Electronic Supplementary Information

Energetic Derivatives Substituted with Trinitrophenyl: Improving the

Sensitivity of Explosives

Qiong Yu*^{‡a}, Yucong Chen^{‡a}, Zihao Guo^a, Tao Li^a, Zunqi Liu^a, Wenbin Yi^{*a}, Richard

J. Staples^b, Jean'ne M. Shreeve*c

^a School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^b Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

^c Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States

[‡] These authors contributed equally.

Table of Contents

1. Theoretical Calculation	S2
2. Crystallographic Data	S4
3. NMR and IR spectra and DSC plots of 2 – 6	S11

Theoretical Calculations

The structures of compounds 1, 2, 3, 4, 6a and 6b were optimized at the M062X/def2tzvp level to obtain their stable structures on the potential energy surface, using the Gaussian 16A program.¹ After vibration analysis, there were no imaginary frequencies. In order to obtain the heat of gas phase formation of the compounds, their isodesmic reactions were reasonably designed (Scheme S1).

Scheme S1. Isodesmic reactions for the heats of formation.

Using the atomization method, the gas phase enthalpy of the constructed model molecule was calculated using the G3 ab initio algorithm.²

	· · · · · · · · · · · · · · · · · · ·	/ / /		
Compounds	Compounds ZPE ^b		M062X/def2tzvp	HOF(gas)
	(Hartree/Particle	(Hartree/Particle	(Hartree/Particle	(kJ mol ⁻¹)
)))	
CH ₄	0.045026	0.048836	-40.5002716	-74.9 ^d
CH ₃ NH ₂	0.064218	0.068552	-95.8424359	-23.5 ^d
CH ₂ =NNO ₂	0.067592	0.073707	-300.3457738	2.2
CH ₃ N ⁻ NO ₂	0.053614	0.059231	-299.7881826	-99.4
1	0.150827	0.018174	-1162.0201282	155.0489054
2	0.256589	0.034995	-2321.5527447	666.5629524
3	0.153523	0.020265	-1366.500766	222.6463686
anion	0.139638	0.02024	-1365.9961683	0.174175772

Table S1. The heats of formation (HOF) for 1, 2, 3 and anion^a.

^a The enthalpy of sublimation was calculated by using Trouton's rule. The solid-state heats of formation of the resulting compounds were calculated with Equation (1) in which Tm is the melting temperature. $\Delta H_f = \Delta H_f(g) - \Delta H_{sub} = \Delta H_f(g) - 188[J \text{ mol}^{-1} \text{ K}^{-1}] \text{ x } T_m$ (1). ^b Zero-point correction. ^c Thermal correction to enthalpy, i.e., $H_{298.15 \text{ K}} - H_0 \text{ K}^{-d}$ NIST WebBook.

Crystallographic Data

Compound	2	3
CCDC number	2286868	2133005
Formula	C ₂₆ H ₂₄ N ₁₂ O ₁₉	C ₈ H ₃ N ₇ O ₉
$D_{calc.}$ / g cm ⁻³	1.576	1.865
μ/mm ⁻¹	0.137	1.537
Formula Weight	808.57	341.17
Colour	pale yellow	colourless
Shape	plate	plate
Size/mm ³	0.07×0.12×0.13	0.06×0.05×0.02
<i>T</i> /K	301.0	100.00(10)
Crystal System	triclinic	orthorhombic
Space Group	P-1	Pbca
a/Å	8.217(2)	12.0361(2)
b/Å	9.115(2)	9.5416(2)
<i>c</i> /Å	12.762(4)	21.1634(4)
$\alpha / ^{\circ}$	87.690(9)	90
β^{\prime}	75.875(9)	90
γ°	67.078(6)	90
V/Å ³	852.1(4)	2430.49(9)
Ζ	1	8
Ζ'	0.5	1
Wavelength/Å	0.71073	1.54184
Radiation type	ΜοΚα	Cu K _a
$\Theta_{min}/^{\circ}$	2.17	4.178
$\Theta_{max}/^{\circ}$	26.11	77.144
Measured Refl's.	31063	13994
Indep't Refl's	3699	2520
<i>R</i> _{int}	0.0883	0.0374
Parameters	298	221
Restraints	0	0
Largest Peak	0.731	0.204
Deepest Hole	-0.346	-0.268
GooF	1.035	1.073
wR_2 (all data)	0.1770	0.0767
wR ₂	0.1527	0.0746
R_1 (all data)	0.0877	0.0346
R_1	0.0579	0.0306

