Optimizing Synergistic Effects: Creating oxygen vacancy in NiCoWO₄ via solid-state grinding method for improved energy storage performance.

Anandhavalli Jeevarathinam, Arun Annamalai, Ramya Ravichandran, Kumaresan Annamalai, Sundaravadivel Elumalai *

Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India

*Corresponding author E-mail: sundaravadivelchem@gmail.com

Fig S1 (a) Average particle size of Ov-NiCoWO₄

Fig S2 (a,b) SEM images of NiCoWO₄ and Ov-NiCoWO₄

Fig S3 (a) FT-IR spectrum of NiCoWO₄ and Ov-NiCoWO₄

Fig S4 (a) Survey spectrum of Ov-NiCoWO₄

Fig S5 (a,b) CV plots of NiCoWO₄ and Ov-NiCoWO₄ at scan rate of 2-10 mV/s, (c,d) b value of NiCoWO₄ and Ov-NiCoWO₄. (e,f) linear plot of anodic and cathodic peak current.

Fig S6 (a,b) Contribution percentage of NiCoWO₄ and Ov-NiCoWO₄. (c,d) Dunn real plot of NiCoWO₄ and Ov-NiCoWO₄ at scan rate of 10 mV/s.

Table S1

Comparison of specific capacitance of metal oxide-based materials:

Material	Preparation method	Surface area	Electrolyte	Current density	Specific capacitance	References
NiCoWO ₄	Wet chemical	-	PVA/H ₃ PO ₄	0.8 mA	862.26 mF	1
NiWO ₄	Hydrothermal	101.48 m²/g	ЗМ КОН	0.5 A/g	1524 F/g	2
CoNiWO ₄ -P-S- GNS	Hydrothermal	94.45 m ² /g	6M KOH	0.5 A/g	1298.6 F/g	3
NiCoWO ₄	Hydrothermal	51.926 m²/g	ЗМ КОН	1 A/g	634.55 C/g	4
FeWO ₄	Hydrothermal	18.059 m²/g	1M Na ₂ SO ₄	0.5 A/g	875 F/g	5
CoNiWO ₄	Hydrothermal	76.2 m ² /g	2M KOH	1 A/g	626.4 C/g	6
CuZnWO ₄	Hydrothermal	-	6M KOH	4 A/g	480 F/g	7
NiWO ₄ -CoWO ₄	Co- precipitation	150.7 m ² /g	2M KOH	0.5 A/g	1967 C/g	8
NiCoWO ₄	Solid-state Grinding	48.464 m²/g	ЗМ КОН	1 A/g	590 F/g	This work
Ov-NiCoWO ₄	Solid-state Grinding	53.173 m²/g	ЗМ КОН	1 A/g	703.66 F/g	This work

Figure S7 (a,b,c,d) XPS spectrum of Ni 2p, Co 2p, W 4f and O 1s of Ov-NiCoWO₄ of cycled samples

Figure S8 EDS Spectrum of Ov-NiCoWO₄

Element	Net Counts	Weight %	Atom %	Atom % Error	Formula
0	16615	24.25	71.62	± 0.75	0
Со	10077	8.17	6.55	± 0.20	Со
Ni	9233	8.16	6.57	± 0.22	Ni
W	26806	59.41	15.27	± 0.31	W
Total		100.00	100.00		

Table S2 Weight percentage of Ov-NiCoWO₄

Element	Net Counts	Weight %	Atom %	Atom % Error	Formula	
0	595	41.85	84.33	± 4.39	0	
Со	466	7.10	3.89	± 0.71	Со	
Ni	484	7.59	4.17	±0.41	Ni	
W	1296	43.46	7.62	± 0.85	W	
Total		100.00	100.00			

Figure S9 EDS Spectrum of NiCoWO₄

Table S3 Weight percentage of NiCoWO₄

References

- 1 S. Jha, S. Mehta, E. Chen, S. S. Sankar, S. Kundu and H. Liang, *Mater Adv*, 2020, 1, 2124–2135.
- 2 M. Ikram, Y. Javed, N. A. Shad, M. M. Sajid, M. Irfan, A. Munawar, T. Hussain, M. Imran and D. Hussain, *J Alloys Compd*, , DOI:10.1016/j.jallcom.2021.160314.
- A. S. Rajpurohit, N. S. Punde, C. R. Rawool and A. K. Srivastava, *Chemical Engineering Journal*, 2019, **371**, 679–692.
- S. Prabhu, C. Balaji, M. Navaneethan, M. Selvaraj, N. Anandhan, D. Sivaganesh, S. Saravanakumar, P. Sivakumar and R. Ramesh, *J Alloys Compd*, ,
 DOI:10.1016/j.jallcom.2021.160066.
- 5 P. Sathish Kumar, P. Prakash, A. Srinivasan and C. Karuppiah, *J Power Sources*, , DOI:10.1016/j.jpowsour.2020.228892.
- 6 B. Huang, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie and L. Chen, *Energy Storage Mater*, 2020, **32**, 105–114.
- 7 E. Dhandapani, S. Prabhu, N. Duraisamy and R. Ramesh, *Journal of Materials Science: Materials in Electronics*, 2022, **33**, 8446–8459.
- 8 Y. Wang, C. Shen, L. Niu, Z. Sun, F. Ruan, M. Xu, S. Shan, C. Li, X. Liu and Y. Gong, *Mater Chem Phys*, 2016, **182**, 394–401.