')	5.9 (6,6'), 0.5 (3,3')	
A	6,6'	8.91	152.41	5.9 (5, 5')	1.8 (4,4'), 0.5 (3,3')	
В	1 a	-	149.49			
В	2	8.18	153.63	5.3 (3)	1.2 (4)	
В	3	7.87	126.86	8.4 (4)	5.3 (2)	
В	4	9.91	132.67	8.4 (3)	1.2 (2)	
В	4a	-	130.46			
В	5	-	135.38			
В	6	9.01	133.52			
В	<u>6a</u>	-	129.98			
В	7	8.80	137.68	8.4 (8)	1.2 (9)	
B	8	7.86	126.64	8.4 (7)	5.3 (9)	
В	9	8.24	154.19	5.3 (8)	1.2 (7)	
B	10a	-	148.01			
C ¹	2,2'	-	157.22, 156.94			
C ¹	3,3'	8.55, 8.49	124.29, 124.19	8.2 (4, 4')	1.3 (5,5'), 0.7 (6,6')	
C ¹	4,4'	8.13, 8.01	138.00, 137.87	8.2 (3, 3')	7.6 (5,5'), 1.5 (6,6')	
C ¹	5,5'	7.48, 7.23	127.60, 127.45	7.6 (4, 4')	5.6 (6,6'), 1.3 (3,3')	
C ¹	6,6'	7.84, 7.60	151.93, 152.25	5.6 (5, 5')	1.5 (4,4'), 0.7 (3,3')	
D ¹	2,2'	-	157.24, 156.89			
D ¹	3,3'	8.54, 8.48	124.31, 124.18	8.0 (4, 4')	1.3 (5, 5'), 0.8 (6, 6')	
D ¹	4,4'	8.11, 8.01	138.00, 137.87	8.0 (3, 3')	7.7 (5, 5'), 1.5 (6, 6')	
D ¹	5,5'	7.46, 7.27	127.60, 127.47	7.7 (4, 4')	5.6 (6, 6'), 1.3 (3, 3')	
D ¹	6,6'	7.84, 7.63	151.96, 152.27	5.6 (5, 5')	1.5 (4, 4'), 0.8 (3, 3')	

Table S8. Signal assignment in NMR spectra of Ru(Phen-5NPy₂)Pd.

¹ Exact assigning the pyridine ring atoms signals to a certain 2,2'-bipyridine ligand is not possible due to the close values of the chemical shifts.

Figure S33. (a) ¹H NMR spectrum of **Ru(Phen-5NPy₂)Pd** (400 MHz, CD₃CN, 298 K); (b) PSYCHE ¹H NMR spectrum of **Ru(Phen-5NPy₂)Pd** (400 MHz, CD₃CN, 298 K).

Figure S34. ¹³C{¹H} NMR spectrum of **Ru(Phen-5NPy₂)Pd** (100.6 MHz, CD₃CN, 298 K).

Figure S35. COSY ¹H spectrum of $Ru(Phen-5NPy_2)Pd$ (400 MHz, CD₃CN, 298 K).

Figure S36. TOCSY 1 H spectrum of Ru(Phen-5NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S37. gHSQCAD spectrum of Ru(Phen-5NPy₂)Pd (400 MHz, CD₃CN, 298 K).

Figure S38. gHMBCAD spectrum of Ru(Phen-5NPy₂)Pd (400 MHz, CD₃CN, 298 K, J=8 Hz).

4. Single crystal X-ray analysis

Crystals of the complexes suitable for single-crystal X-ray diffraction were obtained by slow diffusion of toluene to the dichloromethane solution (for **Ru(Phen-3NPy₂)Pd**, **Ru(Phen-4NPy₂)Pd** and (**NPy₂)Pd**) or CHCl₃/MeOH (1 : 1 v/v, for **Ru(Phen-5NPy₂)**) of the compound. SCXRD analysis of **Ru(Phen-3NPy₂)Pd**, **Ru(Phen-4NPy₂)Pd** and (**NPy₂)Pd** was carried out on a Bruker D8 Quest diffractometer (MoK α radiation, ω and φ -scan mode). SCXRD analysis of **Ru(Phen-5NPy₂)** was performed using Bruker SMART APEX II diffractometer with a CCD area detector (graphite monochromator, MoK α radiation, ω -scan mode).

The crystal data and refinement parameters are listed in Table S9. The structures were solved with direct methods and refined by least-squares method in the full-matrix anisotropic approximation on F². All hydrogen atoms were located in calculated positions and refined within riding model. All calculations were performed using the SHELXTL ^{11, 12} and Olex2 ¹³ software packages. Atomic coordinates, bond lengths, angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC 2327677 (**Ru(Phen-5NPy₂))**, 2327680 (**Ru(Phen-3NPy₂)Pd**), 2327678 (**Ru(Phen-4NPy₂)Pd**) and 2327679 ((**NPy₂)Pd**), which are available free of charge at www.ccdc.cam.ac.uk.

 $Ru(Phen-3NPy_2)Pd$. In the crystal structure of $Ru(Phen-3NPy_2)Pd$ the disorder of PF_6^- anion across inversion center is present. In case of the molecule with P2 atom, we were able to model the disorder as presented in Figure S39, and in case of the molecule with P3 atom, the disorder could not be modelled and the anion was left as is, leading to enlarged ellipsoids of atomic displacement (ADPs).

Figure S39. The disorder of PF_6^- anion across inversion center in **Ru**(**Phen-3NPy**₂)**Pd**. Shared fluorine atoms with occupancy of 100% are painted with green, the phosphorus and fluorine atoms with occupancies of 50% are painted with red and blue. The phosphorus atoms are labelled, and the symmetry operation code is given.

 $Ru(Phen-4NPy_2)Pd$. The rather high R-factors of the refinement of $Ru(Phen-4NPy_2)Pd$ is due to weak X-ray scattering at $2\theta > 40^\circ$ which can be best explained as high degree of disorder that affects the whole molecule rather than any discrete substituents. This results in large ADPs of all atoms, including Ru1 atom. For some atoms, such as one bipyridyl ligand and {PdCl₂} fragment the disorder could be modelled, but mostly it was left as is due to lack of good quality data. Unfortunately, the data quality cannot be enhanced, as we have conducted the experiment at the lowest possible temperature (120 K) and the highest possible exposure time (100 seconds per frame).

The crystal structures of **Ru(Phen-3NPy₂)Pd** and **Ru(Phen-4NPy₂)Pd** contained several electron density maxima which could be attributed to solvated molecules of dichloromethane and toluene. However, these molecules could not be properly modelled due to them being disordered, and they were removed from the electron density map using Solvent Mask feature of Olex2 was implemented to deal with this issue. As a result, for **Ru(Phen-3NPy₂)Pd** a solvent mask was calculated and 249 electrons were found in a volume of 670 Å³ in 1 void per unit cell. This is consistent with the presence of $2[CH_2Cl_2]$, $1[C_7H_8]$ per Asymmetric Unit which account for 268 electrons per unit cell. As for **Ru(Phen-4NPy₂)Pd**, a solvent mask was calculated and 181 electrons were found in a volume of 572 Å³ in 1 void per unit cell. This is consistent with the presence of $1[CH_2Cl_2]$, $1[C_7H_8]$ per Asymmetric Unit which account for 184 electrons per unit cell.

Compound	Ru(Phen-5NPy ₂)	Ru(Phen-3NPy ₂)Pd	Ru(Phen-4NPy ₂)Pd	(NPy ₂)Pd
Molecular Formula	C ₄₂ H ₃₁ N ₉ Ru, 2(PF ₆), 0.5(CH ₄ O)	$C_{42}H_{31}Cl_2N_9PdRu, 2(PF_6)$	C ₄₂ H ₃₁ Cl ₂ N ₉ PdRu, 2(PF ₆)	$C_{13}H_{15}Cl_2N_3OPd$
М	1068.79	1230.07	1230.07	406.58
Temperature, K	296(2)	120(2)	120(2)	120(2)
System	Triclinic	Triclinic	Triclinic	Orthorhombic
Space group	PT	Ρſ	PT	Pbca
a, Å	10.1007(8)	12.8044(11)	12.689(8)	12.0324(10)
b, Å	13.3932(16)	12.9789(12)	14.266(9)	15.1880(13)
c, Å	17.7896(19)	17.6396(14)	14.621(9)	15.1880(13)
a, deg.	70.753(5)	86.755(3)	84.687(11)	
β, deg.	76.873(4)	71.875(2)	88.882(11)	90
γ, deg.	69.270(4)	76.129(3)	83.021(11)	
$V, Å^3$	2108.3(4)	2704.3(4)	2616(3)	2978.3(4)
Ζ, Ζ'	2, 1	2, 1	2, 1	8, 1
$\rho_{calc}, g/cm^3$	1.684	1.511	1.562	1.813
$\mu(MoK_{\alpha}), mm^{-1}$	0.548	0.848	0.877	1.603
F(000)	1074	1216	1216	1616
θmin–θmax, deg.	1.69-25.00	1.72-25.00	1.62-25.00	2.50-25.00
Number of measured reflections	11747	28555	22515	19389
Number of unique reflections (R _{int})	7207 (0.1168)	9481 (0.0599)	9206 (0.1205)	2618 (0.0871)
Number of reflections with $I > 2\sigma(I)$	4517	7223	3821	2172
Number of refined parameters	615	646	679	182
D factors $(L > 2\pi(L))$	R ₁ =0.1009,	$R_1 = 0.0678,$	R ₁ =0.0732,	$R_1 = 0.0429,$
R-factors $(I > 20(I))$	$\omega R_2 = 0.2775$	$\omega R_2 = 0.1664$	$\omega R_2 = 0.1700$	$\omega R_2 = 0.1070$
D factors (all reflections)	$R_1 = 0.1448,$	$R_1 = 0.0863,$	R ₁ =0.1637,	$R_1 = 0.0520,$
K-factors (an reflections)	ωR ₂ =0.3136	$\omega R_2 = 0.1801$	$\omega R_2 = 0.2142$	ωR ₂ =0.1159
GOOF	1.038	1.047	0.907	1.041
$\Delta \rho_{max}$ / $\Delta \rho_{min}$, e/Å ³	1.317 / -1.147	2.012 / -1.675	0.742 / -0.892	2.392 / -0.738

 Table S9. Crystal data and refinement parameters.