Table S2. Crystallographic data for compounds 2 and 3.

Atom	X	У	Z	Ueq	
01	3902.4(8)	4217.4(9)	4869.5(4)	15.0(2)	
O2	2951.3(8)	6460.1(10)	6613.5(4)	16.9(2)	
O3	2863.0(8)	4182.9(10)	6637.1(4)	17.9(2)	
O4	5415.6(8)	1719.0(11)	4855.1(4)	20.8(2)	
05	5972.9(8)	117.6(10)	4197.5(5)	21.2(2)	
O6	5771.4(11)	1149.2(13)	1986.1(5)	35.4(3)	
O7	4734.0(9)	2860.9(11)	1666.5(5)	23.9(2)	
08	1858.9(9)	4505.4(12)	3032.3(5)	29.5(3)	
09	2096.4(9)	4490.6(12)	4042.9(5)	27.4(3)	
N1	2984.7(9)	2953.0(12)	5531.0(5)	14.2(2)	
N2	3008.5(9)	2185.2(11)	4972.7(5)	15.0(2)	
N3	3627.4(9)	5333.3(11)	5800.2(5)	15.1(2)	
N4	3126.1(9)	5289.1(11)	6371.9(5)	13.4(2)	
N5	5440.4(9)	1168.4(12)	4332.8(5)	15.2(2)	
N6	5074.5(10)	2065.0(12)	2072.6(5)	18.5(2)	
N7	2357.8(9)	4151.1(12)	3507.8(5)	16.7(2)	
C1	3495.6(10)	4174.1(13)	5461.7(6)	13.4(2)	
C2	3561.3(10)	2977.9(13)	4603.4(6)	13.2(2)	
C3	3902.0(10)	2694.4(13)	3944.9(6)	13.3(2)	
C4	4809.7(10)	1831.9(13)	3814.2(6)	13.1(2)	
C5	5188.5(10)	1579.4(13)	3208.0(6)	14.4(3)	
C6	4635.8(11)	2230.3(13)	2719.1(6)	14.4(3)	
C7	3700.5(11)	3049.9(13)	2806.6(6)	15.1(3)	
C8	3351.7(10)	3256.0(13)	3422.0(6)	14.2(3)	

Table S3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Table S4: Anisotropic Displacement Parameters (×10⁴) for **2**. The anisotropic displacement factorexponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

-		-				
Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{23}	<i>U</i> ₁₃	<i>U</i> ₁₂
01	18.3(4)	15.0(4)	11.7(4)	-1.4(3)	2.0(3)	-2.1(3)
O2	21.5(5)	13.7(4)	15.6(5)	-3.0(4)	0.6(3)	1.2(4)
O3	25.4(5)	14.3(5)	14.0(4)	1.9(3)	2.1(4)	-2.5(4)
O4	20.7(5)	30.0(5)	11.8(5)	-0.8(4)	-1.1(3)	2.3(4)
05	21.9(5)	19.1(5)	22.5(5)	3.0(4)	0.5(4)	7.0(4)
O6	49.9(7)	35.2(6)	20.9(5)	0.7(5)	11.6(5)	23.5(6)
O7	25.5(5)	31.6(6)	14.5(5)	6.7(4)	1.3(4)	3.3(4)
08	28.0(5)	43.0(7)	17.5(5)	4.9(4)	-2.1(4)	17.8(5)
O9	30.6(6)	35.4(6)	16.1(5)	-2.9(4)	1.7(4)	16.2(5)
N1	18.0(5)	14.5(5)	10.2(5)	-0.9(4)	1.6(4)	-0.4(4)
N2	17.4(5)	16.2(5)	11.4(5)	-1.5(4)	0.5(4)	1.2(4)

