SUPPLEMENTARY MATERIAL

Crystal structure, bonding and electronic structure

of α - and β -Ir₂B_{3-x} compounds

Oksana Sologub^{1,*}, Leonid P. Salamakha^{1,5}, Berthold Stöger², Takao Mori³,

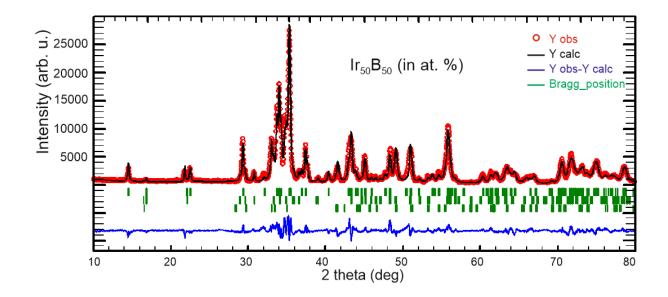
Neven Barisic^{1,6}, Peter F. Rogl⁴, Herwig Michor¹, Ernst Bauer¹

¹Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria

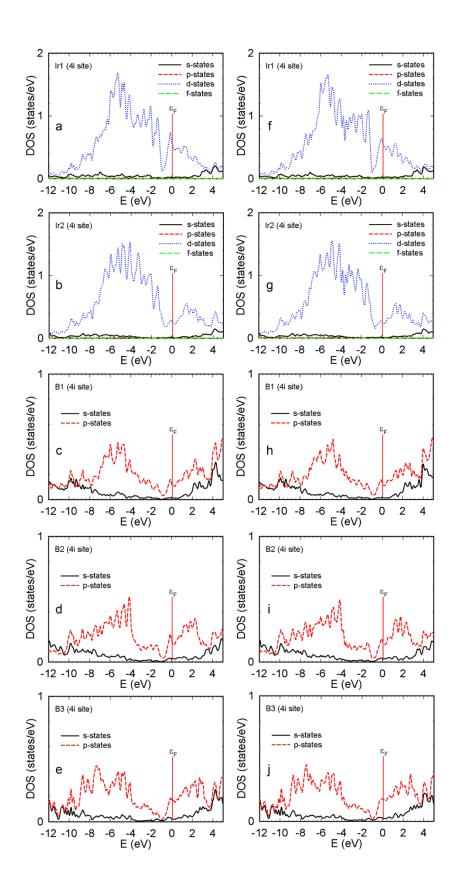
²X-Ray Centre, TU Wien, A-1060 Vienna, Austria

³National Institute for Materials Science (NIMS), Research Center for Materials

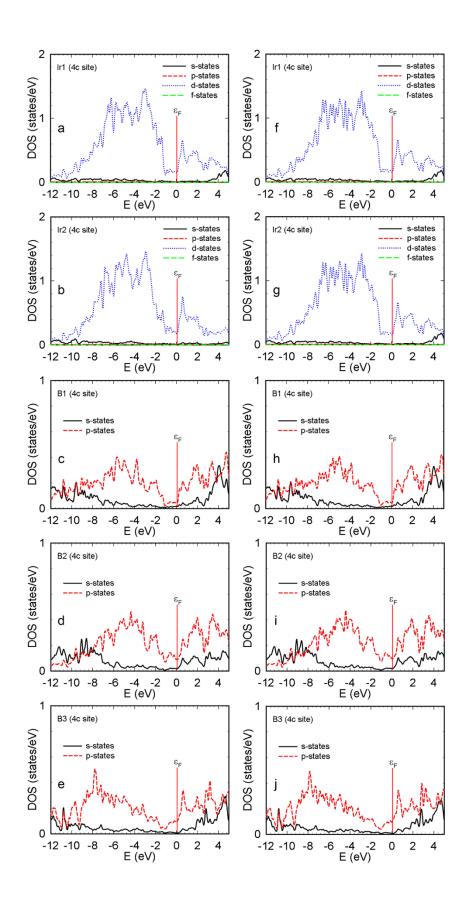
Nanoarchitectonics (MANA), Tsukuba, Japan

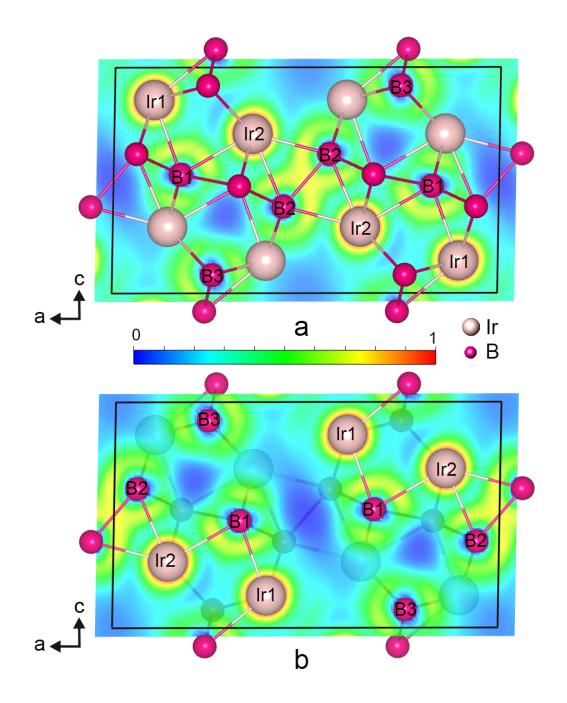

⁴Institute of Materials Chemistry, University of Vienna,

A-1090 Vienna, Austria


⁵Department of Physics of Metals, Faculty of Physics, I. Franko L'viv National University,