5. Electrochemistry

Voltammetric experiments were performed with Biologic BP-300 potentiostat in a threeelectrode electrochemical cell (3 ml volume) at a stationary Pt disk electrode (S=0.077 cm²) with a Pt wire counter electrode and Ag/Ag⁺ reference electrode (0.01 M AgNO₃, 0.1 M Bu₄NBF₄ in MeCN). Fc⁺/Fc couple was used as an internal standard in each experiment. The obtained electrochemical data were converted to Ag/AgCl, KCl_(sat.) reference electrode (the standard potential of Fc⁺/Fc couple was taken as 475 mV vs. Ag/AgCl, KCl_(sat.)). Ohmic drop corrections were performed using manual IR compensation procedure implemented in the Biologic software. All solutions were deaerated by passing an argon flow through the solution prior to the CV experiments and above the solution during the measurements. *n*-Bu₄NBF₄ (Aldrich, 99% purity) was used as a supporting electrolyte in all experiments. It was recrystallized from water and dried by heating at 100 °C under high vacuum (0.05 Torr) prior to use. Acetonitrile (AN, Aldrich spectroscopic quality, <0.02% water content) was distilled over P₂O₅. In each case, a freshly distilled portion of the solvent was used.

Oxid		ation	Reduction						
Complex	Б	Б	Pd ^{2+/0}	L	0/•—		/•—	L	0/•-
	L _{1/2}	г	$\mathbf{E}_{\mathbf{p}}$	E _{1/2}	Ep	E _{1/2}	Ep	E _{1/2}	Ep
Ru(bpy) ₃ ^a	1.36		_	-1.25		-1.44		-1.68	
Ru(Phen) ₃ ^a	1.37			-1.29	-1.68	-1.41	-1.81	—	
Ru(Phen) ^a	1.37		_	-1.25		-1.43		-1.70	
(NPy ₂)Pd	_	1.73	-0.88	_	_	_	_	_	_
Ru(Phen-3NPy ₂)Pd	1.39	1.42	-0.57	-1.25	-1.28	-1.43	-1.46	—	-1.74
Ru(Phen-4NPy ₂)Pd	1.38	1.42	-0.57	-1.24	-1.28	-1.38	-1.45	—	-1.72
Ru(Phen-5NPy ₂)Pd	1.40	1.43	-0.72	-1.22	-1.25	-1.39	-1.45	_	-1.73

Table S10. Half-wave and peak potentials (V, *vs* Ag/AgCl, KCl_(sat)) of the **Ru(L)Pd** complexes and reference compounds in MeCN containing 0.05 M TBAPF₆ (Pt electrode).

^a Values calculated from ref. ¹⁴

Figure S40. Cyclic voltamperometric curves of $(NPy_2)Pd$ solution $(9.8 \times 10^{-4} \text{ M}, \text{ MeCN}, 0.05 \text{ M} \text{ Bu}_4\text{NBF}_4$, vs Ag/AgCl, KCl_(sat.)) recorded at Pt disk electrode (S=0.077 cm², 100 mV×s⁻¹).

Figure S41. Cyclic voltamperometric curves of $(NPy_2)Pd$ solution $(9.8 \times 10^{-4} \text{ M}, \text{ MeCN}, 0.05 \text{ M} Bu_4NBF_4$, vs Ag/AgCl, KCl_(sat.)) recorded at Pt disk electrode (S=0.077 cm²) at various scan speed.

Figure S42. Cyclic voltamperometric curves of **Ru(Phen-3NPy₂)Pd** solution (1.08×10^{-3} M, MeCN, 0.05 M Bu₄NBF₄, vs Ag/AgCl, KCl_(sat.)) recorded at Pt disk electrode (S=0.077 cm², 100 mV×s⁻¹).

Figure S43. Cyclic voltamperometric curves of **Ru(Phen-3NPy₂)Pd** solution $(1.08 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at Pt disk electrode (S=0.077 cm²) at various scan rates.

Figure S44. (a) Semi-differential cyclic voltamperometric curves of $Ru(Phen-3NPy_2)Pd$ solution $(1.08 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M} \text{Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at different scan rates for oxidation peak. (b) Plot of logarithm of the peak oxidation current as a function of the logarithm of the scan rate.

Figure S45. Cyclic voltamperometric curves of **Ru(Phen-4NPy₂)Pd** solution $(1.41 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at Pt disk electrode (S=0.077 cm², 100 mV×s⁻¹).

Figure S46. Cyclic voltamperometric curves of **Ru(Phen-4NPy₂)Pd** solution $(1.41 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at Pt disk electrode (S=0.077 cm²) at various scan rates.

Figure S47. (a) Semi-differential cyclic voltamperometric curves of $Ru(Phen-4NPy_2)Pd$ solution $(1.41 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at different scan rates for oxidation peak. (b) Plot of logarithm of the peak oxidation current as a function of the logarithm of the scan rate.

Figure S48. Cyclic voltamperometric curves of **Ru(Phen-5NPy₂)Pd** solution (1.08×10^{-3} M, MeCN, 0.05 M Bu₄NBF₄, vs Ag/AgCl, KCl_(sat.)) recorded at Pt disk electrode (S=0.077 cm², 100 mV×s⁻¹).

Figure S49. Cyclic voltamperometric curves of **Ru(Phen-5NPy₂)Pd** solution $(1.08 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(\text{sat.})})$ recorded at Pt disk electrode (S=0.077 cm²) at various scan rates.

Figure S50. (a) Semi-differential cyclic voltamperometric curves of $\mathbf{Ru}(\mathbf{Phen-5NPy_2})\mathbf{Pd}$ solution $(1.08 \times 10^{-3} \text{ M}, \text{MeCN}, 0.05 \text{ M Bu}_4\text{NBF}_4, \text{ vs Ag/AgCl}, \text{KCl}_{(sat.)})$ recorded at different scan rates for oxidation peak. (b) Plot of logarithm of the peak oxidation current as a function of the logarithm of the scan rate.

6. Photophysical studies

Figure S51. Normalized absorption (black lines) and emission (red lines) spectra of $Ru(Phen-NPy_2)$ and $Ru(Phen-NPy_2)Pd$ complexes and the reference compounds $Ru(bpy)_3$ and Ru(Phen) in argon-saturated acetonitrile. Emission was excited at 450 nm.

Photostability studies

General procedure. A solution of complex **Ru(Phen-NPy₂)** or **Ru(Phen-NPy₂)Pd** in DMF was stirred under irradiation by blue LED (12 W, 455 nm, fig. S53) at room temperature in a Schlenk tube. The solution was diluted in 5–20 times and UV-vis spectra was recorded.

Figure S52. UV–vis spectra of the solutions Ru(Phen-3NPy₂) (a), Ru(Phen-3NPy₂)Pd (b), Ru(Phen-4NPy₂) (c), Ru(Phen-4NPy₂)Pd (d), Ru(Phen-5NPy₂) (e), Ru(Phen-5NPy₂)Pd (f) in DMF before (red) and after irradiation (12 W, blue LED) for 12 hours (violet), 24 hours (blue) and 48 hours (green).

7. DFT-studies

The structures of complexes was modelled using DFT calculations with Firefly quantum chemistry package,¹⁵ which is partially based on the GAMESS (US) ¹⁶ source code. The calculations were performed using B3LYP functional with STO 6-31G(d,p) basis set for all elements except Ru and Pd, for which we have used the Jorgedz valence basis set and pseudopotential.¹⁷

					Paramete	ers			
Complex		Phen			bpy			NPy ₂	
P	Ru-N	Ru-N	$\theta_{\text{N-Ru-N}}$	Ru-N _{cis}	Ru-N _{trans}	$\theta_{\text{N-Ru-N}}$	Pd-N	Pd-Cl	$\theta_{\text{N-Pd-N}}$
Ru(Phen) (DFT)	2.01	2.01	80.3	2.01	2.01	79.5	-	-	-
Ru(Phen) (X-Ray) ^a	2.07	2.08	79.8	2.07	2.07	78.3	-	-	-
Ru(Phen-3NPy ₂) (DFT)	2.03	2.02	80.5	2.00	2.00	79.5	-	-	-
Ru(Phen-4NPy ₂) (DFT)	2.02	2.01	79.6	2.00	2.00	79.5	-	-	-
Ru(Phen-5NPy ₂) (DFT)	2.02	2.02	80.2	2.00	2.00	79.5	-	-	-
Ru(Phen-5NPy₂) (X-Ray) ^b	2.09	2.06	79.1	2.07	2.05 2.08	78.6	-	-	-
Ru(Phen-3NPy ₂)Pd (DFT)	2.02	2.01	80.7	2.00 2.01	2.00 2.01	79.5 79.3	1.95	2.26	88.6
Ru(Phen-3NPy₂)Pd (X-Ray) ^b	2.05	2.07	79.7	2.05	2.05	79.3 79.1	2.02	2.27	87.4
Ru(Phen-4NPy ₂)Pd (DFT)	2.01	2.01	80.3	2.00	2.00	79.5	1.96	2.26	89.3
Ru(Phen-4NPy₂)Pd (X-Ray) ^b	2.04	2.06	80.4	2.05	2.08	77.7 79.1	1.92 2.16	2.26 2.28	87.0
Ru(Phen-5NPy ₂)Pd (DFT)	2.02	2.02	80.2	2.00	2.00	79.4	1.96	2.26	88.9

Table S11. Selected bond lengths [Å] and angles [°] for Ru-complexes obtained by DFT calculations and X-Ray analysis.