N3	17.4(5)	15.8(5)	12.0(5)	-1.0(4)	2.4(4)	-1.1(4)
N4	14.0(5)	14.4(5)	11.9(5)	0.0(4)	-1.3(4)	-0.5(4)
N5	13.3(5)	17.3(5)	15.0(5)	2.9(4)	0.2(4)	-0.4(4)
N6	21.4(6)	20.2(6)	13.8(5)	-1.1(4)	1.6(4)	0.3(4)
N7	17.2(5)	17.5(6)	15.4(5)	2.2(4)	0.5(4)	2.7(4)
C1	13.1(5)	15.7(6)	11.4(6)	1.5(5)	0.6(4)	1.1(5)
C2	13.5(6)	12.5(6)	13.5(6)	-1.0(5)	-1.2(4)	1.3(4)
C3	14.7(6)	12.6(6)	12.7(6)	-0.6(5)	0.3(4)	-2.8(5)
C4	14.0(6)	12.6(6)	12.7(6)	1.4(5)	-2.2(4)	-1.5(4)
C5	13.9(6)	13.0(6)	16.3(6)	-0.7(5)	0.3(5)	-1.0(5)
C6	17.4(6)	13.6(6)	12.4(6)	-2.1(5)	2.0(5)	-2.3(5)
C7	17.0(6)	14.2(6)	14.3(6)	1.4(5)	-1.6(5)	-1.7(5)
C8	14.6(6)	12.4(6)	15.6(6)	0.3(5)	0.1(5)	0.3(5)

Table S5: Bond Lengths in Å for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.349(3)	C10	C16	1.373(3)
01	C6	1.355(3)	C12	C14	1.389(3)
N1	N1	1.256(4)	C12	C16	1.379(3)
N1	C6	1.387(3)	C2	С9	1.440(5)
O4	N4	1.220(3)	C9	C2	1.440(5)
O6	N4	1.211(3)	O2	C5	1.461(17)
N4	C10	1.471(3)	O2	C11	1.46(2)
08	C2	1.418(4)	O2	C13	1.54(2)
O8	C9	1.406(4)	O2	C7	1.58(2)
O10	N6	1.204(3)	C5	C11	1.505(13)
N6	O3	1.204(3)	C5	C7	1.223(11)
N6	C8	1.478(3)	C5	O5	1.56(2)
N3	O11	1.203(3)	C11	C5	1.505(13)
N3	O7	1.204(3)	C11	C13	1.231(12)
N3	C12	1.470(3)	C11	O5	1.60(2)
N2	N5	1.399(3)	09	C3	1.416(11)
N2	C1	1.277(3)	09	C15	1.446(12)
N5	C6	1.281(3)	C3	C7	1.508(12)
C1	C14	1.481(3)	C13	C15	1.477(13)
C4	C8	1.376(3)	C13	O5	1.40(2)
C4	C10	1.372(3)	C7	O5	1.39(2)
C8	C14	1.391(3)			

Table S6: Bond Angles in ° for 2.