79005, L'viv, Ukraine


⁶Department of Physics, Faculty of Science, University of Zagreb, Croatia


Figure S1. Powder X-ray diffraction pattern of ~Ir₅₀B₅₀ (in at. %) sample obtained from hightemperature synthesis. Upper row of *hkl* labels corresponds to α -Ir₃B_{2-x} (space group *C2/m*; a=10.5433(8) Å, b=2.8924(3) Å, c=6.0927(6) Å, β =91.052(6)°), middle row represents the β -Ir₃B_{2-x} (space group *Pnma*; a=10.766(1) Å, b=2.8422(5) Å, c=6.0367(9) Å), lower row stands for the phase Ir₅B₄ (space group *I4*₁/*a*, a=6.2912(6) Å, c=10.256(1) Å). For Rietveld refinement, the structure models of α -Ir₂B_{3-x} (single crystal X-ray diffraction data; current work), Ir₃B_{2-x} [20] and β -Ir₂B_{3-x} (denoted as Ir₅B₄ in [23]) were applied. Crystal structure data of β -Ir₃B_{2-x} as obtained from Rietveld refinement of powder pattern of HTS sample: space group *Pnma*; a=10.766(1) Å, b=2.8422(5) Å, c=6.0367(9) Å; Ir1 in 4*c*, *x*=0.8539(8), *y*=4, *z*=0.352(1), Ir2 in 4*c*, *x*=0.5981(8), *y*=4, *z*=0.274(1), B1 in 4*c*, *x*=0.5713, *y*=34, *z*=0.5280; B2 in 4*c*, *x*=0.8010, *y*=34, *z*=0.0970; B3 in 4*c*, *x*=0.0080, *y*=4, *z*=0.5570. Atom coordinates of boron atoms were fixed during refinement.

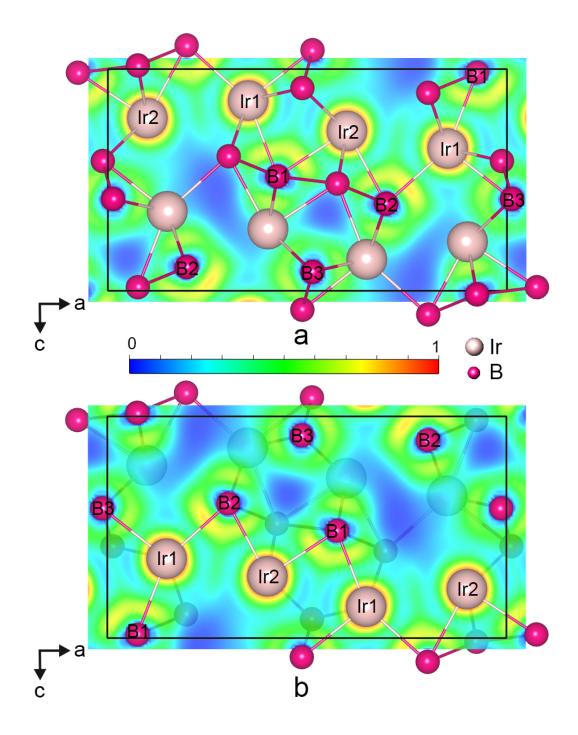

Figure S2. Distribution of partial (per one atom) density of states in α -Ir₂B_{3-x} without (a, b, c, d,e) and with (f, g, h, i, j) SOC.

Figure S3. Distribution of the partial (per one atom) density of states in β -Ir₂B_{3-x} without (a, b, c, d,e) and with (f, g, h, i, j) SOC.

Figure S4. Sections of calculated electron localization function in α -Ir₂B_{3-x} structure within the (010) (a) and (020) (b) planes. Some atoms are located above (a) and below (b) the planes.

Figure S5. Sections of calculated electron localization function in β -Ir₂B_{3-x} structure within the (040) (a) and (080) (b) planes. Some atoms are located above (a) and below (b) the planes.

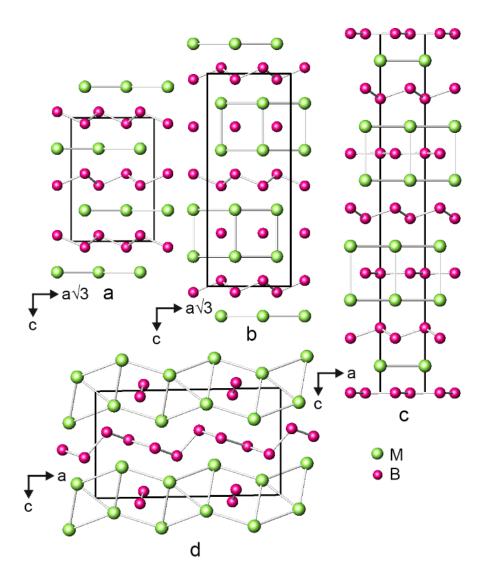


Figure S6. Crystal structures of ReB_{2} (a), $Ru_{2}B_{3}$ (b), $Mo_{2}B_{4}$ (c) and α -Ir₂B_{3-x} (d).