^a experimental values for [Ru(bpy)₂(Phen)](BF₄)₂.H₂O from ref.¹⁸

^b experimental values obtained in this work;

Figure S53. Frontier orbital energies obtained from DFT calculations and HOMO and LUMO orbitals isodensity plots for Ru(Phen), Ru(Phen-NPy₂) and Ru(Phen-NPy₂)Pd complexes.

In all the complexes modelled LUMO₀₊₃ are localized on the ligand π^* orbitals of Ru complex, mostly those of bpy peripheral ligands, in a few cases involving also phen ligand. The HOMOs, on the contrary, were calculated to be constructed quite differently for each complex. In **Ru(Phen)**, **Ru(Phen-3NPy₂)** and **Ru(Phen-4NPy₂)** complexes d-orbital of Ru atom are involved in the HOMO. In **Ru(Phen-5NPy₂)** complex HOMO were calculated to be built mostly by π -orbitals of 2aminopyridine residue. HOMOs of dinuclear Ru–Pd complexes are localized mainly on Pd and Cl atoms. The latter is obviously inconsistent with the optical spectroscopy data, which suggest the location of HOMO on the Ru atom therefore, consideration of these data should be quite careful.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-7.44		НОМО	-10.74	
LUMO+2	-7.53		HOMO–1	-10.96	
LUMO+1	- 7.57		НОМО–2	-11.01	
LUMO	-7.88		НОМО–3	-12.26	

Table S12. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the **Ru(Phen)** complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-6.90		НОМО	-10.19	
LUMO+2	-7.02		HOMO-1	-10.41	
LUMO+1	-7.11		HOMO–2	-10.54	
LUMO	-7.51		НОМО–3	-10.62	

Table S13. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-3NPy_2)$ complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-6.70		НОМО	-10.10	
LUMO+2	-7.02		HOMO–1	-10.34	
LUMO+1	-7.18		HOMO–2	-10.54	
LUMO	-7.44		НОМО–3	-11.11	

Table S14. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-4NPy_2)$ complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital 1	E(eV)	The electron-cloud distribution
LUMO+3	-6.95		НОМО	-9.96	
LUMO+2	-7.11		НОМО-1 -	-10.40	
LUMO+1	-7.29		НОМО-2 -	-10.61	
LUMO	-7.57		НОМО–3 -	-10.68	

Table S15. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-5NPy_2)$ complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-6.94		НОМО	-10.15	
LUMO+2	-7.08		HOMO-1	-10.25	
LUMO+1	-7.19		НОМО–2	-10.38	
LUMO	-7.44		НОМО–3	-10.41	

Table S16. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-3NPy_2)Pd$ complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-7.28		НОМО	-9.49	
LUMO+2	-7.48		HOMO-1	-9.70	
LUMO+1	-7.52		HOMO–2	-9.77	
LUMO	-7.83		НОМО-3	-9.89	

Table S17. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-4NPy_2)Pd$ complex.

Orbital	E(eV)	The electron-cloud distribution	Orbital	E(eV)	The electron-cloud distribution
LUMO+3	-7.32		НОМО	-9.55	
LUMO+2	-7.42		HOMO–1	-9.74	
LUMO+1	-7.45		НОМО–2	-9.83	
LUMO	-7.75		НОМО–3	-9.95	

Table S18. The electron-cloud distribution of the HOMO and LUMO calculated by DFT of the $Ru(Phen-5NPy_2)Pd$ complex.

8. Catalytic studies

Photoreactor setup

Fig. **S54.** Photoreactor front view of setup: a _ the photoreactor; b, c – the Schlenk tube between LED; d – the Schlenk tube; e – schematic representation of photoreactor setup; 1 – electric fan (16 W, 188 m³/h); 2 – plastic protecting tube (d = 150 mm, h =500 mm); **3** – aluminum cup (d = 110 mm); **4** – blue LED strip (LP SMD 5050, 300 Led, IP65, 12V, 12 W, 455 nm); 5 - magnetic stirrer (IKA® C-Mag HS 7); 6 - Schlenk tube sealed with rubber septum. The temperature of the reaction vessel did not exceed 25-27°C depending on the ambient temperature.

Cu-free Sonogashira coupling under visible light irradiation.

A Schlenk-tube equipped with a magnetic stirrer was charged with aryliodide (0.2 mmol), photocatalyst ($Ru(bpy)_3/(NPy_2)Pd$ (1/1 mol%) or Ru(L)Pd (1 mol %)) and phosphine (2 mol%) and filled with dry argon. The vessel was sealed with a septum and phenylacethylene (or was added earlier in case of solid arylacethylene) (0.25 mmol), triethylamine (1 mL) and DMF (4 mL) were added by syringes. The reaction mixture was stirred under irradiation (Figure S53) the exact time. The probe of the reaction mixture (~50–70 µl) was analyzed by NMR ¹H in CDCl₃ without solvent evaporation.

Table S19. Photoaccelerated Sonogashira coupling.					
MeO	Precatalyst/PR ₃ Et ₃ N, DMF blue LEDs (12 W, 455 nm)	MeO-			

Entry ^a	Precatalyst (mol%)	Phosphine (mol%)	Time, h	Conversion of Ar-I, % ^b	Yield, % ^b
1	Ru(bpy)₃/(NPy)₂Pd (8/4)	$P(tBu)_{3}(4)$	4	78	36
2 °	Ru(bpy)₃/(NPy)₂Pd (8/4)	$P(tBu)_{3}(4)$	4	0	0
3	(NPy) ₂ Pd (4)	$P(tBu)_{3}(4)$	4	0	0
4	Ru(bpy) ₃ /(NPy) ₂ Pd (8/4)	$PPh_3(4)$	24	>95	>95
5	Ru(bpy)₃/(NPy)₂Pd (1/1)	$P(tBu)_{3}(2)$	4	40	28
6	Ru(bpy)₃/(NPy)₂Pd (1/1)	JohnPhos (2)	24	86	80
7	Ru(bpy)₃/(NPy)₂Pd (1/1)	$PPh_3(2)$	24	30	30
8	Ru(bpy)₃/(NPy)₂Pd (1/1)	$PPh_3(2)$	58	50	50
9	Ru(Phen-3NPy ₂)Pd (1)	-	12	15	15
10	Ru(Phen-3NPy ₂)Pd (1)	-	24	49	49
11	Ru(Phen-3NPy ₂)Pd (1)	$P(tBu)_{3}(2)$	4	>95	62
12	Ru(Phen-4NPy ₂)Pd (1)	$P(tBu)_{3}(2)$	4	>90	60
13	Ru(Phen-5NPy ₂)Pd (1)	$P(tBu)_{3}(2)$	4	>95	52
14	Ru(Phen-3NPy ₂)Pd (1)	$PPh_3(2)$	4	25	25
15	Ru(Phen-3NPy ₂)Pd (1)	$PPh_3(2)$	24	60	60
16	Ru(Phen-3NPy ₂)Pd (1)	$PPh_3(2)$	50	100	>95
17	Ru(Phen-4NPy ₂)Pd (1)	$PPh_3(2)$	24	75	75
18	Ru(Phen-4NPy ₂)Pd (1)	$PPh_3(2)$	50	100	>95
19	Ru(Phen-5NPy ₂)Pd (1)	$PPh_3(2)$	24	35	35
20	Ru(Phen-5NPy ₂)Pd (1)	$PPh_3(2)$	58	79	79
21	Ru(tpphz)Pd (1)	$PPh_3(2)$	24	30	30
22	Ru(tpphz)Pd (1)	$PPh_3(2)$	48	60	60
23 °	Ru(Phen-3NPy₂)Pd (1)	$PPh_3(2)$	4	0	0
24 ^d	Ru(Phen-3NPy₂)Pd (1)	$PPh_3(2)$	24,60	0	0

^a Reaction conditions: phenylacetylene (0.25 mmol), 4-iodoanizole (0.2 mmol), photocatalyst, phosphine, Et_3N (1 mL), DMF (4 mL), argon atmosphere, in Schlenk tube, blue LED (455 nm, 12 W), r.t. The yields were determined from NMR ¹H analysis of the reaction mixture. ^b The conversion and yield were determined from NMR ¹H analysis of the reaction mixture. ^c The reaction was performed in the dark. ^d Mercury drop was added to the reaction.