1 4010 50	uble 50. Done / ingles in 101 2.								
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°		
C1	01	C6	101.09(18)	C5	02	C7	47.3(6)		
N1	N1	C6	112.9(2)	C11	O2	C13	48.4(7)		
O4	N4	C10	117.5(2)	C11	02	C7	114.3(10)		
O6	N4	O4	124.9(2)	C13	02	C7	96.1(12)		
O6	N4	C10	117.6(2)	O2	C5	C11	111.8(11)		
C9	08	C2	110.5(3)	O2	C5	05	13.0(16)		
O10	N6	O3	124.5(2)	C11	C5	05	124.5(10)		

O10	N6	C8	117.4(2)	C7	C5	O2	71.4(11)
03	N6	C8	118.0(2)	C7	C5	C11	168.7(9)
011	N3	07	123.7(2)	C7	C5	05	58.4(10)
011	N3	C12	117.9(2)	O2	C11	C5	112.2(11)
07	N3	C12	118.4(2)	O2	C11	05	12.3(16)
C1	N2	N5	105.7(2)	C5	C11	05	123.9(10)
C6	N5	N2	105.5(2)	C13	C11	O2	68.8(10)
01	C1	C14	119.4(2)	C13	C11	C5	176.3(9)
N2	C1	01	114.0(2)	C13	C11	05	57.4(10)
N2	C1	C14	126.6(2)	C3	09	C15	110.5(6)
C10	C4	C8	116.7(2)	09	C3	C7	110.7(7)
01	C6	N1	122.3(2)	C11	C13	02	62.8(9)
N5	C6	01	113.7(2)	C11	C13	C15	161.3(9)
N5	C6	N1	124.0(2)	C11	C13	05	74.8(11)
C4	C8	N6	116.5(2)	C15	C13	02	124.6(11)
C4	C8	C14	123.9(2)	05	C13	02	12.9(17)
C14	C8	N6	119.6(2)	05	C13	C15	111.7(12)
C4	C10	N4	119.2(2)	C5	C7	02	61.3(9)
C4	C10	C16	123.1(2)	C5	C7	C3	172.2(8)
C16	C10	N4	117.7(2)	C5	C7	05	73.0(11)
C14	C12	N3	120.6(2)	C3	C7	02	124.8(10)
C16	C12	N3	116.6(2)	05	C7	02	11.7(16)
C16	C12	C14	122.8(2)	05	C7	C3	113.2(12)
C8	C14	C1	121.3(2)	09	C15	C13	111.1(7)
C12	C14	C1	122.9(2)	C5	O5	C11	93.9(12)
C12	C14	C8	115.7(2)	C13	05	C5	128.4(14)
C10	C16	C12	117.7(2)	C13	05	C11	47.8(9)
08	C2	C9	113.5(3)	C7	05	C5	48.6(8)
08	C9	C2	112.5(3)	C7	05	C11	117.3(13)
C5	02	C11	104.4(9)	C7	05	C13	112.3(15)
C5	02	C13	125.6(11)				

Table S7: Torsion Angles in ° for 2

		-							
Atom	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Atom	Angle/°
01	C1	C14	C8	-97.0(3)	C5	O2	C11	C13	-125.1(14)
01	C1	C14	C12	86.5(3)	C5	O2	C11	O5	-105(5)
N1	N1	C6	01	1.2(4)	C5	O2	C13	C11	76.9(17)
N1	N1	C6	N5	-179.2(3)	C5	O2	C13	C15	-83.0(19)
O4	N4	C10	C4	-21.8(3)	C5	O2	C13	O5	-81(5)
O4	N4	C10	C16	157.8(2)	C5	O2	C7	C3	174.3(11)
O6	N4	C10	C4	158.7(2)	C5	O2	C7	05	-180(8)