S62

1,2-Diphenylethyne, 1-methoxy-4-(phenylethynyl)benzene, 1-(4-(phenylethynyl)phenyl)ethanone and methyl-3-(phenylethynyl)benzoate are known compounds and their spectral data were consistent with those in the literature ¹⁹.

1,2-Diphenylethyne. ¹H NMR (CDCl₃, 400 MHz): δ 7.58–7.56 (m, 4 H), 7.39–7.35 (m, 6 H).

1-Methoxy-4-(phenylethynyl)benzene. ¹H NMR (CDCl₃, 400 MHz): δ 7.51 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.5 Hz, 2H), 7.47 (d, ³*J* = 8.7 Hz, 2H), 7.36–7.31 (m, 3H), 6.88 (d, ³*J*=8.7 Hz, 2H), 3.83 (s, 3H, CH₃).

1-(4-(Phenylethynyl)phenyl)ethanone. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, ³*J* = 7.6 Hz, 2H), 7.61 (d, ³*J* = 7.6 Hz, 2H), 7.56–7.53 (m, 2H), 7.38–7.35 (m, 3H), 2.60 (s, 3H, CH₃).

Methyl-3-(phenylethynyl)benzoate. ¹H NMR (CDCl₃, 400 MHz): δ 8.20 (s, 1H), 8.00 (d, ³J = 7.1 Hz, 1H), 7.69 (d, ³J = 7.1 Hz, 1H), 7.57–7.51 (m, 2H), 7.43 (t, ³J = 7.7 Hz, 1H), 7.38–7.34 (m, 3H), 3.94 (s, 3H, CH₃).

NMR studies of transformations of Ru(Phen-3NPy₂)Pd

The NMR-tube was charged with $\mathbf{Ru}(\mathbf{Phen-3NPy}_2)\mathbf{Pd}$ (0.0025 mmol), flushed with argon, then solvent (650 µL, CD₃CN or DMF-D7) and additional reagent (if required) were added. The tube was sealed with cap and parafilm, thoroughly shacked and NMR spectra were registered. Irradiation experiments were conducted directly in NMR-tube using photoreactor (Fig. S53, 12 W blue LEDs, 455 nm). The NMR spectra are given at Figures S54–S56, the conditions of each experiment are given in the captions.

Figure S55. (a) ¹H NMR spectrum of **Ru(Phen-3NPy₂)** (400 MHz, CD₃CN, 298 K); (b) ¹H NMR spectrum of **Ru(Phen-3NPy₂)Pd** (400 MHz, CD₃CN, 298 K); (c) ¹H NMR spectrum of **Ru(Phen-3NPy₂)Pd** (400 MHz, CD₃CN, 298 K) after irradiation (12 W Blue LEDs, 455 nm, 8 h, r.t.); (d) ¹H NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd** and PPh₃ (2 equiv.) (400 MHz, CD₃CN, 298 K); (e) ¹H NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd** and PPh₃ (2 equiv.) after irradiation (12 W Blue LEDs, 455 nm, 8 h, r.t.) (400 MHz, CD₃CN, 298 K).

Figure S56. (a) ³¹P NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd** and PPh₃ (2 equiv.) (162.5 MHz, CD₃CN, 298 K); (b) ³¹P NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd** and PPh₃ (2 equiv.) after irradiation (12 W Blue LEDs, 455 nm, 8 h, r.t.) (162.5 MHz, CD₃CN, 298 K). Signal assignment was based on the refs. ²⁰⁻²².

Figure S57. (a) ³¹P NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd** and PPh₃ (2 equiv.) (162.5 MHz, DMF-D7, 298 K); (b) ³¹P NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd**, PPh₃ (2 equiv.) and Et₃N (75 equiv.) (162.5 MHz, DMF-D7, 298 K). (c) ³¹P NMR spectrum of the mixture of **Ru(Phen-3NPy₂)Pd**, PPh₃ (2 equiv.) and Et₃N (75 equiv.) after irradiation (12 W Blue LEDs, 455 nm, 8 h, r.t.) (162.5 MHz, DMF-D7, 298 K). Signal assignment was based on the refs. ²⁰⁻²³.

9. NMR-spectra

NMR-spectra of the ligands

Figure S58. ¹H NMR spectrum of Phen-3NPy₂ (CDCl₃, 400 MHz, 300 K).

Figure S59. ¹³C NMR spectrum of Phen-3NPy₂ (CDCl₃, 100.6 MHz, 300 K).

Figure S60. ¹H NMR spectrum of Phen-4NPy₂ (CDCl₃, 400 MHz, 300 K).

Figure S61. 13 C NMR spectrum of Phen-4NPy₂ (CDCl₃, 100.6 MHz, 300 K).

Figure S62. ¹H NMR spectrum of Phen-5NPy₂ (CDCl₃, 400 MHz, 300 K).

Figure S63. ¹³C NMR spectrum of Phen-5NPy₂ (CDCl₃, 100.6 MHz, 300 K).

Figure S64. ¹H NMR spectrum of Phen-4,7(NPy₂)₂, (CDCl₃, 400 MHz, 300 K).

Figure S65. ¹³C NMR spectrum of Phen-4,7(NPy₂)₂ (CDCl₃, 100.6 MHz, 300 K).

Figure S66. ¹H NMR spectrum of Phen-4NPy (CDCl₃, 400 MHz, 300 K).

Figure S67. ¹³C NMR spectrum of **Phen-4NPy** (CDCl₃, 100.6 MHz, 300 K). S70

Figure S68. ¹H NMR spectrum of Phen-4N (DMSO-d6 – D_2O , 400 MHz, 300 K).

Figure S69. ¹³C NMR spectrum of Phen-4N (DMSO-d6 – D₂O, 100.6 MHz, 300 K).

Figure S70. ¹H NMR spectrum of **NPy**₂ (CDCl₃, 400 MHz, 300 K).

Figure S71. ¹³C NMR spectrum of **NPy**₂ (CDCl₃, 100.6 MHz, 300 K).

Figure S72. ¹H NMR spectrum of Ru(Phen-3NPy₂) (CD₃CN, 400 MHz, 300 K).

Figure S73. ¹³C NMR spectrum of **Ru(Phen-3NPy₂)** (CD₃CN, 100.6 MHz, 300 K).

Figure S74. ¹H NMR spectrum of Ru(Phen-4NPy₂) (CD₃CN, 400 MHz, 300 K).

Figure S75. ¹³C NMR spectrum of **Ru(Phen-4NPy₂)** (CD₃CN, 100.6 MHz, 300 K).

Figure S76. ¹H NMR spectrum of Ru(Phen-5NPy₂) (CD₃CN, 400 MHz, 300 K).

Figure S77. ¹³C NMR spectrum of **Ru(Phen-5NPy₂)** (CD₃CN, 100.6 MHz, 300 K).

Figure S78. ¹H NMR spectrum of **Ru[Phen-4,7(NPy₂)₂]** (CD₃CN, 400 MHz, 300 K).

Figure S79. ¹³C NMR spectrum of **Ru[Phen-4,7(NPy**₂)₂] (CD₃CN, 100.6 MHz, 300 K).

Figure S80. ¹H NMR spectrum of Ru(Phen-3NPy₂)Pd (CD₃CN, 400 MHz, 300 K).

Figure S81. ¹³C NMR spectrum of **Ru(Phen-3NPy₂)Pd** (CD₃CN, 100.6 MHz, 300 K).

Figure S82. ¹H NMR spectrum of Ru(Phen-4NPy₂)Pd (CD₃CN, 400 MHz, 300 K).

Figure S83. ¹³C NMR spectrum of **Ru(Phen-4NPy₂)Pd** (CD₃CN, 100.6 MHz, 300 K).

Figure S84. ¹H NMR spectrum of Ru(Phen-5NPy₂)Pd (CD₃CN, 400 MHz, 300 K).

Figure S85. ¹³C NMR spectrum of **Ru(Phen-5NPy₂)Pd** (CD₃CN, 100.6 MHz, 300 K).

Figure S86. ¹H NMR spectrum of (**NPy**₂)**Pd** (CDCl₃, 400 MHz, 300 K).

Figure S87. ¹H NMR spectrum of **Ru(tpphz)** (CD₃CN, 400 MHz, 300 K).

Figure S88. ¹H NMR spectrum of Ru(tpphz)Pd (CD₃CN, 400 MHz, 300 K).

10. Mass-spectra of the complexes

Figure S89. Mass-spectrum (MALDI-TOF) of the complex **Ru**(**Phen-5NPy**₂). Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S90. Mass-spectrum (MALDI-TOF) of the complex **Ru(Phen-4NPy**₂). Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S91. Mass-spectrum (MALDI-TOF) of the complex **Ru**(**Phen-3NPy**₂). Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S92. Mass-spectrum (MALDI-TOF) of the complex **Ru[Phen-4,7(NPy₂)₂]**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S93. Mass-spectrum (MALDI-TOF) of the complex **Ru**(**Phen-3NPy**₂)**Pd**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S94. Mass-spectrum (MALDI-TOF) of the complex **Ru**(**Phen-4NPy**₂)**Pd**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S95. Mass-spectrum (MALDI-TOF) of the complex **Ru**(**Phen-5NPy**₂)**Pd**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S96. Mass-spectrum (MALDI-TOF) of the complex (**NPy**₂)**Pd**. Matrix: 1,8,9-trihydroxyanthracene. Calibration standard: PEG-600+PEG-1000.

Figure S97. Mass-spectrum (ESI) of the complex **Ru(tpphz)Pd**. Voltage 5.5 kV; ion source gas 15 arb, curtain gas 20 arb; eluent MeCN+0.1% HCOOH.

11. Atomic coordinates obtained by DFT computations

Ru(Phen)

1	44	6.151790919	28.369561452	-3.735231499
2	7	8.165851608	28.470409666	-3.768569900
3	7	6.589095649	26.799851053	-2.546790941
4	7	6.220899103	27.357780853	-5.470021132
5	7	5.860728528	29.863728292	-5.045189879
6	7	4.165138910	28.235076524	-3.481564168
7	7	5.916694279	29.486816592	-2.082300616
8	6	8.958255688	29.329949753	-4.437594418
9	6	10.362461332	29.280711902	-4.379038080
10	6	10.999392320	28.314580184	-3.611360038
11	6	10.204759946	27.383316696	-2.901066556
12	6	10.731734419	26.332080405	-2.068653858
13	6	9.901129514	25.466546020	-1.407386890
14	6	8.468951834	25.570345404	-1.523837450
15	6	7.550130973	24.709537843	-0.877380150
16	6	6.192089628	24.918354787	-1.077877059
17	6	5.748611400	25.962519048	-1.908815332
18	6	7.936636930	26.597434568	-2.339454223
19	6	8.799314226	27.501929916	-3.019581907
20	6	6.460758897	26.027398062	-5.606574620
21	1	6.594923541	25.463966870	-4.682333158
22	6	6.529757815	25.387615545	-6.839500644
23	1	6.725249969	24.312050832	-6.873244473
24	6	6.351320362	26.135139363	-8.010699990
25	6	6.112460383	27.502797304	-7.889197285
26	1	5.976154017	28.117885239	-8.781268348
27	6	6.053066951	28.092416656	-6.619270717
28	6	5.817263081	29.518954671	-6.374825751
29	6	5.573064375	30.467300466	-7.377079540
30	1	5.540572060	30.156259097	-8.423467224
31	6	5.368188873	31.803029377	-7.036081629
32	6	5.415440316	32.154984260	-5.681110148
33	1	5.262414148	33.187267983	-5.353846022
34	6	5.657835160	31.169518559	-4.729975998
35	1	5.699639519	31.422369894	-3.669764219
36	6	3.303781973	27.562386571	-4.288437894
37	1	3.747386508	27.029867030	-5.130830692
38	6	1.929937578	27.525363556	-4.074487407
39	1	1.296656008	26.960402808	-4.764376937
40	6	1.387604632	28.214094480	-2.981969962
41	6	2.256911561	28.913920010	-2.146947802
42	1	1.868526405	29.464716780	-1.287613605

43	6	3.632856848	28.913541265	-2.411415220
44	6	4.636094516	29.610974112	-1.599754403
45	6	4.351123575	30.345019619	-0.440598980
46	1	3.321331399	30.423169553	-0.085582244
47	6	5.382347598	30.971083225	0.257592943
48	6	6.688602305	30.838085556	-0.230423458
49	1	7.538013345	31.303467212	0.277636142
50	6	6.911102609	30.095663076	-1.385132935
51	1	7.919786145	29.980776444	-1.783764311
52	1	5.173649111	31.548211064	1.162944888
53	1	0.311449636	28.205867171	-2.786547266
54	1	10.317191280	24.674617673	-0.776849808
55	1	5.175299370	32.553264317	-7.808334714
56	1	6.400883862	25.662326444	-8.995782379
57	1	4.680295061	26.120975598	-2.069370006
58	1	8.458919500	30.094485674	-5.036450860
59	1	11.817832095	26.237724157	-1.972146286
60	1	12.091438698	28.268194493	-3.553264195
61	1	7.908451587	23.899021152	-0.234932894
62	1	10.936180302	30.017676750	-4.947644168
63	1	5.446149734	24.279229163	-0.597564586

Ru(Phen-3NPy₂)

1	44	10.585740192	26.484902041	0.497752644
2	7	12.544535890	26.358677027	0.920385595
3	7	10.551333155	25.156474618	1.999051870
4	7	10.865030393	25.116160645	-0.970552178
5	7	10.803641315	27.729453104	-1.078943703
6	7	8.598247470	26.620625001	0.273105346
7	7	10.170527835	27.942465578	1.807900134
8	6	13.544984071	27.004788937	0.266394908
9	6	14.889107713	26.854887147	0.589783688
10	6	15.251581075	25.995979611	1.635027529
11	6	14.238372104	25.320017508	2.312011596
12	6	11.851073347	23.987741862	3.679671039
13	6	10.700139811	23.406895767	4.208042885
14	1	10.758245370	22.732810315	5.067354707
15	6	9.470671315	23.711198360	3.609575096
16	6	9.438778358	24.581090688	2.525583276
17	6	11.758435120	24.850850680	2.579925112
18	6	12.900742617	25.511341309	1.941707161
19	6	10.891924861	23.781975052	-0.868765328
20	1	10.720104159	23.358314677	0.117323371
21	6	11.128767378	22.914159936	-1.977951336
22	6	11.326181176	23.495155480	-3.238279140

S88

23	6	11.292341575	24.896186630	-3.373165805
24	6	11.069814582	25.671062430	-2.213967764
25	6	11.023263797	27.088394412	-2.277970415
26	6	11.201354621	27.760162955	-3.512756067
27	6	11.134542001	29.171869605	-3.500562401
28	6	10.897991861	29.819006285	-2.292716535
29	1	10.833447377	30.909171801	-2.238974810
30	6	10.737242901	29.074766863	-1.112118441
31	1	10.557851507	29.580560192	-0.161184029
32	6	7 841660069	25 891059787	-0 588448242
33	1	8 374840568	25 150660852	-1 186316298
34	6	6 466201787	26 048568910	-0 716266701
35	1	5 921334614	25 423234273	-1 /291/8789
36	1 6	5 808587237	27 006304371	0 067014806
30	6	6 570481353	27.000004371	0.007014000
20	6	7 054202214	27.770314103	1 026000212
20	C C	0 050270566	27.303702301	1 020405710
39	6	0.0302/0300	20.307240223	1.920403710
40	6	8.436/611/9	29.299499300	2.02/002333
41	6	9.3/392/0/1	29.941822835	3.634553013
42	6	10./1820/083	29.564884375	3.516725350
43	Ţ	11.49/3646/2	30.031691613	4.125844917
44	6	11.070356511	28.574526657	2.606456123
45	1	12.111840380	28.270246576	2.493812728
46	1	9.064682863	30.717769520	4.340662082
47	1	4.727654461	27.153832713	-0.009758527
48	1	8.534137099	23.284823623	3.980027198
49	1	11.265770490	29.738761122	-4.427734846
50	1	11.523730075	22.869567511	-4.110909691
51	1	8.492409550	24.834553743	2.045930268
52	1	13.241502160	27.670916487	-0.541841908
53	1	16.299965385	25.855421750	1.912915986
54	1	15.639744620	27.409284708	0.019538578
55	6	11.482942793	25.593382606	-4.622053294
56	1	11.664631686	25.003121434	-5.525630442
57	6	11.437545900	26.960351062	-4.688691325
58	1	11.581148768	27.470714071	-5.646317016
59	1	12.826444505	23.778723843	4.124256056
60	1	14.483453301	24.638218320	3.129073818
61	1	6.093456847	28.530583339	1.571003385
62	1	7.379452537	29.564902270	2.895390819
63	7	11.096841448	21.528476186	-1.814024652
64	6	11.590738369	20.868833851	-0.651412146
65	6	11.288288872	19.507079819	-0.445638899
66	7	12.338190240	21.583582827	0.195720307
67	6	11.819148322	18.875683285	0.676798378
68	6	12.836122767	20.958544704	1.275053684
69	6	12.621360765	19.610040723	1.561785406
70	1	10.658591229	18.960539738	-1.151159119
71	1	11.606865077	17.817361660	0.859286119
72	1	13.455093660	21.575020007	1.938948869
73	1	13 067767444	19 149893092	2 447949692
74	6	10 919599698	20 717894292	-3 000472240
75	7	12 024500169	20 178707394	-3 517603415
76	6	9 636396613	20.539553209	-3 532320468
, 0 77	6	11 889663803	19 411419973	-4 609062649
7 9 7 9	6	9 507110152	19 7/68601//	-4 679633974
79 79	6	10 655834034	19 168162897	-5 220370766
,) 80	1	8 767005101	20 998995572	-3 052020742
81	⊥ 1	12 212150022	18 973037791	-5 002029742
82	- 1	8 52271/212	19 575825562	-5 127203090
02 Q 7	⊥ 1	10 602/15070	10 535100000	-6 120/26064
00	1	TO.0004T09/0	TO . J J J T O J J O J	0.120430004