06	N4	C10	C16	-21.7(3)	C5	C11	05	C5	43.1(15)
N4	C10	C16	C12	179.9(2)	C5	C11	05	C13	-175.8(11)
O10	N6	C8	C4	28.3(3)	C5	C11	05	C7	87.9(18)
O10	N6	C8	C14	-152.2(3)	C5	C7	05	C11	-69.5(15)
N6	C8	C14	C1	4.0(3)	C5	C7	05	C13	-122.2(17)
N6	C8	C14	C12	-179.3(2)	C11	02	C5	C11	-58.5(15)
N3	C12	C14	C1	-3.5(4)	C11	02	C5	C7	109.9(13)
N3	C12	C14	C8	179.8(2)	C11	$\frac{02}{02}$	C5	05	110(7)
N3	C12	C16	C10	-1797(2)	C11	$\frac{02}{02}$	C13	C15	-159 9(11)
011	N3	C12	C14	174.0(3)	C11	02	C13	05	-158(5)
011	N3	C12	C16	-73(4)	C11	$\frac{02}{02}$	C7	C5	-874(13)
N2	N5	C12 C6	01	-0.3(3)	C11	02	C7	C_3	86 9(14)
N2	N5	C6	N1	-0.5(3)	C11	02	C7	05	03(8)
N2	C1	C14		$(2)^{-1}$	C11	C5	C7	$\frac{0}{0}$	108(4)
N2	C1	C14	C12	02.0(3)	C11	C5	C7	02	108(4)
03	N6	C14	C12	-94.0(3)	C11	C5	05	C11	100(+)
03	NG		C4	-133.4(3)		C5	05	C11	-43.3(13)
05 N5	NO NO	C_0	01	20.1(4)		C5	05	C15 C7	-60(2)
NS N5	INZ			-0.0(3)		C_{12}	05	C/	-10/.0(11)
N5 C1	NZ		C14	1/9.8(2)		C13	05	09	-51(3)
CI C1		C6	NI N5	1/9.6(2)		C13	05	C5	53.1(19)
CI		C6	N5	-0.1(3)	CII	C13	05	C/	10/.2(16)
	N2	N5	C6	0.5(3)	09	C3	C/	02	-51.6(13)
07	N3	CI2	CI4	-5.8(4)	09	C3	C/	05	-52.9(13)
07	N3	CI2	CI6	172.9(3)	C3	09	C15	C13	-56.3(8)
C4	C8	C14	CI	-176.7(2)	C3	C7	05	C5	175.0(10)
C4	C8	C14	C12	0.1(3)	C3	C7	05	C11	105.5(16)
C4	C10	C16	C12	-0.6(4)	C3	C7	05	C13	52.7(18)
C6	01	C1	N2	0.5(3)	C13	O2	C5	C11	-107.3(18)
C6	01	C1	C14	-179.9(2)	C13	O2	C5	C7	61.2(17)
C8	C4	C10	N4	-178.7(2)	C13	O2	C5	05	61(6)
C8	C4	C10	C16	1.7(4)	C13	O2	C11	C5	-176.1(10)
C10	C4	C8	N6	177.9(2)	C13	O2	C11	05	20(5)
C10	C4	C8	C14	-1.5(4)	C13	O2	C7	C5	-134.2(11)
C14	C12	C16	C10	-1.0(4)	C13	O2	C7	C3	40.1(13)
C16	C12	C14	C1	177.9(2)	C13	O2	C7	05	46(7)
C16	C12	C14	C8	1.2(3)	C13	C11	05	C5	-141.1(13)
C2	08	C9	C2	-52.0(5)	C13	C11	05	C7	-96.3(18)
C9	08	C2	C9	52.6(5)	C7	O2	C5	C11	-168.4(9)
O2	C5	C7	05	0.0(16)	C7	O2	C5	05	0(6)
O2	C5	05	C11	-56(6)	C7	O2	C11	C5	108.1(13)
O2	C5	O5	C13	-93(7)	C7	O2	C11	C13	-75.8(14)
O2	C5	05	C7	-180(7)	C7	O2	C11	05	-56(5)
O2	C11	C13	C15	118(3)	C7	O2	C13	C11	117.3(9)
O2	C11	C13	05	5.0(13)	C7	O2	C13	C15	-42.6(11)
O2	C11	05	C5	62(5)	C7	O2	C13	05	-40(5)
02	C11	05	C13	-157(6)	C7	C5	05	C11	123.4(13)
02	C11	05	C7	106(6)	C7	C5	05	C13	87(2)
02	C13	C15	09	56.6(11)	C15	09	C3	C7	53.7(8)
02	C13	05	C5	74(5)	C15	C13	05	C5	-108(2)
$\overline{02}$	C13	05	C11	20(5)	C15	C13	05	C11	-161 5(10)
$\tilde{02}$	C13	05	C7	128(6)	C15	C13	05	C7	-54 3(18)
$\frac{02}{02}$	C7	05	C5	0(7)	05	C5	C7	$\frac{0}{02}$	0.0(16)
$\frac{02}{02}$	C^7	05	C11	-69(7)	05	C11	C13	$\frac{02}{02}$	-5 0(13)
$\frac{02}{02}$	C7	05	C13	-122(8)	05	C11	C13	C15	113(3)
<u> </u>	\sim /	00	015	122(0)	00	~ 1 1	015	015	112(2)