Ru(Phen-4NPy ₂)				
		73		
	C	1 69 72		
		67 68		
		65 66 58		
		64 66 67 60		
	78	0 000		
⁶² 78	75	23 24 29 3		
83 81		21 6 81		
		2.00 2 0 6 37	48	
		00	61	
		e 17 61 99	62 47	
		88	•	
		49		
-		6		0 510404000
	44 7	10.401564523	26.491824154	0.513404900
2	7	10 296968703	20.073707150	1 938422899
4	7	10.377803060	25.189542060	-1.043340017
5	7	10.668436795	27.762689527	-1.026089797
6	7	8.438915918	26.902040414	0.453946654
7	7	10.284947697	27.914288131	1.915856788
8	6	13.375471018	26.636871089	0.073154309
9	6	14./04926423	26.2///3/163	0.262433191
10	6	13 979056286	23.283430084	1 905093646
12	6	11.537894614	23.572475377	3.369942951
13	6	10.361024135	23.128844932	3.969206376
14	1	10.386291965	22.369038921	4.755408673
15	6	9.148701297	23.685371165	3.539707030
16	6	9.159067424	24.649879434	2.538964894
1 / 1 8	6	12 657071074	24.5482U2261 25 095037724	2.364/1/420
19	6	10.288420818	23.844102027	-1.018143285
20	1	10.176207954	23.379362808	-0.036097131
21	6	10.294340044	23.044666674	-2.152576808
22	1	10.172449368	21.969755787	-2.025279163
23	6	10.385446512	23.597904835	-3.452603768
24 25	6	10.570309342	25.035695859	-2 287687076
26	6	10.707552876	27.172243178	-2.273029901
27	6	10.925832860	27.894435374	-3.469582240
28	6	11.072520546	29.300318260	-3.376859635
29	6	11.001018114	29.893381821	-2.125678493
30	1	11.104256458	30.975229090	-2.004099340
31 32	6 1	10.802400440	29.101529868 29.56/321952	-0.980230705
33	6	7.523517152	26.309636668	-0.357530766
34	1	7.899866938	25.518268363	-1.006985459
35	6	6.179246856	26.664562650	-0.375959709
36	1	5.498545196	26.141464903	-1.053510815
37	6	5.726107048	27.685675552	0.469956825
30 30	6 6	0.051626960 7 002752251	28.305806605 27 002206260	1 286002167
40	6	9.044928006	28.465994476	2.137831079
41	6	8.840068836	29.461797279	3.102700103
42	6	9.908596278	29.912373464	3.875217853
43	6	11.169376070	29.339967108	3.659045137
44	1	12.043403159	29.648791419	4.239395086
45	6	II.3I3563887	28.35/1/2995	2.686547787

46	1	12.286876130	27.902104045	2.497882058
47	1	9.763307174	30.689242546	4.631185716
48	1	4.675445161	27.989410044	0.476537735
49	1	8.193755822	23.379712798	3.976339430
50	1	11.240702772	29.896928522	-4.279012144
51	1	8.226825762	25.093579628	2.187407382
52	1	13.108528926	27.409311599	-0.649106907
53	1	16.058740655	24.978785538	1.368993088
54	1	15.480502221	26.776787870	-0.325383431
55	6	10.852065530	25.788579783	-4.706158714
56	1	10.968074872	25.260620085	-5.650928507
57	6	11.014121528	27.149827300	-4.690801937
58	1	11.231519166	27.685697781	-5.619655901
59	1	12.501714525	23.165576277	3.683668654
60	1	14.186537510	23.909850753	2.639646126
61	1	6.334945473	29.106077904	1.979141585
62	1	7.841299614	29.878745120	3.249275687
63	7	10.356050289	22.789906001	-4.557179783
64	6	9.870872454	23.198984844	-5.857894911
65	7	10.737671383	23.084242146	-6.864897671
66	6	8.538717834	23.605979193	-6.008350983
67	6	10.302230506	23.389778056	-8.096301155
68	6	8.100339171	23.938092499	-7.295494356
69	6	8.998340333	23.829800851	-8.362834411
70	1	7.866403045	23.635007785	-5.146622855
71	1	11.030972453	23.278600570	-8.907870905
72	1	7.066720550	24.258179126	-7.462762383
73	1	8.696532774	24.068036142	-9.387285229
74	6	10.470293206	21.347169946	-4.423431012
75	7	9.377545741	20.702469180	-4.010506702
76	6	11.669756261	20.725463592	-4.784729430
77	6	9.443667624	19.364412454	-3.935189422
78	6	11.724494654	19.328118979	-4.706067625
79	6	10.590365042	18.633085616	-4.273988424
80	1	12.514422879	21.322121496	-5.137539350
81	1	8.535523158	18.853748028	-3.593691555
82	1	12.638091766	18.793613180	-4.985628443
83	1	10.585130758	17.541076077	-4.203679368

Ru(Phen-5NPy₂)

44	7.363062111	27.617944674	-1.094094990
7	8.996124561	27.891933522	0.034051917
7	6.814416846	26.663252237	0.580513403
7	8.241448597	26.012087826	-1.944440152

5	7	8.101014229	28.476307784	-2.767203870
6	7	5.615864124	27.400511696	-2.062278456
7	7	6.388810495	29.254574601	-0.463215566
8	6	10.132327499	28.530265558	-0.352205921
9	6	11.239413789	28.681932007	0.474813272
10	6	11.206220857	28.151630702	1.771598681
11	6	10.054747605	27.481440604	2.179267157
12	6	7.428055615	26.063181308	2.849915003
13	6	6.204514541	25.424546221	3.042298433
14	1	5.969579655	24.943572668	3.996148914
15	6	5.287782567	25.416676442	1.982746085
16	6	5.624271798	26.040490028	0.786542361
17	6	7.713540273	26.672865284	1.620606187
18	6	8.968541896	27.359661267	1.301815681
19	6	8.373207230	24.770017203	-1.445558426
20	1	7.950738545	24.588455560	-0.455478072
21	6	9.014157999	23.736207538	-2.146845125
22	1	9.102725676	22.755201464	-1.672242109
23	6	9.516306803	23.960674814	-3.420818311
24	6	9.385821219	25.248111041	-3.991401224
25	6	8.779842088	26.245104467	-3.193391418
26	6	8.705101598	27.596765307	-3.634402449
27	6	9.256117790	27.960782716	-4.885977098
28	6	9.170135667	29.327706148	-5.252627319
29	6	8.560413747	30.216398931	-4.378375818
30	1	8.473471038	31.278403451	-4.624627285
31	6	8.036626280	29.764606827	-3.153070146
32	1	7.557143120	30.462379193	-2.463896991
33	6	5.295647984	26.391561473	-2.914233205
34	1	6.049664935	25.616028935	-3.052454742
35	6	4.081008642	26.319728797	-3.587908177
36	1	3.894039215	25.476936286	-4.259132502
37	6	3.129092611	27.328883226	-3.396669231
38	6	3.443132048	28.374006724	-2.529722204
39	6	4.682950861	28.392696596	-1.877497517
40	6	5.114360491	29.437681590	-0.943651542
41	6	4.326718422	30.529058313	-0.553134246
42	6	4.8311916//	31.464123288	0.348624026
43	6	6.128542476	31.2/4/55650	0.842093089
44	L C	6.575909177	31.9/384/294	1.5543/1132
45	6	6.863100505	30.1/210/693	0.420030547
40	1	1.8/6556898	30.008190388	0.788553038
4 /	1	4.220920303	27 2022222719	0.001903002
48	1	2.105010704	27.302248332	-3.913382907
49 50	⊥ 1	9 576122104	24.951007545	-6 210512660
51	⊥ 1	10 009/10921	23.1603/3556	-3.075527731
52	1 1	1 926735517	26 0/3/09225	-0.052204862
52	1	10 135299347	28 936/65279	-1 36/68903/
54	1	12 060056194	28 256576975	2 446841323
55	1	12 118439977	20.230370573	0 097280719
56	£	9 865295490	25 616398839	-5 319592175
57	6	9 819011659	26 938565407	-5 713802817
58	1	10.180457915	27.213293991	-6.707801957
59	1	8.165652566	26.091798130	3.654848561
60	1	9,995862393	27.048799191	3.180440386
61	1	2.727265746	29.181035115	-2.359837235
62	1	3.317072261	30.641685974	-0.953999887
63	7	10.418520547	24.621264310	-6.148229527
64	6	9.595731322	23.521789915	-6.543224291
65	7	8.292280002	23.619360538	-6.264209670
66	6	10.172520777	22.398173619	-7.165667898
67	6	7.500916207	22.587798859	-6.604330784
68	6	9.333056985	21.344887080	-7.523270846

69	6	7.961835105	21.434725066	-7.241201317
70	1	11.246583356	22.357724230	-7.362741597
71	1	6.436489090	22.700036362	-6.362581809
72	1	9.746826954	20.457355822	-8.012684292
73	1	7.268387275	20.632030501	-7.507714239
74	6	11.489011333	25.011046041	-7.034830465
75	6	12.775354014	25.205782181	-6.511187010
76	7	11.181459512	25.160995529	-8.324995800
77	6	13.792886538	25.585568492	-7.393164159
78	6	12.167847442	25.507113134	-9.165145537
79	6	13.486469848	25.737313632	-8.750307185
80	1	12.969461684	25.047117262	-5.446221236
81	1	14.812701088	25.743188184	-7.027159320
82	1	11.888307931	25.610625423	-10.220635245
83	1	14.251628115	26.022074036	-9.478824555

Ru(Phen-3NPy₂)Pd

1	44	10.604336238	26.425721914	0.368224446
2	7	12.614038879	26.278251630	0.407449190
3	7	10.851760063	25.128932391	1.889887455
4	7	10.586820006	25.073393854	-1.137304610
5	7	10.508733931	27.683105961	-1.197126973
6	7	8.617386244	26.587394057	0.564001994
7	7	10.492236573	27.879871121	1.741930757
8	6	13.468831651	26.844662639	-0.480057852
9	6	14.845941106	26.653305777	-0.434015423
10	6	15.389154820	25.829858272	0.557862895
11	6	14.524240823	25.244464145	1.480756623
12	6	12.443483782	24.162483060	3.437904323
13	6	11.411722362	23.623175040	4.202325542
14	1	11.632237741	23.046308722	5.104877598
15	6	10.093325499	23.826008427	3.777317571
16	6	9.857278598	24.577899849	2.631310431
17	6	12.145000901	24.901188582	2.286669939
18	6	13.149220111	25.487180406	1.392885797
19	6	10.691739049	23.729720710	-1.077068222
20	1	10.777368478	23.289949104	-0.082786730
21	6	10.719137240	22.905357541	-2.233145533
22	6	10.624585095	23.500649119	-3.492679144
23	6	10.547104087	24.900526051	-3.590856812
24	6	10.533194168	25.645483967	-2.390265125
25	6	10.470785310	27.064962010	-2.425710629
26	6	10.393181657	27.757358891	-3.658580655
27	6	10.336098652	29.168929518	-3.612236526
28	6	10.360769317	29.793581906	-2.370831999
29	1	10.318023770	30.882776103	-2.285514247
30	6	10.446384347	29.030048088	-1.195175067

31	1	10.476468076	29.521301291	-0.220908436
32	6	7.686775606	25.888190835	-0.137595249
33	1	8.073611678	25.159820042	-0.851870966
34	6	6 317315995	26 061766716	0 028326553
35	1	5 626154252	25 162871396	-0 571/22355
25	1 G	5 051754105	27 002051006	0.071422000
20	6	5.051754105	27.002951006	1 (777770456
37	6	6./919/6604	27.735691059	1.6////0456
38	6	8.160238152	27.51/546951	1.46//43990
39	6	9.232870736	28.239579442	2.158633399
40	6	9.030498400	29.218428950	3.140424382
41	6	10.124752464	29.857311063	3.721273337
42	6	11.407971624	29.492265676	3.294685240
43	1	12.303501696	29.959776873	3.713653250
44	6	11.548212377	28.510818542	2.319007234
45	1	12 537347310	28 212679334	1 969535634
16	1	9 981328422	30 622948148	1 188901991
47	1	4 700007075		1 110400250
4 /	1	4.780927975	27.163241939	1.110498356
48	Ţ	9.244211037	23.416104056	4.3318/6313
49	1	10.276546761	29.751281087	-4.53/064504
50	1	10.627835325	22.893001514	-4.399926310
51	1	8.838592406	24.760783804	2.286553205
52	1	13.020999831	27.472525854	-1.251356312
53	1	16.463147465	25.631380495	0.601436940
54	1	15.477412917	27.134226909	-1.186152510
55	6	10.463143313	25.615382268	-4.840450329
56	1	10 465358515	25 039744540	-5 771297826
57	6	10 386034578	26 981065252	_/ 87281738/
57	1	10 204557747		= 4.072017304 = 020500751
50	1	10.324337747	27.509024450	-5.629506451
59	1	13.483815341	24.009973943	3.727773092
60	T	14.908134652	24.563155516	2.240869160
61	1	6.466167653	28.483799028	2.403960516
62	1	8.015455363	29.477282321	3.449420761
63	7	10.815903515	21.491708713	-2.144306059
64	6	10.588866780	20.797834741	-0.916361774
65	6	9.314229476	20.325926399	-0.601718239
66	7	11.678841504	20.528440843	-0.148437143
67	6	9.146617818	19.526634220	0.533638395
68	6	11 516341472	19 729107895	0 935202529
69	6	10 273929680	19 211780958	1 298605957
70	1	8 480858231	20 567750883	_1 266314813
70	1	0.400000201	10 121640161	-1.200514015
71	1	0.139707030	19.131049101	0.794540164
12	1	12.41/524/6/	19.524960943	1.514515545
13	T	10.205410491	18.562/88401	2.1/616//46
74	6	11.810313624	20.861472131	-2.970027159
75	7	13.069926485	20.826516811	-2.462353124
76	6	11.482729316	20.297095101	-4.200162808
77	6	14.050930554	20.266242631	-3.210963693
78	6	12.496630099	19.712162934	-4.969188432
79	6	13.799211668	19.709800035	-4.465118052
80	1	10.443538566	20.319091524	-4.538513392
81	1	15.049732398	20.275759351	-2.771581120
82	1	12.267675802	19.261845283	-5.939733518
83	- 1	14 627837287	19 266/21362	-5 02/581/89
дл	16	13 3611201201	21 202616611	-0 6306500/1
04	1 U	15 010045417	21.JUJUIUU14 22 520550000	-0.030039041 -1 220070125
00	⊥ / 1 ¬	10.21024041/	22.000000000	-1.2300/9133
86	\perp /	13./51141561	21.83/235303	1.558868245

Ru(Phen-4NPy₂)Pd

1	44	11.008692539	25.979061535	1.094258240
2	7	9.156234522	26.564200215	0.585056746
3	7	11.422731481	27.650696586	0.065814063
4	7	11.014834739	24.764096222	-0.513279955
5	7	10.450038890	24.249779370	1.973612874
6	7	12.894832972	25.590819904	1.663721863
7	7	11.103139490	27.034652110	2.800039595
8	6	8.004846028	25.904315499	0.877143807
9	6	6.749426133	26.349189741	0.476699289
10	6	6.646531882	27.530701933	-0.269087581
11	6	7.818858603	28.215167470	-0.585445005
12	6	10.513451982	29.553393557	-1.133294227
13	6	11.791618123	30.067415092	-1.344682187
14	1	11.933435153	31.004599663	-1.890294842
15	6	12.884958695	29.352878602	-0.837775997
16	6	12.661482665	28.167725123	-0.145427749
17	6	10.349884369	28.351872033	-0.430918411
18	6	9.056353750	27.718281262	-0.154729941
19	6	11.284695418	25.060104480	-1.797891873
20	1	11.565795612	26.091591841	-2.018727529
21	6	11.227940798	24.109282288	-2.832214167
22	1	11.464846182	24.431002982	-3.849824002
23	6	10.877209480	22.785283685	-2.577522957
24	6	10.576511932	22.433870536	-1.223860071
25	6	10.656128106	23.458701671	-0.248672383
26	6	10.362273814	23.175211827	1.114785195
27	6	10.001420061	21.866114549	1.517851420
28	6	9.728466339	21.660295099	2.892055389
29	6	9.828890884	22.739691904	3.758534260
30	1	9.630343639	22.626087359	4.827820899
31	6	10.190050286	24.009565715	3.271826302
32	1	10.263116303	24.859736433	3.952870008
33	6	13.768585287	24.775967928	1.017086369
34	1	13.410529047	24.324395752	0.090950140
35	6	15.053766014	24.515904890	1.480149542
36	1	15.703010033	23.848232225	0.906780149
37	6	15.486387349	25.109784683	2.672869720
38	6	14.599341482	25.941310676	3.354108114
39	6	13.315764164	26.166104881	2.838685455
40	6	12.300955490	27.013357296	3.473372215
41	6	12.498247367	27.741211774	4.654594808
42	6	11.463062214	28.515287744	5.175815625
43	6	10.242377518	28.537520061	4.488912019
44	1	9.394921966	29.127184318	4.849861373
45	6	10.105225300	27.795842721	3.320381787

46	1	9.161838113	27.795566348	2.772722804
47	1	11.603668614	29.088968981	6.096322293
48	1	16.490805690	24.924711967	3.064181377
49	1	13.910636678	29.708554463	-0.970835341
50	1	9.445295327	20.666547831	3.253224509
51	1	13.497991391	27.594605759	0.256992599
52	1	8.107988525	24.989015459	1.461373413
53	1	5.673898603	27.908066964	-0.597641508
54	1	5.864743400	25.767207916	0.750312009
55	6	10.204419109	21.115096946	-0.800035483
56	1	10.142820247	20.316635834	-1.563563215
57	6	9.932432125	20.841360623	0.512705304
58	1	9.655031826	19.821961383	0.799903809
59	1	9.637806928	30.086570320	-1.509761628
60	1	7.776504203	29.136944181	-1.169921703
61	1	14.899628002	26.414507438	4.291496727
62	1	13.464337717	27.702362310	5.162479801
63	7	10.812460838	21.808689122	-3.621762381
64	6	11.939049914	20.982865548	-3.906078415
65	7	11.766648604	19.638088107	-3.828165765
66	6	13.159817484	21.550038449	-4.286403746
67	6	12.803057003	18.831881694	-4.174794212
68	6	14.234776821	20.716339822	-4.603501283
69	6	14.043361074	19.332742245	-4.560883499
70	1	13.250838483	22.636396203	-4.351274305
71	1	12.612385273	17.760350736	-4.100606137
72	1	15.195925705	21.142822318	-4.907096353
73	1	14.842045552	18.633056154	-4.821347671
74	6	9.571418165	21.535887365	-4.268103016
75	7	9.113467577	20.258083632	-4.233669776
76	6	8.880764890	22.550263822	-4.939375015
77	6	7.975464584	19.960294349	-4.912268979
78	6	7.689503461	22.246486737	-5.602379027
79	6	7.241269698	20.922916598	-5.599657681
80	1	9.291635360	23.561976845	-4.953649475
81	1	7.652639547	18.919655336	-4.858510154
82	1	7.137849791	23.026849059	-6.135747149
83	1	6.328374077	20.623377605	-6.121370831
84	46	10.067155081	18.919055030	-3.165802876
85	17	11.191275034	17.438218688	-1.879543164
86	17	8.098002412	18.163166463	-2.351141221