C5 C	02	C11	C5	58.8(15)	05	C13	C15	09	56.0(12)
------	----	-----	----	----------	----	-----	-----	----	----------

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.3460(15)	N3	N4	1.3527(15)
01	C2	1.3727(15)	N3	C1	1.3274(17)
O2	N4	1.2466(14)	N5	C4	1.4770(16)
03	N4	1.2367(14)	N6	C6	1.4750(16)
O4	N5	1.2242(15)	N7	C8	1.4810(16)
05	N5	1.2239(15)	C2	C3	1.4778(17)
O6	N6	1.2250(16)	C3	C4	1.3954(18)
07	N6	1.2179(15)	C3	C8	1.3966(18)
08	N7	1.2196(15)	C4	C5	1.3828(18)
09	N7	1.2192(15)	C5	C6	1.3780(18)
N1	N2	1.3905(15)	C6	C7	1.3832(18)
N1	C1	1.3256(17)	C7	C8	1.3823(18)
N2	C2	1.2750(17)			

Table S8: Bond Lengths in Å for 3.

Table S9: Bond Angles in ° for 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	01	C2	104.28(10)	N3	C1	01	115.69(11)
C1	N1	N2	111.07(10)	01	C2	C3	117.49(11)
C2	N2	N1	102.65(10)	N2	C2	01	114.57(11)
C1	N3	N4	113.80(10)	N2	C2	C3	127.90(12)
O2	N4	N3	114.47(10)	C4	C3	C2	120.80(11)
O3	N4	O2	122.39(10)	C4	C3	C8	116.14(11)
O3	N4	N3	123.15(11)	C8	C3	C2	123.06(11)
O4	N5	C4	118.32(11)	C3	C4	N5	120.53(11)
05	N5	O4	125.14(11)	C5	C4	N5	116.44(11)
05	N5	C4	116.51(11)	C5	C4	C3	123.01(12)
O6	N6	C6	117.38(11)	C6	C5	C4	117.32(12)
07	N6	O6	124.74(12)	C5	C6	N6	118.39(11)
07	N6	C6	117.87(11)	C7	C6	N6	118.43(11)
08	N7	09	124.45(11)	C7	C6	C5	123.17(12)
08	N7	C8	117.15(11)	C6	C7	C8	116.99(12)
09	N7	C8	118.40(11)	C3	C8	N7	120.47(11)
N1	C1	01	107.39(11)	C7	C8	N7	116.29(11)
N1	C1	N3	136.73(12)	C7	C8	C3	123.22(12)

Table S10: Torsion Angles in $^{\circ}$ for 3

Atom	Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Atom	Angle/°
01	C2	C3	C4	98.97(14)	N6	C6	C7	C8	-176.03(11)
01	C2	C3	C8	-81.06(15)	C1	01	C2	N2	98.97(14)
O4	N5	C4	C3	-24.13(17)	C1	01	C2	C3	-81.06(15)
O4	N5	C4	C5	154.14(12)	C1	N1	N2	C2	-24.13(17)