Ru(Phen-5NPy₂)Pd

1	44	13.107835484	23.208559033	-0.657771501
2	7	15.072556084	23.563741980	-0.872512742
3	7	13.866026344	21.447444494	-0.064868116

4	7	13.029250471	22.700802295	-2.613058753
5	7	12.488253306	24.960214351	-1.442170882
6	7	11.190070724	22.762505064	-0.258089693
7	7	12.983708720	23.805183289	1.252917809
8	6	15.629818650	24.721371012	-1.314309087
9	6	17.000351736	24.897177180	-1.470543606
10	6	17.866609559	23.838260839	-1.168949577
11	6	17 311624090	22 641838257	-0 719272612
12	6	15 877028943	20 135262990	0 278097436
13	6	15 126239056	19 047237849	0 719/10197
11	1	15 615/371/0	18 115592780	1 017601/01
15	L G	12 722007211	10 101520100	0 771205672
10	0	12 140051102	19.181520108	0.771203073
17	6	13.149851182	20.381800354	0.3/9419823
10	6	15.233777013	21.319958254	-0.104159383
10	6	15.922270044	22.524188371	-0.5/8839898
19	6	13.33/01/82/	21.520810156	-3.18919868/
20	1	13.664064336	20.721128501	-2.521780396
21	6	13.234751417	21.298045225	-4.570385387
22	1	13.491108388	20.317428282	-4.981487228
23	6	12.805923109	22.313735272	-5.412328481
24	6	12.489401712	23.569358369	-4.852071510
25	6	12.622026018	23.713151783	-3.451775362
26	6	12.316341561	24.945511184	-2.809325108
27	6	11.871845407	26.053748906	-3.567170926
28	6	11.582230511	27.247680150	-2.865622007
29	6	11.743243795	27.262047507	-1.485680867
30	1	11.525116486	28.160605333	-0.901968144
31	6	12.190187938	26.113299365	-0.810324146
32	1	12 319144698	26 126980264	0 273839571
33	÷ 6	10 301661266	22 212776887	-1 127266370
31	1	10 685327879	21 966308310	-2 118173175
35	6	8 97/972/79	21.900300310	-0.700301230
36	1	8 317681657	21.50/080763	-1 5/9172105
27	L C	9 510741620	21.304909703	-1.J4917210J
20	6	0.310741620	22.2/342/742	1 200100071
30	6	9.408089486	22.841774151	1.3861899/1
39	6	10./34936/78	23.0/58/2362	1.000533999
40	6	11.765480323	23.651010548	1.8/06//810
41	6	11.563/5616/	24.013411135	3.20928/429
42	6	12.616546401	24.54283/368	3.953262274
43	6	13.860248624	24.693060540	3.325835137
44	1	14.724048450	25.098234772	3.860515400
45	6	14.001514395	24.314955635	1.995203356
46	1	14.960426886	24.424390611	1.487185544
47	1	12.473246695	24.828469673	4.999271216
48	1	7.472689728	22.087011757	0.771386989
49	1	13.092798140	18.363045082	1.112830890
50	1	11.235960109	28.136943554	-3.401631115
51	1	12.701638553	22.150579690	-6.506120496
52	1	12.066574242	20.505123481	0.406998627
53	1	14.936761368	25.532398267	-1.541923772
54	1	18.949299775	23.943523278	-1.282931010
55	1	17.378473144	25.858771860	-1.828806874
56	6	12.028840773	24.715606740	-5.627624560
57	6	11.739466329	25.899297852	-4.993523296
58	1	11.394885443	26.756489834	-5.579770494
59	- 1	16 965885155	20 067707904	0 228785886
60	⊥ 1	17 956216989	20.007707907 21 794168158	-0 $4773/9651$
61	⊥ 1	Q 070167516	23 10/0/1000	0.7//JH00JL 2 30/212000
6.2 0 T	⊥ 1	2.0/240/340 10 501000707	23.104041009 23.075061042	2.JJ42120U0 2 667127207
02 63	⊥ C	10.JOLY02/0/	23.0/3001243	J.00/LJ/J0/
03	0	12,3943/1/32	24.//UZYIJ/U	-/.913/29402
64 C 5		13.332/0/540	23./50842428	-8./453821/3
65	6	13.6/9949698	25.989616303	-/.926902333
66	6	14.332097813	23.949345043	-9.642620744
67	6	14.731871547	26.175697577	-8.826475361

68	6	15.049176115	25.140411390	-9.710203970
69	1	13.371092413	26.787242004	-7.248210331
70	1	14.562019352	23.101284874	-10.289213699
71	1	15.274071781	27.126001965	-8.854400631
72	1	15.847019108	25.240666862	-10.450757013
73	6	10.657836447	24.094187097	-7.600946179
74	6	9.454346627	24.768208915	-7.367950472
75	7	10.716404904	22.989066768	-8.388594138
76	6	8.280709785	24.304446575	-7.966299447
77	6	9.579484469	22.562993410	-8.996376350
78	6	8.351668592	23.191063570	-8.808134566
79	1	9.449593867	25.659314911	-6.737276826
80	1	7.332001027	24.823859275	-7.798890789
81	1	9.682990528	21.674153816	-9.620425081
82	1	7.468591245	22.800352579	-9.320688755
83	46	12.415262182	22.026294394	-8.569656824
84	17	14.403113972	20.950252451	-8.690229551
85	17	11.337055947	20.059098613	-8.265877777
86	7	11.881495125	24.570391565	-7.046804569

11. References

5

- 1 D. Tzalis, Y. Tor, F. Salvatorre and S. Jay Siegel, *Tetrahedron Lett.*, 1995, **36**, 3489–3490.
- 2 J. Mlochowski, *Rocz. Chem.*, 1974, **48**, 2145–2155.
- G. I. Graf, D. Hastreiter, L. E. da Silva, R. A. Rebelo, A. G. Montalban and A. McKillop, *Tetrahedron*, 2002, **58**, 9095–9100.
- 4 F. Ferretti, E. Gallo and F. Ragaini, J. Organomet. Chem., 2014, 771, 59–67.
 - J. K. Klosterman, A. Linden and J. S. Siegel, Org. Biomol. Chem., 2008, 6, 2755–2764.
- 6 P. A. Lay, A. M. Sargeson, H. Taube, M. H. Chou and C. Creutz, *Inorg. Synth.*, 1986, DOI: 10.1002/9780470132555.ch78, 291–299.
- A. S. Abel, I. S. Zenkov, A. D. Averin, A. V. Cheprakov, A. G. Bessmertnykh-Lemeune, B.
 S. Orlinson and I. P. Beletskaya, *ChemPlusChem*, 2019, 84, 498–503.
- 8 C. A. Goss and H. D. Abruna, *Inorg. Chem.*, 1985, **24**, 4263–4267.
- 9 A. M. Brouwer, *Pure Appl. Chem.*, 2011, **83**, 2213–2228.
- 10 J. Bolger, A. Gourdon, E. Ishow and J.-P. Launay, *Inorg. Chem.*, 1996, **35**, 2937–2944.
- 11 G. Sheldrick, Acta Cryst. C, 2015, 71, 3–8.
- 12 G. Sheldrick, *Acta Cryst. A*, 2015, **71**, 3–8.
- 13 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- G. V. Morozkov, A. S. Abel, M. A. Filatov, S. E. Nefedov, V. A. Roznyatovsky, A. V. Cheprakov, A. Y. Mitrofanov, I. S. Ziankou, A. D. Averin, I. P. Beletskaya, J. Michalak, C. Bucher, L. Bonneviot and A. Bessmertnykh-Lemeune, *Dalton Trans.*, 2022, 51, 13612–13630.
- 15 A. A. Granovsky, *Firefly version 8, www <u>http://classic.chem.msu.su/gran/firefly/index.html</u>.*
- 16 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery Jr, J. Comput. Chem., 1993, 14, 1347–1363.
- 17 C. L. Barros, P. J. P. de Oliveira, F. E. Jorge, A. Canal Neto and M. Campos, *Mol. Phys.*, 2010, **108**, 1965–1972.
- 18 W. Huang and T. Ogawa, *Polyhedron*, 2006, **25**, 1379–1385.
- 19 A. Sagadevan and K. C. Hwang, *Adv. Synth. Catal.*, 2012, **354**, 3421–3427.
- 20 C. Amatore, A. Jutand and M. A. M'Barki, *Organometallics*, 1992, **11**, 3009–3013.
- 21 Z. Csákai, R. Skoda-Földes and L. Kollár, *Inorg. Chim. Acta*, 1999, 286, 93–97.
- 22 A. F. Shmidt and V. V. Smirnov, *Kinet. Catal.*, 2002, **43**, 195–198.
- 23 C. Palladino, T. Fantoni, L. Ferrazzano, B. Muzzi, A. Ricci, A. Tolomelli and W. Cabri, *ACS Catalysis*, 2023, **13**, 12048-12061.