05	N5	C4	C3	157.61(11)	C1	N3	N4	O2	154.14(12)
05	N5	C4	C5	-24.12(16)	C1	N3	N4	O3	157.61(11)
06	N6	C6	C5	13.80(18)	C2	01	C1	N1	-24.12(16)
06	N6	C6	C7	-167.25(13)	C2	01	C1	N3	13.80(18)
07	N6	C6	C5	-164.97(12)	C2	C3	C4	N5	-167.25(13)
O7	N6	C6	C7	13.98(18)	C2	C3	C4	C5	-164.97(12)
08	N7	C8	C3	-173.66(12)	C2	C3	C8	N7	13.98(18)
08	N7	C8	C7	7.78(17)	C2	C3	C8	C7	-173.66(12)
09	N7	C8	C3	6.77(18)	C3	C4	C5	C6	7.78(17)
09	N7	C8	C7	-171.80(12)	C4	C3	C8	N7	6.77(18)
N1	N2	C2	01	-0.38(14)	C4	C3	C8	C7	-171.80(12)
N1	N2	C2	C3	177.21(12)	C4	C5	C6	N6	-0.38(14)
N2	N1	C1	01	-2.34(14)	C4	C5	C6	C7	177.21(12)
N2	N1	C1	N3	172.03(14)	C5	C6	C7	C8	-2.34(14)
N2	C2	C3	C4	-78.56(17)	C6	C7	C8	N7	172.03(14)
N2	C2	C3	C8	101.41(17)	C6	C7	C8	C3	-78.56(17)
N4	N3	C1	01	174.71(10)	C8	C3	C4	N5	101.41(17)
N4	N3	C1	N1	0.7(2)	C8	C3	C4	C5	174.71(10)
N5	C4	C5	C6	-177.70(11)					

Figure S4 ¹H-NMR spectrum of 3 in CD₃CN.

Figure S8 ¹³C-NMR spectrum of 4 in d_6 -DMSO.

Sample: nh4 natno Size: 0.8000 mg Method: Ramp Comment: Cell constant calibration

DSC

File: C:...\trinitro tuluene\nh4 natno.001 Operator: qiong Run Date: 28-Aug-2020 19:33 Instrument: DSC Q2000 V24.11 Build 124

Figure S14 ¹³C-NMR spectrum of **6a** in d_6 -DMSO.

Sample: n2h5 tnona 2 Size: 0.5000 mg Method: Ramp Comment: Cell constant calibration

DSC

File: C:...\trinitro tuluene\n2h5 tnona 2.001 Operator: qiong Run Date: 13-Sep-2020 22:23 Instrument: DSC Q2000 V24.11 Build 124

References

- M. J. Frisch; G. W. Trucks; H. G. Schlegel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; G. A. Petersson; H. Nakatsuji; X. Li; M. Caricato; V. Marenich; J. Bloino; B. G. Janesko; R. Gomperts; B. Mennucci; H. P. Hratchian; J. V. Ortiz; A. F. Izmaylov; J. L. Sonnenberg; D. Williams; F. Ding; F. Lipparini; F. Egid; J. Goings; Peng J. L.B.; A. Petrone; T. Henderson; D. Ranasinghe; V. G. Zakrzewski; J. Gao; N. Rega; G. Zheng; W. Liang; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; K. Throssell; J. A. Montgomery; J. E. Peralta; F. Ogliaro; M. J. Bearpark; J. J. Heyd; E. N. Brothers; K. N. Kudin; V. N. Staroverov; T. A. Keith; R. Kobayashi; J. Normand; K. Raghavachari; A. P. Rendell; J. C. Burant; S. S. Iyengar; J. Tomasi; M. Cossi; J. M. Millam; M. Klene; C. Adamo; R. Cammi; J. W. Ochterski.; R. L. Martin; K. Morokuma; O. Farka; J. B. Foresman; D. J. Fox; Gaussian 16, Revision A.03, Wallingford, CT 2016.
- 2 J. M. Martin, Ab initio total atomization energies of small molecules-towards the basis set limit. *Chem. Phys. Lett.* 1996, **259**, 669-678.